Aristotle's Axiom in neutral geometry

The following result receives a fair amount of attention in Greenberg:

<u>Theorem (Aristotle's Axiom).</u> Assume that we are working inside a neutral plane. Let \angle BAC be an acute angle, and let k be a positive real number. Then there are points X and Y on (AC and (AB respectively such that XY is perpendicular to AC and d(X, Y) > k.

<u>Proof.</u> The idea is simple: We start out with any pair of points X and Y satisfying the all the conditions in the theorem except perhaps the inequality, and then we construct a new pair of points such X and Y that d(U, V) is at least twice d(X, Y). If this construction is repeated enough times, then the Archimedean Law implies that we shall obtain a pair of points for which the distance is greater than k.

Suppose that we are given points X_0 and Y_0 satisfying all the conditions in the theorem except possibly the inequality; since is acute and Y_0 lies on (AB, it follows that the foot X_0 of the perpendicular from Y_0 to AC lies on the ray (AC. Choose Y_1 on (AB such that Y_0 is the midpoint of [AY₁]; if X_1 is the foot of the perpendicular from Y_1 to AC, then as in the preceding sentence we know that X_1 also lies on (AC. Furthermore, the midpoint condition implies the betweenness relationship $A*Y_0*Y_1$, so that A and Y_1 lie on opposite sides of the line X_0Y_0 . Since X_0Y_0 and X_1Y_1 have a common perpendicular, it follows that all points of the second line are on the same side of the first, and hence A and X_1 lie on oppositie sides of X_0Y_0 , so that we have $A*X_0*X_1$.

Now choose Z so that Y_0 is the midpoint of [XZ]. Then by SAS we have $\triangle AY_0X_0 \cong \triangle Y_1Y_0Z$; therefore, it follows that Y_1Z is perpendicular to $X_0Z = X_0Y_0$. If we combine all the perpendicularity conditions, we see that X_0 , X_1 , Y_1 , Z form the vertices of a Lambert quadrilateral with right angles at all vertices except possibly Y_1 . Therefore Exercise V.3.9 implies that $d(X_0, Z) \leq d(X_1, Y_1)$ [*Note:* The statement of that exercise should be corrected to state that there are right angles at A, B and D.]. By construction we also know that $d(X_0, Z) = 2d(X_0, Y_0)$, and hence it also follows that $d(X_0, Y_0) \leq \frac{1}{2}d(X_1, Y_1)$; as indicated above, this suffices to complete the argument.