I. Classical Differential Geometry of Curves

This is a first course on the differential geometry of curves and surfaces. It begins with
topics mentioned briefly in ordinary and multivariable calculus courses, and two major goals are
to formulate the mathematical concept(s) of curvature for a surface and to interpret curvature for
several basic examples of surfaces that arise in multivariable calculus.

Basic references for the course

An obvious starting point is to give the official text for the course:

M. Lipschutz, Schaum’s Outlines — Differential Geometry, Schaum’s/McGraw-Hill, 1969,
ISBN 0-07-037985-8.

This is actually a review book on differential geometry, but it contains a great deal of infor-
mation on the classical approach, brief outlines of the underlying theory, and many worked out
examples.

These notes are intended to expand upon the content of the text and, to some extent, reflect
the content of the lectures. The following items are similar in spirit to the course:

C. Baer, Elementary Differential Geometry, Cambridge Univ. Press, New York, 2010,
ISBN 978-0-521-89671-9.

T. Shifrin, Differential Geometry: A First Course on Curves and Surfaces, freely available
online: http://www.math.uga.edu/~shifrin/ShifrinDiffGeo.pdf

P. A. Blaga, Lectures on the Differential Geometry of Curves and Surfaces, Napoca Press,
Cluj-Napoca, Romania, 2005, ISBN 9736568962.

R. S. Millman and G. D. Parker, Elements of Differential Geometry, Prentice-Hall, En-
glewood Cliffs, NJ, 1977, ISBN 0-13-264243-7.

At various points we shall also refer to the following alternate sources, which are texts at
slightly higher levels:

J. Oprea, Differential Geometry and Its Applications (Second Ed.), Mathematical Asso-
ciation of America, Washington, DC, 2006, ISBN 978-0-88385-748-9.

A. Pressley, Elementary Differential Geometry, Springer-Verlag, New York NY, 2000,
ISBN 978-1852331528.

M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Saddle
River NJ, 1976, ISBN 0-132-12589-7.

J. A. Thorpe, Elementary Topics in Differential Geometry, Springer-Verlag, New York,
1979, ISBN 0-387-90357-7.

J. J. Stoker, Differential Geometry, Wiley, New York, 1949, ISBN 0-471-50403-3.

N. J. Hicks, Notes on differential geometry (Van Nostrand Mathematical Studies No. 3).
D. Van Nostrand, New York, 1965.
(Online: http://www.wisdom.weizmann.ac.il/~yakov/scanlib/hicks.pdf)
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W. Kiihnel, Differential Geometry: Curves — Surfaces — Manifolds (Student Mathematical
Library, Vol. 16, Second Edition, transl. by B. Hunt). American Mathematical Society,
Providence, RI, 2006. ISBN-10: 0-8218-3988-8.

B. O’Neill, Elementary Differential Geometry. (Revised Second Edition), Elsevier/Aca-
demic Press, San Diego CA, 2006, ISBN 0-12-088735-5.

Mathematical prerequisites

At many points we assume material covered in previous mathematics courses, so we shall in-
clude a few words on such background material. This course explicitly assumes prior experience
with the elements of linear algebra (including matrices, dot products and determinants), the por-
tions of multivariable calculus involving partial differentiation, and some familiarity with the a few
basic ideas from set theory such as unions and intersections. At a few points in later units we
shall also assume some familiarity with multiple integration. but we shall not be using results like
Green’s Theorem, Stokes’ Theorem or the Divergence Theorem. For the sake of completeness, files
describing the background material (with references to standard texts that have been used in the
Department’s courses) are included in the course directory and can be found in the files called
backgrounds.pdf, where n = 1,2 or 3.

How the prerequisites relate to this course

The name “differential geometry” suggests a subject which uses ideas from calculus to obtain
geometrical information about curves and surfaces; since vector algebra plays a crucial role in
modern work on geometry, the subject also makes extensive use of material from linear algebra. At
many points it will be necessary to work with topics from the prerequisites in a more sophisticated
manner, and it is also necessary to be more careful in our logic to make sure that our formulas
and conclusions are accurate. Also, at numerous steps it might be necessary to go back and review
things from earlier courses, and in some cases it will be important to understand things in more
depth than one needs to get through ordinary calculus, multivariable calculus or matrix algebra.
Frequently one of the benefits of a mathematics course is that it sharpens one’s understanding and
mastery of earlier material, and differential geometry certainly provides many opportunities of this
sort.

The origins of differential geometry

The paragraph below gives a very brief summary of the developments which led to the emer-
gence of differential geometry as a subject in its own right by the beginning of the 19*" century.
Further information may be found in any of several books on the history of mathematics.

Straight lines and circles have been central objects in geometry ever since its beginnings.
During the 5" century B.C.E., Greek geometers began to study more general curves, most notably
the ellipse, hyperbola and parabola but also other examples (for example, the Quadratrix of Hippias,
which allows one to solve classical Greek construction problems that cannot be answered by means of
straightedge and compass, and the Spiral of Archimedes, which is given in polar coordinates by the
equation r = ). In the following centuries Greek mathematicians discovered a large number of other
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curves and investigated the properties of such curves in considerable detail for a variety of reasons.
By the end of the Middle Ages in the 15" century, scientists and mathematicians had discovered
further examples of curves that arise in various natural contexts, and still further examples and
results were discovered during the 16" century. Problems involving curves played an important
role in the development of analytic geometry and calculus during the 17" and 18" centuries, and
these subjects in turn yielded powerful new techniques for analyzing curves and analyzing their
properties. In particular, these advances created a unified framework for understanding the work
of the Greek geometers and a setting for studying new classes of curves and problems beyond the
reach of classical Greek geometry. Interactions with physics played a major role in the mathematical
study of curves beginning in the 15" century, largely because curves provided a means for analyzing
the motion of physical objects. By the beginning of the 19*" century, the differential geometry of
curves and surfaces had begun to emerge as a subject in its own right.

