
 

 

 

The lateral surface area of a cone 
 

The purpose here is to explain the standard formula for the lateral (upper) area of a 
standard right circular cone.  The important dimensions of the cone are the height h, the 
radius r and the slant height s, all of which are indicated in the figure below: 

 
 

(Source:  http://www.mathopenref.com/images/coneslantheight/8-5-2011%205-04-57%20PM.png) 

 

We shall explain why the lateral area of such a cone is equal to the product  ππππrs.  This 
derivation is different from the one appearing in the course text, and it is based upon the 
standard definition of surface area in multivariable calculus texts.  According to that 
definition, one can find the surface area using pyramids circumscribed about the cone.  
As in the drawing below, the base of such a pyramid is a polygon whose sides are 
tangent to the cone’s base circle, and whose summit vertex is the summit vertex of the 
cone. 
 

 
 

(Source:  http://etc.usf.edu/clipart/42200/42235/conepoly_42235_lg.gif) 
 

Note that the altitudes of the lateral triangles agree with the slant heights of the cone.  If 
we assume that the base polygon of the pyramid is a regular n – gon and its perimeter is 
equal to Pn , then it follows that the lateral area of the pyramid, which is the sum of the 
areas of the lateral triangular faces, is equal to ½ Pn s, where s is the slant height.  The 



 

 

multivariable calculus definition of surface area implies that the lateral surface area of 
the cone is the limit of the lateral surface areas of the pyramids with regular polygonal 
bases.  As  n  approaches infinity, the limit of the perimeters  Pn  is equal to the 

circumference of the circle, which is 2ππππr.  Therefore the limit of the lateral areas as n 

approaches infinity is equal to  ½ (2ππππr)s  =  ππππrs, which is what we wanted to prove. 

 
The lateral area of a frustrum of a cone 

 
We are going to need a consequence of the area for the lateral area of the solid formed 
from a cone by cutting off the top at some fixed altitude.  Such an object is called a 
frustrum of a cone.   In the drawing below we start with a right circular cone of altitude  
h  and chop off a right circular cone of altitude  k  from the top.  The radii of the upper 
and lower boundary disks are denoted by  b  and  a  respectively.   
 

 
 

http://mordochai.tripod.com/graphics/kiyyors7.gif 
 

Obviously the lateral area of the frustrum is just the difference between the areas of the 
larger and smaller cones.  The derivation in the text shows that this difference is equal to  

 
 

 

and hence this gives the lateral area of the frustrum in the drawing.   
 

We must now apply this to analyze the surface area of a surface of revolution generated 
by a graph curve  y  =  f(x),  where  x  ranges between  a  and b;  we need to assume 
that  f  is always positive valued.     As usual, when trying to derive an integral formula 
for some quantity, one key step is to slice the surface into thin pieces and find 
reasonable first order approximations to the surface area of these pieces.  The precise 
method of doing this is slightly complicated, and we shall illustrate it using a variant of 
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the drawing in  

 

http://www.askamathematician.com/2011/04/q-why-is-the-integralantiderivative-the-area-under-a-function/ 
 

which was also used earlier for Section 7.2. 
 

 
 

Specifically, over the interval from  xi – 1  to  xi  we approximate the curve by the tangent 

line T(i) to the graph for some value  Ci between  xi – 1  and  xi.   Let S(i) denote the 
closed segment on T(i) which lies over the given interval, and let L(i) be the length of 
this segment.   Over each interval we shall approximate the original surface by the 
surface of revolution given by the curve S(i). This is not quite the same as the 
approximation described and illustrated on page 225 of the text, but our approximations 
and the texts’ look very similar.   We have taken a slightly different approach because it 
is consistent with the general approach to surface area in multivariable calculus courses. 
 

We must now approximate the surface area of the piece of the surface of revolution over 
the given interval, and as one might expect we do this using the surface area for the 
previously defined frustrum of a cone.   The upper and lower radii of the latter are given 

by  f(xi – 1) and  f(xi); in any given case we do not know which of these radii is the larger, 
but this does not really matter in the lateral area formula.   By the preceding discussions 
the area of the frustrum is equal to 

 

where  (xi – 1, yi – 1)  and  (xi, yi)  are the endpoints of the segment  S(i).  Since the slope 

of the tangent line is equal to  f′(Ci), it follows that  

 
 

 
 

where  (xi – 1, yi – 1)  and  (xi, yi)  are the endpoints of the segment  S(i).  We can use this 
to rewrite the lateral surface area of the frustrum as 
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where  ∆∆∆∆ xi  =  xi  –  xi – 1 ,  and if we add these terms, then a first order approximation to 

the entire area is given by the (Riemann) sum 

 

 
 
 

where “first order” means that we ignore terms involving higher powers of ∆∆∆∆ xi .   Finally, 

as usual, the limit of these terms as the  ∆∆∆∆ xi   go to zero is equal to the surface area and 

also to the definite integral 
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which is precisely the formula in the text.  Also, as noted in the text there is a similar 
formula for the area of a surface of revolution obtained by rotating the graph curve about 
the y – axis:  
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Why  second – order terms can be disregarded.   For the sake of completeness, 
there is a file in the course directory which explains why the second order terms of 
Riemann – like sums do not affect the limiting values:  

 

http://math.ucr.edu/~res/math009B-2012/second-order.pdf 
 

The mathematical level of this discussion is that of an introductory undergraduate real 
variables course like Mathematics 151A; in this course it is enough simply to know that 

“second order terms involving  ∆∆∆∆ x  (in other words, squares of the latter) don’t matter 

when we take limits.” 
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