Remarks on dihedral and polyhedral angles

The following pages, which are taken from an old set of geometry notes, develop the
basic properties of the two basic 3 — dimensional analogs of plane angles in a manner
consistent with the setting of this course. One of the 3 — dimensional analogs is the
dihedral angle, which consists of two half — planes having a common edge together
with that edge. Intuitively, it looks like a piece of paper folded in the middle; this concept
is discussed in Section 15.3 of Moise. For dihedral angles, there is no vertex point as
such, but instead there is an edge. There is another concept of 3 — dimensional angle
for which there is a genuine vertex point, and the simplest examples are the trihedral
angles. Intuitively, these look like the corners of rectangular blocks with three flat
vertices joined at the common vertex or corner point, but one allows the angles of the
three planar faces to take any value between 0 and 180 degrees. More generally,
one can consider the corners of other solid objects as well; for example, the top of a
pyramid with a square base can be viewed as defining a 4 — faced corner, and one can
do the same for the top of a pyramid whose base is an arbitrary convex polyhedron in a
plane.

Applications to spherical geometry. |f we combine Theorem 1 (the “Triangle
Inequality for trihedral angles”) with the standard arc length formula s = r@ for

arcs in a circle of radius r, we can derive obtain one version of a fundamental result
about distances between points on a sphere:

The shortest curve between two nonantipodal points A and B on
a sphere is given by the (shorter) great circle arc joining A to B.

The term “antipodal” means that the straight line joining A to B passes through the
center of the sphere.

Notational and bibliographic conventions. One difference in notation between the
following pages and the course notes needs to be mentioned; in this document the
distance d(A, B) between two points A and B is denoted by |AB|. The
bibliographic references are given in the following online document:

http://math.ucr.edu/~res/math133/oldreferences.pdf

Final note. These pages are taken from a larger document which goes somewhat
further into the subject. On the next page there is a statement about showing that there
are only five types of regular polyhedra; this portion of the document has not been
included here.



In this chapter we shall define trihedral and polvhedral angles,
prove two fundamental inequalities on the measures of the angles

determined by the plane faceg, »

15,1 DEFINITIONS AND FUNDAMENTAL INEQUALITIES

"The' most basic three-dimensional angles are dihedralwangles;
the reader is referred to Moise, Secticom 15.3 for a discussion of
thelr basic properties, (see [Welchons and Krickenberger], Chapter II,
pages 57-66, for a continunation).

In a dihedral angle, the common edge of the two half-planes
can be viewed as a one-dimansional "vertex set". Talhedral and more
generally polyhediaf angles have zero~dimensional or point vertices.
The top of a pyramid and the adjacent sides is a typical example of

a2 polyhedral angle. One can divide polyhedral angles into two classes.

A

The nice ones are the convex angles, such as the pyramié example (a
formal definition will be given later). -There are aiso nonconvex
polyhedral angles; roughly speaking, nonconvex polyhedral angles
are to convex polyhedral angles as nonconvex polygons are to convex
ones. Therefore in the formal discussion we shall only discuss

convex polyhedral angles.




Just as the triangle is the simplest peolygon and all triangles
are convex, so alsc is the trihedral angle the simplex polyhedral
angle, and trihed@ral angles are always convex. So we begin with

trihedral angles.
Definition. Let A,B,C,D be four noncoplanar points.

Tnthednad angle (A - BCD is defined to be
LBAC U LCAD ) /BAD 3 Int /BAC U In% LCAD J Int LRAD.

The faces of the trihedral angle are the "closed interiors”

ZBAC ) Int LBAC,
LCAD U Int ACAD,

LBAD U Int LB2ARD.

The point A is the veatex, and /BAC, LCAD, sBAD are called the
jace angles.

Notaotional aemark. Dihedral angles have tuw hyphens in the middle

and trihedral angles have only gne.
For reasons of space it is not possible to go through all the

properties of trihedral angles that appear in the old standard solid

geometry books. Many points that are intuitively clear require very

complicated explanations. In any case, the following two results
are both important and give information about trihedral angles that

has a great deal of practical valine.




THEOREM 1. {Taiangle Tnequality}. In trihedral angle (A - BCD one

has

|epac] + |ccap| > |cBaD].
Note. Compare this to the planar where C ¢ Int /BAD; in that

case one has egquality.

THEQREM 2, (Angle Sum Inequality}. In trihedral angle /A - BCD one

has

|£BAC| + |scAD| + |4BAD] < 360°,

These theorems reflect a basic geometrical fact: A set of
coplanan poinils cannol be .lsomeiriec o a set of noncoplanan pedints. {Compare
the discussion in Section B8.5). Physically, this means that a
tripod whose legs are lecked into rigid positions with respect to
each other -cannot be moved so that the three feet and the top all

lie on a flat surface.
NOTE. Theorem 1 and ifs proof are valid in neutral geometny.

PROOF OF THEOREM 1, 1f |[spaB| < |z€AD| or [sDAB| < |/BAC| the
inequality is immediate, so we may as well assume that [zDAB| > |[zCaD!,

jLBAC].

A




Choose E € [AB and G € {[AD, and let K ¢ Int LDAB be a
point such that |[/RAB| = |2BaC| (¢ /BaD|). By the Crossbar’
Theorem there is a point F € (BD} N (AC. Choose H € (AC =0
that |AH| = |AF|. Then AEAN . AEAF by S.A.S., and therefore
jeg| = [EF|.

By Fhe Triangle Ineguality {(for ordinary planme triangles)

and E - F - 5 we have
[EB| + |BG| > |EG| = |EF| + |FG!;

since |EE| = |[EF|, we conclude that [|HG| > |FG].
Since |HA| = |HF| and |BG| > |FG|, the Hinge Theorem

implies that |ZHAG| > [/FAG|. On the other hand,
|2BAD| = [/BAF] + |LFAG| <« |zBAP| + |sHAG].