This unit describes the classical nineteenth century theory of curves in the plane and 3-
dimensional space. Subsequent developments have led to more abstract and broadly based for-
mulations of both subjects. Treatments along these lines appear in most of the books listed above.
Both the classical and the more modern approaches have advantages. The classical approach usu-
ally provides the fastest way of getting to the basic properties of curves and surfaces in differential
geometry and working with fundamental classes of examples, while the various modern approaches
generally yield more conceptual insight into the nature of these properties.

References for examples

Here are some web links to sites with pictures and written discussions of many curves that
mathematicians have studied during the past 2500 years, including the examples mentioned above:

http://www-gap.dcs.st-and.ac.uk/~history/Curves/Curves.html
http://www.xahlee.org/SpecialPlaneCurves_dir/specialPlaneCurves.html
http://facstaff.bloomu.edu/skokoska/curves.pdf

Clickable links to these sites — and others mentioned in these notes — are in the course directory
file dg2012-1inks.pdf.

REFERENCES FOR RESULTS ON CURVES FROM CLASSICAL GREEK GEOMETRY. A survey of
curves in classical Greek geometry is beyond the scope of these notes, but here are references for
Archimedes’ paper on the spiral named after him and a description of the work of Apollonius of
Perga (c. 262—c. 190 B.C.E.) on conic sections in (relatively) modern language.

Archimedes of Syracuse (author) and T. L. Heath (translator), The Works of Archimedes
(Reprinted from the 1912 Edition), Dover, New York, NY, 2002, ISBN 0-486-42084—1.
(The paper On spirals appears on pages 151-188).

H. G. Zeuthen, Die Lehre von den Kegelschnitten im Altertum (The study of the conic
sections in antiquity; translation from Danish into German by R. von Fischer-Benzon),
A. F. Host & Son, Copenhagen, DK, 1886. — See the file zeuthen.pdf in the course
directory for an online copy.

Here are links to more modern and less formal historical discussions of classical work on curves
and surfaces.



http://www.ms.uky.edu/~carl/ma330/hippias/hippias2.html
http://en.wikipedia.org/wiki/On_Spirals
http://math.ucr.edu/~res/math153/history04X. pdf

http://math.ucr.edu/~res/math153/history04b. pdf

Finally, here are a few more online references, some of which are cited at various points in
these notes:

http://people.math.gatech.edu/~ghomi/LectureNotes/index.html
http://en.wikipedia.org/wiki/Differential geometry_of__surfaces
http://www.seas.upenn.edu/~cis70005/cis700s16pdf . pdf

http://www.math.uab.edu/weinstei/notes/dg.pdf

I.0: Partial differentiation

(Lipschutz, Chapters 2, 6, 7)

This is an extremely brief review of the most basic facts that are covered in multivariable
calculus courses.

The basic setting for multivariable calculus involves Cartesian or Euclidean n-space, which
is denoted by R™. At first one simply takes n = 2 or 3 depending on whether one is interested in
2-dimensional or 3-dimensional problems, but much of the discussion also works for larger values of
n. We shall view elements of these spaces as vectors, with addition and scalar multiplication done
coordinatewise.

In order to do differential calculus for functions of two or more real variables easily, it is
necessary to consider functions that are defined on open sets. One say of characterizing such a set
is to say that U C R" is open if and only if for each p = (p1,...,pn) € U there is an € > 0 such that
if x = (21, ...,x,) € U satisfies |z; — p;| < ¢ for all 7, then x € U. Alternatively, a set is open if and
only if for each p € U there is some § > 0 such that the set of all vectors x satisfying |x — p| < J is
contained in U (to see the equivalence of these for n = 2 or 3, consider squares inscribed in circles,
squares circumscribed in circles, and similarly for cubes and spheres replacing squares and circles;
illustrations and further discussion are in the files neighborhoods.pdf and opensets.pdf).

Continuous real valued functions on open sets are defined formally using the same sorts of € — 9
conditions that appear in single variable calculus; unless it is absolutely necessary, we shall try to
treat such limits intuitively (for example, see the discussion in Section I.2). Vector valued functions
are completely determined by the n scalar functions giving their coordinates, and a vector valued
function is continuous if and only if all its scalar valued coordinate functions are continuous. As
in single variable calculus, polynomials are always continuous, and standard constructions on con-
tinuous functions — for example, algebraic operations and forming composite functions — produce
new continuous functions from old ones.



More generally, one can also define limits for functions of several variables either by means of
the standard € — § condition; for functions of several variables, the appropriate condition for asking
whether

lim f(x) = b

X—a
is that the function f should be defined for all x sufficiently close to a with the possible exception
of x = a. In other words, there is some r > 0 such that f is defined for all x satsisfying

0 < |x—a] <r.
The definition of limit works equally well for vector and scalar valued functions, and the following
basic result is often extremely useful when considering limits of vector valued functions.
VECTOR LIMIT FORMULA. Let F be a vector valued function defined on a deleted neigh-
borhood of a with values in R"™, let f; denote the i** coordinate function of F, and suppose that
lim fi(z) = b

holds for all i. Let e; denote the i** unit vector in R"™, whose i*
other coordinates are equal to zero. Then we have

lim F(z) = Z bie; m
i=1

b coordinate is equal to 1 and whose

X—a

The previous statement about continuity of vector valued functions (continuous <= all of the
coordinate functions are continuous) is an immediate consequence of this formula.m

Partial derivatives

Given a real valued function f defined on an open set U, its partial derivatives are formed as
follows. For each index ¢ between 1 and n, consider the functions obtained by holding all variables
except the i*? variable constant, and take ordinary derivatives of such functions. The corresponding
derivative is denoted by the standard notation

of
(%ci '

The gradient of f is the vector V f whose i*® coordinate is equal to the i*" partial derivative.

