
Convexity and differentiable functions 
 
 

We know that half – planes in  RRRR
2
  and half – spaces in  RRRR

3
  are fundamental examples 

of convex sets.  Many of these examples are defined by inequalities of the form  y  ≥   

f (x1, x2,  ... , xk)  where  f  is a first degree polynomial in the coordinates  x j  and  k  =   

1  or  2  depending upon whether we are looking at  RRRR
2
  or  RRRR

3
.  Our objective here is to 

derive a simple criterion for recognizing other convex sets defined by inequalities of the 

form  y  ≥   f (x1, x2,  ... , xk), where  f  is a function with continuous second partial 

derivatives; the set defined in this manner is sometimes called the  epigraph  of the real 

valued function  f .    
 

 
(Source:  http://en.wikipedia.org/wiki/File:Epigraph_convex.svg) 

 

Many functions in elementary calculus have convex epigraphs.  In particular, if we take   

f (x)  =  x
2
  or  e 

x
,  then inspection of the graphs strongly suggests that  their epigraphs  

are convex; our recognition criterion will prove these statements (and also yield many 
others of the same type). 
 

    

(Source:  
http://algebra.freehomeworkmathhelp.com/Relations_and_Functions/Graph

s/Graphs_of_Algebra_Functions/graphs_of_algebra_functions.html) 

 



 
Nearly all of our discussion generalizes to a class of examples known as convex 
functions, but our discussion will be limited because we mainly interested in finding 
examples.   Here are some references for the more general results about convex 
functions: 
 

We shall begin by considering convex functions of one variable, and afterwards we shall 
explain how everything can be extended to functions of two (or more) variables. 
 

Definition.  If  K  is a convex subset of  RRRR
n
  and  f  is a real valued function on K, then  f  

is said to be  convex  if  for each  x, y  in  K  and each  t  in the open interval  (0, 1)  we 
have  
 

f ( t x  +  (1 –  t ) y )   ≤    t f (x)  +  (1 –  t ) f (y). 
 

In calculus textbooks  (but practically nowhere else !)  such functions are often said to be 
concave upward. 
 

 

 

(Source:  http://withfriendship.com/user/levis/convex-function.php) 

 

Convex functions have been studied extensively in both theoretical and applied 
mathematics.  Further information can be found in the following online article: 
 

http://en.wikipedia.org/wiki/Convex_function 

 
Our first result gives an alternate characterization of convexity for functions. 
 

Theorem 1.  A real valued function on a convex set  K  in  RRRR
n
  is a convex function if 

and only it its epigraph in  K × RRRR
 
 is a convex set  (we view the latter as a subspace of  

RRRR     

n
 

+
 

1 
 in the usual way). 

 



Proof of Theorem 1. (⇐) Suppose that x,y ∈ K and t ∈ (0, 1). Since the epigraph E of f is
convex and it contains the graph of f , it follows that

(tx + (1 − t)y, t f(x) + (1 − t) f(y) ) = t (x, f(x) ) + (1 − t) (y, f(y) )

also lies in E. By definition of the latter, this means that

t f(x) + (1 − t) f(y) ≥ f (tx + (1 − t)y )

and therefore f is a convex function.

(⇒) Suppose that (x, u) and (y, v) lie in the epigraph, so that u ≥ f(x) and v ≥ f(y); we
need to prove that

t u + (1 − t) v ≥ f (tx + (1 − t)y )

for all t ∈ (0, 1). The hypotheses imply that the left hand side satisfies

t u + (1 − t) v ≥ t f(x) + (1 − t) f(y)

and the convexity of f shows that the right hand side is greater than or equal to f (tx + (1 − t)y ).
Combining these, we obtain the inequality in first sentence of the paragraph.

The Second Derivative Test for Convexity

We shall now state the main result; versions of it are implicit in the discussions of curve
sketching that appear in standard calculus texts.

Theorem 2. Let K ⊂ R be an interval, and let f be a real valued function on K with a continuous
second derivative. If f ′′ is nonnegative everywhere, then f is convex on K.

The next result contains the main steps in the proof of Theorem 2.

Lemma 3. Let f be a real valued function on the closed interval [a, b] with a second continuous
derivative. Suppose further that f ′′ is nonnegative on [a, b] let g be the linear function with
f(a) = g(a) and f(b) = g(b). Then f(x) ≤ g(x) for all x ∈ [a, b].

Proof of Lemma 3. Define a new function h on [a, b] by h = g − f . Then by construction we
have h(a) = h(b) = 0 and h′′(x) = g′′(x)− f ′′(x) = 0 − f ′′(x) because the second derivative of the
linear function g is zero; since f ′′ ≥ 0 it follows that h′′ ≤ 0. The preceding observations then yield
the following properties of the function h:

(i) For some C ∈ (a, b) we have h′(C) = 0.

(ii) The derivative h′ is nondecreasing.

The first of these is a consequence of Rolle’s Theorem, and the second follows because the derivative
h′′ of h′ is nonpositive. If we combine (i) and (ii) we see that h′(x) ≥ 0 for x ≤ C and h′(x) ≤ 0
for x ≥ C.