Since |LBAF = (KAB| is equal to [ZBAC| and@ (HAG = £CAD, the

ineguality above reduces to
|zBaD| < [zBAC| + [sCc2D| @

PROOF OF THEOREM 2. The two main tools are Theorem 1 and the

anglie sum thecrem for Euclidean triangles.

A




Consider the trihedral angles /B - ACD, £C - ABD, (D - ARC.

Applying Theorem 1 to each of them, we obtain the following

inequalities:

i) |eBpC| < |zBDA] + ]caDC|
(ii) |zbcB| < |zDCA| + |zBCA|
(iii) |zpBC| < |zDBA} + |sCEA].

Sinte the angle-sum of a triangle is 180° we have the

following egualities:

{iv) |[£BDC| + |[/DPCB} + |LDBC| = 180°

(v} |,BAD|
{vi) |sBac|
(vii} |ucap|

180° - {zADB} ~ |/ABD]|
180° - |sACB| - |iABC]
180° - |zaDC| - |LACD|.

]

Adding (v)=(vii) together, we obtain

f¢ap| + [iBac| + [scap| =
3-180 - [zADB| - [2aBD] - {LAEB[ - |¢zaBC] -~ |saDpC| - |zacD]
= 3-180 - (|£aDB| - |zaDpc|) - (]zBCa]| + |zpcal)
- ({zDBA| + |zCBA]). -

Substitution of inegualities {i}-{iii) in the latter expressien

yield
|zBaD| + |zBAC| + |zCAD| < 3-180 - |zBDC| - ]zDBC| - |zBCD],

and by (iv) the right hand side is equal to 3+180 - 180 = 360,

2s claimed #©




There is also a converse to these fundamental inequalities.

THEOREM 3. Let «,B,Y be three positive real numbers satisfying

thé following conditions:

i) e+8>y, B+y>0a, Y+ a> B,

{ii) e + B + v < 380.

Then there is a polvhedral angle /V -ABC such that [zVBC| = @,

|eveal = 8, |waBl =y B

The proof will not be given here; a proof using coordinates
appears in Appendix A. See [Prame] for a thorough discussion of

measurement data associated to trihedral angles.

EXERCISES
A

1. The angle-sum of the face angles of a trihedral angle is 320
degrees. What is the upper limit for the measure of the largest

face angle?

2. Let trihedral angle LV-ABC satisfy |[iave| = |/aVB|, 1let |VB|
= |vc|, and let M be the midpoint of [BC]. Prove that line BC

is perpendicular toc plane VAM.




SOLUTIONS TO ADDITIONAL EXERCISES FOR III.1 AND III.2

Here are the solutions to the exercises at the end of the file polyangles.pdf.

P1. Since the sum of the measures of all three face angles is at most 360° and the
sum of two of the measures is 320°, it follows that the measure of the third is at most 40°.m

P2. Let @ be the plane which is the perpendicular bisector of [BC], so that a
point is on @ if and only if it is equidistant from B and C. It will suffice to prove that
V, A, M are all equidistant from B and C; note that the three points in question cannot
be collinear, for if they were then A would lie in the plane containing V, B, C'.

We are given that V and M are equidistant from B and C, so we need only show that
the same is true for A. Since d(V, A) =d(V, A), |LAVC| = |LAV B|,and d(V, B) = d(V, C),
by SAS we have AAVB = AAVC, and this implies the desired equality d(A, B) =
d(A,C).m
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MORE EXERCISES ON POLYHEDRAL ANGLES

These are numerical exercises involving the fundamental inequalities for a trihedral angle.
E1l. Determine whether a trihedral angle can have face angles with the following angle
measures, and give reasons for your answers.
(a) 80°, 110°, 140°
) 72°, 128°, 156°
) 45° ,  45° . 90°
d) 60°, 60°, 60°
) 140° , 170°, 171°
) 105°, 118°, 130°

E2. A trihedral angle has two face angles whose measures are 80° and 120° respectively.
Which of the following values can be the measure of the third face angle? Give reasons for your
answer.

20°,  40°,  80°,  90°,  160°,  170°

Solutions are given on the next page.



SOLUTIONS.

E1. [Each part is answered separately.

(a) Yes, because the largest angle measurement is less than the sum of the smaller two and
the sum of all three angle measurements is less than 360°.m

(b) Yes, for the same reasons as in (a).m

(¢) No, because the sum of the smaller two measurements is equal to the largest measurement.m
(d) Yes, for the same reasons as in (a).m

(e) No, because the sum of all three angle measurements is greater than 360°.m

(

f) Yes, for the same reasons as in (a).m

E2. For the first three choices of the angle measure 6 we have § < 80° < 120°, and therefore
we must also have 120 < 80+ 8 and 200 4 6 < 360. These imply that if 8 < 80°, then we must also
have 6 > 40°. This means that 20° and 40° cannot be realized but 80° can. If # = 90°, then we
have 80 < 6 < 120 so the conditions for a trihedral angle are still 120 < 80 + # and 200 + 8 < 360.
Both of these hold if # = 90, so this value can also be realized. Finally, in the last two cases we have
80 < 120 < 6@, and since 6 < 180 < 120 + 80 = 200, the Triangle Inequality condition is satisfied.
However, we also have

0 + 120 + 80 > 160 + 120 + 80 = 360

and therefore the second condition for realization is not met.

Summarizing, we know that the only the middle two possibilities can be realized; the first two
are eliminated by the Triangle Inequality for trihedral angles, while the last two are eliminated by
the constraint that the angle sum is less than 360°.m