One then has the following fundamentally important linear approximation result.

THEOREM. Let f be a function defined on an open subset U C R", and let x € U. Suppose
also that V f is also continuous on U. Then there is a § > 0 and a function 6 defined for |h| < §
such that

fx+h) = f(x) + Vf(x)-h + |h|-0(h)
where limy o [f(h)| = 0=

Derivations of this theorem are given in virtually every calculus book which devotes a chapter
to partial differentiation. It is important to note that the existence of partial derivatives by itself
is not even enough to ensure that a function is continuous (standard examples like

ry
flzy) = PR
for (x,y) # (0,0) and f(0,0) = 0 are also given in nearly all calculus books).



I.1: Cross products

(Lipschutz, Chapter 1)

Courses in single variable or multivariable calculus usually define the cross product of two
vectors and describe some of its basic properties. Since this construction will be particularly
important to us and we shall use properties that are not always emphasized in calculus courses, we
shall begin with a more detailed treatment of this construction.

Note on orthogonal vectors

One way of attempting to describe the dimension of a vector space is to suggest that the
dimension represents the maximum number of mutually perpendicular directions. The following
elementary result provides a formal justification for this idea.

PROPOSITION. LetS ={aj, --- ,ax} be a set of nonzero vectors that are mutually perpen-
dicular. Then S is linearly independent.

Proof. Suppose that we have an equation of the form

n
E c;a; = 0
i=1

for some scalars ¢;. If 1 < j < k we then have
n n
0 = 0- aj = (Z Ciai) . aj = Z (ciai . aj)
i=1 i=1

and since the vectors in S are mutually perpendicular the latter reduces to c;|a; |2. Thus the original
equation implies that c;la;|? = 0 for all j. Since each vector aj is nonzero it follows that |a;[? > 0
for all j which in turn implies ¢; = 0 for all j. Therefore S is linearly independent.m

Properties of cross products

Definition. If a = (a1, as,a3) and b = (b1, by, b3) are vectors in R* then their cross product or
vector product is defined to be

axb = (CLng — agbg, CL3b1 — albg, CleQ — CLle) .

If we define unit vectors in the traditional way as i = (1,0,0), j = (0,1,0), and k = (0,0, 1), then
the right hand side may be written symbolically as a 3 x 3 deterinant:

i j k
ap a2 as
by ax as



The following are immediate consequences of the definition:

() axb = —-bxa

(2) (ca)xb = c(axDb)

3) ax(b+c) = (axb) + (axc)

Other properties follow directly. For example, by (1) we have that a x a = —a X a, so that

2a x a = 0, which means that a x a = 0. Also, if ¢ = (¢, ¢, c3) then the triple product
[c,a,b] = c-(axb)

is simply the determinant of the 3 x 3 matrix whose rows are ¢, a, b in that order, and therefore
we know that

the cross product a x b is perpendicular to both a and b.m

The direction of the cross product is determined by this perpendicularity property and a rule
for determining which way the cross product points along this perpendicular, which is stated in
various forms and known as the right hand rule. Two examples to illustrate the right hand rule
appear on pages 11 and 12 of the following document:

http://math.ucr.edu/~res/math133/geometrynotesl.pdf

The basic properties of determinants also yield the following additional identity involving dot
and cross products:

[c,a,b] = [a,b,c]
This follows because a determinant changes sign if two rows are switched, for the latter implies
[c,a,b] = —[a,c,b] = Ja,b,c| .=
The following property of cross products plays an extremely important role in this course.

PROPOSITION. Ifa and b are linearly independent, then a, b and a x b form a basis for R®.

Proof. First of all, we claim that if a and b are linearly independent, then a x b # 0. To see
this we begin by writing out |a x b|? explicitly:

lax b|> = (agbs — asby)? + (asby — a1bz)® + (ayby — agby)?
Direct computation shows that the latter is equal to
(af + a3 +a3)(b] + b3 +b3) — (arby +asby +azb3)> = [a*|b]*> — (a-b)?
In particular, if a and b are both nonzero then
laxb| = |a]|b||sinf|

where 6 is the angle between a and b. Since the sine of this angle is zero if and only if the vectors
are linearly dependent, it follows that a x b # 0 if a and b are linearly independent.
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Suppose now that we have an equation of the form
ra+yb+zaxb) = 0

for suitable scalars z, y, 2. Taking dot products with a x b yields the equation z|a x b|? = 0, which
by the previous paragraph implies that z = 0. One can now use the linear independence of a and b
to conclude that x and y must also be zero. Therefore the three vectors a, b and a x b are linearly
independent, and consequently they must form a basis for R®.a

APPLICATION. Later in these notes we shall need the following result:

RECOGNITION FORMULA. Ifa,b € R? are perpendicular unit vectors and ¢ = a x b, then
the triple product [a, b, c] is equal to 1.

