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Given two nonhomeomorphic topological spaces X and Y , it is often interesting or important
to specify necessary or sufficient conditions for X ×R and Y ×R to be homeomorphic, where as
usual R denotes the real line. More generally, it is also useful to have criteria for determining
whether X×R

l and Y ×R
k are homeomorphic for some k > 1. If X and Y are closed manifolds,

the following result, which is due to B. Mazur in the smooth and piecewise linear (PL) categories
[91, 93], provides an abstract answer. and to R. Kirby and L. Siebenmann in the topological
category [51], provides an abstract answer. In this result CAT refer to the category of smooth,
piecewise linear or topological manifolds and a CAT-isomorphism is a diffeomorphism, piecewise
linear homeomorphism or homeomorphism respectively:

Theorem 1. STABLE EQUIVALENCE THEOREM. Let M and N be closed CAT -manifolds.
Then M × R

k and N × R
k are CAT isomorphic for some k ≥ 1 if and only if M and N are

stably tangentially homotopy equivalent.

For the sake of completeness, we note that two manifolds are stably tangentially homotopy
equivalent if and only if they are homotopy equivalent such that the stable tangent bundle of
one pulls back to the stable tangent bundle of the other; other words, the direct sum of the
tangent bundle with a trivial line bundle on the codomain pulls back to the corresponding
bundle on the domain under the homotopy equivalence. As shown in [12], there are pairs of
homotopy equivalent manifolds such that the homotopy equivalence is stably tangential but the
unstable tangent bundle of the codomain does not pull back to the unstable tangent bundle of
the domain.

In fact, if f exists then for some k the map f × id(Rk) is properly homotopic to a CAT-
isomorphism; the topological version of this result follows from [?, ?] if [?]

Given two manifolds M and N satisfying the conditions of the stable Equivalence Theorem, it
is natural to ask the following:

OPTIMAL VALUE QUESTION. For a given tangential homotopy equivalence f : M → N ,

what is the least value of k such that f × id(Rk) is properly homotopic to a CAT isomorphism?

If n is the common dimension of M and N , the standard embedding and stable tubular neigh-
borhood theorems for CAT-manifolds imply that n + 1 is a universal upper bound for k in each
category.

In [56] special cases of the Optional Value Question were considered for linear spherical space
forms in the topological category, and in particular it was shown that if M and N are linear
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space forms such that M×R
2 is homeomorphic to N×R

2, then M and N are homeomorphic but
M ×R

3 and N ×R
3 are not diffeomorphic. These results already reflect the relative complexity

of this problem.

Our first result concerns a linear lens spaces.

Theorem 2. Let f : M → N be tangential homotopy equivalence of linear lens spaces with
prime order fundamental groups. Then f × idR3 is properly homotopic to a homeomorphism.

The restriction to linear lens spaces as opposed to homotopy lens spaces is crucial. It is well
know that there are fake lens spaces L1 and L2 are not homeomorphic but L1 × R and L2 × R

are diffeomorphic [?]
In this paper we shall study the Optimal Value Question for homotopy lens spaces. We will
concentrate on the case of (odd) prime order fundamental groups, although many of our results
hold without this restriction. Qualitatively, one can describe the results in terms of the concept
we call tangential thickness. Specifically, two CAT manifolds M and N are said to have
tangential thickness ≤ k if the following holds: Given a manifold M , let TTk(M) denote the
isomorphism classes of manifolds N such that {M,N} has tangential thickness ≤ k, and let
TT(M) denote the isomorphism classes of manifolds that are stably tangentially homotopy
equivalent to M . One then has an increasing sequence of sets TTk(M):

{class(M) } = TT0(M) ⊂ TT1(M) ⊂ · · · ⊂ TTk(M) ⊂ TT(M)

The sequence stabilizes for k ≥ dim M + 1 by Mazur’s result, so that

TTk(M) = TTk+i(M) = TT(M) , i = 1, 2, 3, · · · .

In particular, given a manifold M then the classification of all manifolds having the tangential
thickness tt(M) = k is equivalent to the computation of the set TTk(M)−TTk−1(M). We are
ready now to state results of this paper.

Theorem 3. Let M 2N−1, N ≥ 3 be a homotopy lens space (arbitrary fake spherical space form of
dimension ≥ 3). Then TTTOP (M2n−1) consists of manifolds h-cobordant to M 2n−1. These man-
ifolds are classified by Wh( π1(M2n − 1) ) via realization of Whitehead torsion by h-cobordant
i.e. free torsion of Wh( π1(M2n−1) on M2n−1.

Theorem 4. Let M 2n−1, n ≥ 3 be a fake lens space. Then a manifold N 2n−1 is in TTTOP
2 (M2n−1)

if and only if N 2n−1 × R is properly h-cobordant to M 2n−1 × R. The set TTTOP
2 (M2n−1)

- TTTOP
1 (M2n − 1) is in one-to-one correspondence with H0(K0Z[

∏
1 M2n−1)]. Moreover

all possible manifolds in TTTOP
2 (M2n−1) - TTTOP

1 (M2n−1) are obtained by a free action of
H0(K02[1)M2n−1] on M2n−1×R as the realization of Whitehead torsion by proper h-cobordisms.

Theorem 3. Let M 2n−1, n ≥ 3 be a fake lens space with
∏

1(M2n−1) ∼= 2p, p−odd prime. The
the set

TO BE COMPLETED
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[115] L. Schläfli, Theorie der vielfachen Kontinuität. “Denkschriften der Schweizerischen
naturforschenden Gesellschaft,” Vol. 38, pp. 1-237, Zürcher und Furrer, Zürich, 1901.
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