In order to prove Lemma 3, we must show that h(x) ≥ 0 everywhere. Since h(a) = 0 and
h′ ≥ 0 for x ≤ C, it follows that h(x) ≥ 0 for x ≤ C. We need to prove the same conclusion for
x ≥ C; assume this is false, and assume specifically that h(D) < 0 for some D ∈ (C, b). Since
h′ ≤ 0 for x ≥ D, we must also have h(x) < 0 for all x ∈ (D, b]. In particular, this implies that
h(b) < 0, which is a contradiction because we know that h(b) = 0. The source of this contradiction
is our supposition that h(D) < 0 for some D, and thus we must have h ≥ 0 everywhere.



Proof of Theorem 2. Let a, b ∈ K; our objective is to prove that if t ∈ (0, 1) then

f ((1 − t) a + t b) ≤ (1 − t) f(a) + t f(b) .

We claim that, without loss of generality, we may assume a is less than b; this is true because
for each t ∈ (0, 1) we may rewrite (1− t) a + t b as (1− s) a + s b where s = 1− t also lies in (0, 1).

Assuming a < b. take g to be the linear function defined in Lemma 3, let t ∈ (0, 1) and set x
equal to (1 − t) a + t b; since x ∈ (a, b) there is a unique solution t to this equation given by

t =
x − a

b − a

and this solution lies in (0, 1). We can now apply Lemma 3 to conclude that f(x) ≤ g(x). Since g
is a linear function we have

g(x) = g ( (1 − t) a + t b) = (1 − t) g(a) + t g(b) = (1 − t) f(a) + t f(b)

and by the preceding sentence we know this is greater than or equal to f ( (1 − t) a + t b). Therefore
f is a convex function.

EXAMPLES. Theorem 2 implies that both f(x) = x2 and f(x) = ex are convex because their
second derivatives are the positive valued functions 2 (the constant function) and ex respectively.
Similarly, f(x) = 1/x is convex on the open half-line defined by x > 0 because f ′′(x) = 2/x3 is
positive for x > 0.

Generalization to higher dimensions

Although a few complications arise, we can prove a corresponding Second Derivative Test for
recognizing convex functions of finitely many (say n) variables. The first of these is standard in
multivariable differential calculus; namely, we must restrict attention to open convex subsets of
R

n if n ≥ 2. Likewise, in analogy with the second derivative tests for relative maxima and minima,
we need to consider certain algebraic properties of the Hessian matrix

H(f) =

(

∂2f

∂xj ∂xj

)

which is symmetric (mixed partials do not depend upon the order in which the partial derivatives
are taken).

Algebraic digression. If A = (ai,j) is a symmetric n × n matrix, then A is said to be positive

definite if for each nonzero vector v = (v1, · · · , vn) we have

∑

i,j

ai,j vi vj > 0 .

The standard test for recognizing such matrices is the principal minors test:

Given a symmetric matrix A as above, let Ak be the k × k submatrix generated by the
first k rows and columns of A. Then A is positive definite if and only if detAk > 0 for
k = 1, ... , n.



See pages 84 and 88–90 of the document

http://math.ucr.edu/'res/math132/linalgnotes.pdf

for further information, including a proof of this fact.

The relevance of positive definite matrices arises from the following observation.

Lemma 4. Let U be a convex open subset of R
n, let f be a real valued function with continuous

second partial derivatives, let x and y be distinct points of U , and write v = y − x (hence v is
nonzero. If ϕ(t) = f(x + tv) for t in some open interval containing [0, 1], then

ϕ′′(t) =
∑

i,j

∂2f

∂xj ∂xj

(x + tv) vi vj .

NOTE. The convexity and openness of U imply that ϕ(t) can be always be defined for all t in some
open interval containing [0, 1].

Proof of Lemma 4. This follows immediately from successive applications of the Chain Rule to
ϕ(t) and ϕ′(t).

Theorem 5. (Multivariable Second Derivative Test for Convexity) Let K ⊂ R
n be an open

convex set, and let f be a real valued function on K with continuous second partial derivatives. If
the Hessian of f is positive definite everywhere, then f is convex on K.

Proof. Let x and y be distinct points of K, let t ∈ (0, 1), and let ϕ(u) be defined as in Lemma
4. Since the Hessian of f is positive definite everywhere, Lemma 4 implies that ϕ′′(u) > 0 for all
u and hence Theorem 2 shows that ϕ is a convex function on the open interval containing [0, 1].
Using the identity t = t · 1 + (1 − t) · 0, we then have

f (ty + (1 − t)x ) = ϕ(t) = ϕ (t · 1 + (1 − t) · 0) ≤ tϕ(1) + (1 − t)ϕ(0) .

By construction ϕ(0) = f(x) and ϕ(1) = f(y), so the convexity of f follows from substitution of
these values into the right hand side of the display above.

If we specialize to the case n = 2 the Principal Minors Test for the Hessian of f reduces to the
pair of inequalities

∂2f

∂x2

1

> 0, det

(

∂2f

∂xj ∂xj

)

> 0

and computations for specific examples are often very easy.

EXAMPLES. If K = R
2, then the functions f(x, y) = x2 +y2 and f(x, y) = ex +ey are convex on K

by Theorem 5 and the preceding simplification of the Principal Minors Test. Similar considerations
show that if K is the open first quadrant defined by x > 0 and y > 0, then f(x, y) = 1/xy is convex
on K.

Exercise

Show that if K is an open convex set and f is a convex function on K then the open epigraph
consisting of all (x, u) ∈ K ×R such that u > f(x) (i.e., we have strict inequality) is also a convex
set. [Hint: Imitate the relevant portion of the proof for Theorem 1.]