Derivation. By the length formula for a cross product and the perpendicularity assumption, we
know that |c| = |a| - |b| =1-1=1. But we also have
1 = |c* = c-(axb) = [c,a,b] = [a,b,c]
which is the equation that we want.m
Cross products of three vectors
In may situations it is useful to have formulas for more complicated expressions involving cross

products. For example, we have the following identity for computing threefold cross products.

“BAC—CAB” RULE. ax (bxc)=Db(a-c)—c(a-b), or in more standard format the left
hand side is equal to (a-c)b — (a-b)c.

Derivation. Suppose first that b and c are linearly dependent. Then their cross product is zero,
and one is a scalar multiple of the other. If b = x ¢, then it is an elementary exercise to verify that
the right hand side of the desired identity is zero, and we already know the same is true of the left
hand side. If on the other hand ¢ = y b, then once again one finds that both sides of the desired
identity are zero.

Now suppose that b and c are linearly independent, so that b x ¢ # 0. Note that a vector is
perpendicular to b x c if and only if it is a linear combination of b and c. The ( <= ) implication
follows from the perpendicularity of b and ¢ to their cross product and the distributivity of the
dot product, while the reverse implication follows because every vector is a linear combination

xb+yc+z(bxc)

and this linear combinationn is perpendicular to the cross product if and only if z = 0; i.e., if and
only if the vector is a linear combination of b and c.

Before studying the general case, we shall first consider the special cases b x (b X ¢) and
(D (b X c). Since b x (b X c) is perpendicular to b x ¢ we may write it in the form

b><(b><c) = ub+wvc

for suitable scalars u and v. If we take dot products with b and ¢ we obtain the following equations:
0 = [b,bbxc = (b- (b x (bxc))) = b-(ub+uvc) = u(b-b)+uv(b-c)
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—bxc*> = —[(bxc),bc = [b,(bxc)c = [c,b,(bxc) =

(c-(bx(bxc))) = c¢-(ub4ve) = u(b-c)+v(c-c)
If we solve these equations for u and v we find that u = b - ¢ and v = —b - b. Therefore we have
bx(bxc) = (b-c)b—(b-b)c.

Similarly, we also have
cx(bxc) = (c-e)b—(b-c)c.

If we now write a :pb—|—qc—|—7‘(b X c) we have

ax(bxc) = pb><(b><c)+qc><(b><c) =

(po-c)tale-c))b — (p(b-b)+a(b-c))e.

Since b and c are perpendicular to their cross product, we must have (a-c) =p(b-c)+¢(c-c)
and (a-b) =p(b-b)+q(b-c), so that the previously obtained expression for a x (b x ¢) is equal
to(a-c)b—(a-b)cm

The formula for a x (b X c) yields numerous other identities. Here is one that will be particularly
useful in this course.

PROPOSITION. Ifa, b, ¢ and d are arbitrary vectors in R® then we have the following identity:
(axb)-(cxd) = (a-c)(b-d) — (a-d)(b-c)

Proof. By definition, the expression on the left hand side of the display is equal to the triple
product [(axb), c,d]. As noted above, the properties of determinants imply that the latter is equal
to [d, (a x b), c], which in turn is equal to

d-(ax (bxc)) = d-((a-c)b—(a-b)c)
and if we expand the final term we obtain the expression (a-c)(b-d) — (a-d)(b-c).m

Cross products and higher dimensions

Given the relative ease in defining generalizations of the inner (or dot) product and the use-
fulness of the 3-dimensional cross product in mathematics and physics, it is natural to ask whether
there are also generalizations of the cross product. However, it is rarely possible to define good
generalizations of the cross product that satisfy most of the latter’s good properties. Partial but
significantly more complicated generalizations can be constructed using relatively sophisticated
techniques (for example, from tensor algebra or Lie algebras), but such material goes far beyond
the scope of this course. Here are two online references containing further information:

http://www.math.niu.edu/~rusin/known-math/95/prods
http://www.math.niu.edu/~rusin/known-math/96/octonionic
We shall not use the material in these reference subsequently.

Although one does not have good theories of cross products in higher dimensions, there is
a framework for generalizing many important features of this construction to higher dimensions.
This is implicit in the theory of differential forms; a discussion of the 2- and 3-dimensional cases
appears in Section II.1 of these notes.



Appendix: The distance between two skew lines

To illustrate the uses of calculus and linear algebra to work geometric problems, we shall prove
a basic result on skew lines; i.e., lines which have no points in common but are not parallel (hence
they cannot be coplanar). It follows that two lines are skew lines if and only if there are two points
p,q on one and two points p’, ¢’ on the other such that the set {p,q,p’,¢'} is not coplanar. Two
drawings of skew lines are in the course directory file skew-1lines.pdf.

THEOREM. Let L and M be two skew lines in R®, and for x € L and 'y € M let d(x,y) denote
the distance between x and y. Then the function d(x,y) takes a positive minimum value, and if
X, and y,, are points where d(x,y) is minimized, then the line joining X,, and y,, is perpendicular
to both L and M.

In classical Euclidean geometry this is usually stated in the form, “The shortest distance
between two skew lines is along their common perpendicular.” Predictably, it is possible to prove
this result using the methods of classical synthetic geometry, and nearly all the textbooks on solid
geometry from the first six decades of the 20" century contain proofs of this result.

Proof. There are three main parts to the argument:

(1) Proving that the distance function has an absolute minimum; under the hypotheses, we
know that this minimum distance must be positive.

(2) Showing that the the minimum value is realized by points x,, and y,, such that the line
Xm ¥m 18 perpendicular to both L and M.

(3) Deriving an algebraic formula for the minimum distance; one version of this formula is
given in Problem 8 on page 15 of DO CARMO.

FIRST STEP. We begin by translating the problem into a question about vectors. Suppose that
the skew lines have parametric equations of the form

Po + tu , p1 + sv

where u and v are nonzero and in fact must be linearly independent; for if u and v are linearly
dependent then the two lines described above are identical or parallel. In effect the problem is to
show that the function f(s,t) = |r(s,t)|?, where

r(s,t) = (po + tu) — (p1 + sv)
has a minimum value and to find that value.

As noted above, we shall begin by provig that there is a minimum value. If we write out the
conditions for a point to satisfy V f(s,t) = 0 we obtain the following system of linear equations,
where A and B are some constants.

t(u,u) — s{u,v) = A

t{u,v) — s(v,v) = B

These equations have a unique solution because the determinant




is nonzero by the Schwarz inequality and the linear indepdendence of u and v. Let R > 0 be so
large that the solution (s*, t*) lies inside the circle s 4t2 = R2. Then on the set 5?42 = R? either
the minimum value occurs at the unique critical point or else it occurs on the boundary circle. Let
D be the value of the function at the critical point, so that D > 0. If D is not a minimum value
for f(s,t) then for every Q > R there is a point on the circle s? + > = Q? for which the value
of the function is less than D. We claim this is impossible, and it will follow that D must be the
minimum value of the function.

Consider the values of the function f on the circle of radius p; these are given by
|r(pcosh, psing) |?

and if we write everything out explicitly we obtain the following expression for this function, in
which q is the vector pg — p1:

p*|cosOu —sinfv|? + 2p(cosfu—sinfv, q) + |qf?

Let m denote the minimum value of | cos # u—sin 6 v| for § € [0, 27] and let M denote the maximum
value. Since u and v are linearly independent, the displayed expression is always positive and
therefore m must be positive. We claim that the minimum value of f(s,t) on the circle s? +1? = p?
is greater than or equal to the following expression:

p?>m?—2pM |q| + |q|?

This follows immediately from the inequalities

p*|cosfu—sinfv|> > p>m?

2p(cosfu—sinfv,q) > —2p|cosfu—sinfv|-|ql >2pM|q|
where the first inequality in the second line comes from the Schwarz inequality.

Since
lim p*m?—2pM|q|+|q® = +o0
pP—00

it follows that all sufficiently large p the minimum value of f(s,t) on the circle s2+t? = p? is strictly
greater than D, and therefore D must be the absolute minimum for f on the set s2 + t2 < p? for
all sufficiently large p. But this means that D must be the absolute minimum for the function over
all possible values of s and t.

SECOND STEP. In order to determine where the minimum value is attained, one must set the
partial derivatives of f with respect to a and ¢ both equal to zero. If we do this we obtain the
following equations:

0 = 2r(s,t)-(—v)

0 = 2r(s,t)-(u)
Since u and v are linearly independent, this minimum occurs when r(s,t) a scalar multiple of ux v.

Suppose that the minimum distance between the lines is attained at parameter values (sg,to).
If x and y are the points on the lines where this minimum value is realized, then by construction
we know that r(sg,tg) = x —y, and since the left hand side is a multiple of u x v it follows that
the line joining x and y is perpendicular to both L and M.
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THIRD STEP. As above, Suppose that the minimum distance between the lines is attained at
parameter values (sg,tp). Then as before we have r(sgp,tg) = ku x v for some scalar k, and it
follows immediately that the minimum distance d satisfies

‘ [u,v,r(so,tg)] |

d =
lu x v|

where [a, b, c] refers to the usual triple product of vectors having the form (a x b)-c=a- (b x c).
The exercise in do Carmo claims that a similar formula holds with r(0,0) = pg = p; replacing
r(so,tp). This is true because

I'(0,0) :I'(Sg,to) + tou — So Vo
which implies that the triple products [u,v,r(so,to)] and [u,v,r(0, 0)] are equal. This is the
formula in bo CARMO.

A simpler example of a geometric proof using vectors is in the file vector-proofs.pdf.

1.2 : Parametrized curves

(Lipschutz, Chapter 3)

There is a great deal of overlap between the contents of this section and certain standard topics
in calculus courses. One major difference in this course is the need to work more systematically with
some fundamental but relatively complex theoretical points in calculus that can (and in most cases
probably should) be overlooked when working most ordinary and multivariable calculus problems.
In particular this applies to the definitions of limits and continuity, and accordingly we shall begin
with some comments on this background material.

Useful facts about limits

In ordinary and multivariable calculus courses it is generally possible to get by with only a
vague understanding of the concept of limit, but in this course a somewhat better understanding
is necessary. In particular, the following consequences of the definition arise repeatedly.

FACT 1. Let f be a function defined at all points of the interval (a — h,a + h) for some h > 0
except possibly at a, and suppose that

lim f(x) =b0>0.

r—a

Then there is a § > 0 such that 6 < h and f(x) > 0 provided x € (a — J,a + 0) and x # a.

FACT 1I. In the situation described above, if the limit exists but is negative, then there is a
9 > 0 such that 6 < h and f(x) > 0 provided x € (a — d,a + 0) and x # a.

FACT III. Each of the preceding statements remains true if 0 is replaced by an arbitrary real
number.
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Derivation(s). We shall only do the first one; the other two proceed along similar lines. By
assumption b is a positive real number. Therefore the definition of limit implies there is some § > 0
such that |f(z) — b| < b provided provided z € (a — d,a + 0) and x # a. It then follows that

f@) = b+ (f@) —b) > b—|f@)=b > b—1b = 0

which is what we wanted to show.m
We shall also need the following statement about infinite limits:

FACT IV. Let f be a continuous function defined on some open interval containing 0 such that f is
strictly increasing and f(0) = 0. Then for each positive constant C' there is a positive real number h
sufficiently close to zero such that x € (0, h) = 1/f(x) > C andx € (—h,0) = 1/f(x) < —C.

Proof. Let ¢ be the positive number 1/C; by continuity we know that |f(z)| < € if z € (—h, h)
for a suitably small A > 0. Therefore z € (0, h) = 0< f(z) <eand z € (—h,0) = —e<
f(x) < 0. The desired inequalities follow by taking reciprocals in each case.m

What is a curve?

There are two different but related ways to think about curves in the plane or 3-dimensional
space. One can view a curve simply as a set of points, or one can view a curve more dynamically as
a description of the position of a moving object at a given time. In calculus courses one generally
adopts the second approach to define curves in terms of parametric equations; from this viewpoint
one retrieves the description of curves as sets of points by taking the set of all points traced out by
the moving object, where the independent “time” variable lies in some interval J. For example, the
line in R? defined by the equation y = m z is the set of points traced out by the parametrized curve
defined by z(t) = t and y(t) = mt. Similarly, the unit circle defined by the equation x2 + y? = 1
is the set of points traced out by the parametrized curve z(t) = cost, y(t) = sint. The set of all
points expressible as x(t) for some ¢ € J will be called the image of the parametrized curve (since it
represents all point traced out by the curve this set is sometimes called the trace of the curve, but
we shall not use this term in order to avoid confusion with the entirely different notion of the trace
of a matrix). We shall follow the standard approach of calculus books here unless stated otherwise.

A parametrized curve in the plane or 3-dimensional space may be viewed as a vector-valued
function 7 or x defined on some interval of the real line and taking values in V' = R? or R®. In this
course we usually want our curves to be continuous; this is equivalent to saying that each of the
coordinate functions is continuous. Given that this is a course in differential geometry it should
not be surprising that we also want our curves to have some decent differentiability properties. If x
is the vector function defining our curve and its coordinates are given by x;, where ¢ runs between
1 and 2 or 1 and 3 depending upon the dimension of V', then the derivative of x at a point ¢ is
defined using the coordinate functions:

x'(t) = (21(t), 25(t), x5(t))

Strictly speaking this is the definition in the 3-dimensional case, but the adaptation to the 2-
dimensional case is immediate — one can just suppress the third coordinate or view R? as the
subset of R? consisting of all points whose third coordinate is zero.

Definition. A curve x defined on an interval J and taking values in V = R? or R? is differentiable
if x'(t) exists for all t € J. The curve is said to be smooth if x’ is continuous, and it is said to be
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a regqular smooth curve if it is smooth and x’(¢) is nonzero for all t € J. The curve will be said to
be smooth of class C" for some integer r > 1 if x has an 7 order continuous derivative, and the
curve will be said to be smooth of class C* if it is infinitely differentiable (equivalently, C" for all
finite 7).

The crucial property of regular smooth curves is that they have well defined tangent lines:

Definition. Let x be a regular smooth curve and let a be a point in the domain J of x.
The tangent line to x at the parameter value t = a is the unique line passing through x(a) and
x(a) + x’(a). There is a natural associated parametrization of this line given by

T(u) =x(a) + ux'(a) .

One expects the tangent line to be the “best possible” linear approximation to a smooth curve.
The following result confirms this:

PROPOSITION. In the notation above, if u # 0 is small and a + v € J then we have
x(a+u) = x(a) + ux'(a) + uO(u)
where lim,,_,o O(u) = 0. Furthermore, if p is any vector such that
x(a+u) = x(u) + up + uW(u)

where lim,_,o W(u) = 0, then p = x/(a).
Proof. Given a vector a we shall denote its i*" coordinate by a;.

Certainly there is no problem writing x(a + u) in the form x(u) + ux’(a) + u©O(u) for some
vector valued function ©; the substance of the first part of the proposition is that this function goes
to zero as u — 0. Limit identities for vector valued functions are equivalent to scalar limit identities
for every coordinate function of the vectors, so the proof of the first part of the proposition reduces
to checking that the coordinates 6; of © satisfy lim,, o 0;(u) = 0 for all i. However, by construction
we have

zi(a+u) — z;(a)

biu) = ; - 2i(a)

and since x is differentiable at a the limit of the right hand side of this equation is zero. Therefore
we have where lim,,_,o ©(u) = 0.

Suppose now that the second equation in the statement of the proposition is valid. As in the
previous paragraph we have

wi(u) = xi(&+uzz o) pi(a)

but this time we know that lim, o w;(u) = 0 for all <. The only way these equations can hold is if
pi(a) = z(a) for all im

Piecewise smooth curves

There are many important geometrical curves that that are not smooth but can be decomposed
into smooth pieces. One of the simplest examples is the boundary of the square parametrized in
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a counterclockwise sense. Specifically, take x to be defined on the interval [0,4] by the following
rules:

(a) x(t) = (t,0) for ¢t € [0, 1]
(b) x(t) = (1,t—1) for t e [1,2]
(c) x(t) = (2—t,1)forte[2,3]
(d) x(t) = (0,1—1¢) fort e [3,4]
The formulas for (a) and (b) agree when ¢ = 1, and likewise the formulas for (b) and (c) agree

when ¢t = 2, and finally the formulas for (c¢) and (d) agree when ¢t = 3; therefore these formulas
define a continuous curve. On each of the intervals [n,n + 1] for n = 0,1, 2,3 the curve is a regular
smooth curve, but of course the tangent vectors coming from the left and the right at these values
are perpendicular to each other. Clearly there are many other examples of this sort, and they
include all broken line curves. The following definition includes both these types of curves and
regular smooth curves as special cases:

Definition. A continuous curve x defined on an interval [a,b] is said to be a regular piecewise
smooth curve if there is a partition of the interval given by points

a = po < p1 o < Pppo1 <pp =0b

such that for each i the restriction x[i] of x to the subinterval [p;_1,p;] is a regular smooth curve.

For the boundary of the square parametrized in the counterclockwise sense, the partition is
given by
0 <1 < 2 < 3 < 4.

Calculus texts give many further examples of such curves, and the references cited at the
beginning of this unit also contain a wide assortment of examples. One important thing to note
is that at each of the partition points p; one has a left hand tangent vector x’(p;—) obtained from
x[i] and a right hand tangent vector x'(p;+) obtained from x[i + 1], but these two vectors are
not necessarily the same. In particular, they do not coincide at the partition points 1,2, 3 for the
parametrized boundary curve for the square that was described above.

Taylor’s Formula for vector valued functions

We shall need a vector analog of the usual Taylor’s Theorem for polynomial approximations
of real valued functions on an interval.

VECTOR VALUED TAYLOR’S THEOREM. Let g be a vector valued function defined on
an interval (a —r,a +r) that has continuous derivatives of all orders less than or equal to n+ 1 on
that interval. Then for |h| < r we have

n!

5 hE “ha+h—t)"
gath) = glo) + Y TeW@ + [ EEED gy
k=1 @

where g¥) as usual denotes the k' derivative of g.
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Proof. Let R, (h) be the integral in the displayed equation. Then integration by parts implies
that

Ry1(h) = — g™ (a) + Ru(h)
and the Fundamental Theorem of Calculus implies that
gla+h) = gla) + Ri(h).

Therefore if we set Ry = 0 we have
gla+h) = gla) + > (Ri(h)— Rp-1(h)) + Ru(h)
k=1

and if we use the formulas above to substitute for the terms Ry (h) — Rx—1(h) and R,,(h) we obtain
the formula displayed above.m

The following consequence of Taylor’s Theorem will be particularly useful:

COROLLARY. Given g and the other notation as above, let P, (h) be the sum of
glo) + 3 7 &)
k=1

Then given 7 < r and |h| < 7o < r we have |g(a + h) — P,(h)| < C |h|**!, for some positive
constant C.

If we think of g as defining a parametrized curve and take n = 1, so that g’ is continuous, then
the corollary implies that the distance between the point g(a+t) on the curve and the corresponding
point on the best linear approximation

gla) + tg'(a)
is bounded from above by C't? for some constant C.

Proof of the Corollary. The length of the difference vector in the previous sentence is given by

a+h _ n
IR, (h)| = / wg(n-&-l)(t)dt <
a n!
a+h _ n
sign(h) / Wg(nﬂ)(t)‘ dt <

(1) || u™ ’h‘n—i-l
(maxltfalﬁro [ (t)‘) ’/0 Hdu < M (n+1)!

where M is a positive constant at least as large as the maximum value of g™ (¢)| for |t —a| < ro.m

NOTE. For each positive integer n there are functions which have continuous derivatives of
order < n but no globally defined derivative of order n 4+ 1. Examples are discussed at the end of
this section.

Algebraic and transcendental curves

Frequently curves are defined by means of an equation of the form F(z,y) = 0, where F is
a function of two variables with continuous partial derivatives. Normally one makes the following
additional assumption:

At each point where F(z,y) = 0 we have VF(x,y) # 0.
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If this condition is met at (a,b) such that F'(a,b), then the Implicit Function Theorem in
Section I1.3 of these notes implies that, if we restrict to a small enough region U containing (a, b),
then the set of points in U satisfying F'(z,y) = 0 is equal to the graph of some function y = h(z) if
the first partial derivative of F' at (a,b) is nonzero. Similarly, if the second partial derivative of F'
at (a,b) is nonzero, then there is a small region U containing (a,b) such that the set of points in U
satisfying F'(x,y) = 0 is equal to the graph of some function x = k(y). If we combine the conclusions
in the preceding sentences, we may conclude that the set of points satisfying F'(z,y) = 0 can be
split into pieces such that each has a smooth parametrization. The ordinary unit circle defined by
22 + 42 = 1 is an example of a curve that is near some points as the graph of a function of = and
near other points as the graph of a function of y, but cannot be expressed globally as the graph of
a function of either = or y (for example, if it were globally the graph of a function of x then every
vertical line defined by an equation of the form x = ¢ would meet the curve in at most one point,
and clearly there are many values of ¢ for which the curve meets the vertical line in two points).

To indicate the importance of describing curves as sets of points (x,y) such that F(x,y) = 0,
we need only recall that one way of characterizing lines and conics in the plane is that lines in the
planes are the curves whose coordinates (x,y) satisfy a nontrivial first degree polynomial equation
p(z,y) = 0, and conics are the curves which satisfy a nontrivial polynomial equation p(z,y) = 0
such that the polynomial p has degree 2. More generally, one can define a plane curve to be
algebraic if its coordinates satisfy a nontrivial polynomial equation p(z,y) = 0, and similarly a
curve is transcendental if there is no nonzero polynomial p whose coordinates satisfy the equation
p(z,y) = 0. A discussion of algebraic and transcendental curves appears in the following online
documents:

http://math.ucr.edu/~res/math153/transcurves.pdf
http://math.ucr.edu/~res/mathl53/transcurves2.pdf

http://math.ucr.edu/~res/mathl153/transcurves3.pdf
Addendum: Note on smoothness classes

We shall construct examples of real valued functions f(z) which have continuous derivatives of
order < n but no derivative of order n+1. If n = 0 then the function f(z) = |z| (absolute value) is
such an example because f is continuous but f/(0) cannot be defined. Examples for higher values
of n are obtained recursively from this example.

Start with f(z) = x|z|. Since f(z) = 2? if z > 0 and f(z) = —2? if x < 0, it follows quickly
that f'(z) = 2|z| if © # 0. Furthermore, the definition of derivative implies that f’(0) = 0, so f
has a continuous derivative everywhere. It also follows that if x # 0 then f”(z) = sign(x), and
since f'(z) = 2 |z| it follows that f”(0) cannot be defined.

Now let f,(x) = z™|z| for n > 1. We claim that f,, has continuous derivatives of order n but
f+1(0) cannot be defined. The key step is to prove that m > 2 implies

@) = (m+1) fr_1(x), for all =« .

This follows from the identity f,,(z) = ™! fi(z) and the usual rule for differentiating products.
Similarly, if we differentiate repeatedly we obtain the formula

2 fa) = )l
de 7™ B e
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In particular, this means that f,, has continuous derivatives of all orders < m, but f (m+1)(0)
cannot be defined because |z| has no derivative at x = 0.m

I.3: Arc length and reparametrization

(Lipschutz, Chapter 3)

Given a parametrized smooth regular curve x defined on a closed interval [a, b], as in calculus
we define the arc length of x from ¢t = a to t = b to be the integral

b
L = /]x’(t)\dt.

The motivation for this definition is usually discussed in calculus courses, and it is reviewed below in
the subsection on arc length for curves that are not necessarily smooth. More generally, if a <t <b
then the length of the curve from parameter value a to parameter value t is given by

st) = /: I ()| du .

By the Fundamental Theorem of Calculus, the partial arc length function s is differentiable on [a, b]
and its derivative is equal to |x/(¢)|. If we have a regular smooth curve, this function is continuous
and everywhere positive (hence s(t) is a strictly increasing function of t), and the image of this
function is equal to the closed interval [0, L].

COMPUTATIONAL ISSUES. Although the arc length formula is fairly simple to state, it can be
extremely difficult to evaluate the integrals which it yields, even for familiar curves with relatively
simple parametrizations. For example, if one applies the formula to an arc on an ellipse, then results
of J. Liouville from the nineteenth century show that one cannot express the resulting integral in
terms of the standard functions considered in first year calculus. Here are some further references:

http://en.wikipedia.org/wiki/Elliptic_integral
http://math.ucr.edu/~res/mathl10B/nonelementary_integrals.pdf

The result about arc length for ellipses can be derived from the material in the first reference
(combined with material in J. F. Ritt, Integration in finite terms, Columbia Univ. Press, 1948, pp.
35-37). Another example of an “impossible” arc length integral is given in Section 1.4 below (see
the subheading Computational techniques).

Reparametrizations of curves

Given a parametrized curve x defined on an interval [a, b], it is easy to find other parametriza-
tions by simple changes of variables. For example, the curve y(¢) = x(¢ + a) resembles the original
curve in many respects: For example, both have the same tangent vectors and images, and the
only real difference is that y is defined on [0,b — a] rather than [a,b]. Less trivial changes of vari-
able can be extremely helpful in analyzing the image of a curve. For example, the parametrized
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curve x(t) = (e — e !, e + e7") has the same image as the the upper branch of the hyperbola
y? — 2% = 4 (i.e., the graph of y = v/4 + 22); as a graph, this curve can also be parametrized using
the graph parametrization y(u) = (u, V4 + u?). These parametrizations are related by the change
of variables w = 2sinh ¢; in other words, we have

x(t) = y(2sinht) .

Note that u varies from —oo to 400 as ¢ goes from —oo to +o00, and u'(t) = cosht > 0 for all .

More generally, it is useful to consider reparametrizations of curves corresponding to functions
u(t) such that u’(t) is never zero. Of course the sign of u’ determines whether wu is strictly increasing
or decreasing, and it is useful to allow both possibilities. Suppose that we are given a differentiable
function u defined on [a, b] such that v’ is never zero on [a,b]. Then the image ot u is some other
closed interval, say [c,d]; if u is increasing then u(a) = ¢ and u(b) = d, while if u is decreasing
then u(a) = d and u(b) = c. It follows that u has an inverse function t defined on [c, d] and taking
values in [a, b]. Furthermore, the derivatives dt/du and du/dt are reciprocals of each other by the
standard formula for the derivative of an inverse function.

It is important to understand how reparametrization changes geometrical properties of a curve
such as tangent lines and arc lengths. The most basic thing to consider is the effect on tangent
vectors.

PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c,d], let
u : [a,b] — [c,d] be a function with a continuous derivative that is nowhere zero, and let y(t) =
x(u(t)). Then

This is an immediate consequence of the Chain Rule.n

COROLLARY. For each t € [a,b] the tangent line to y at parameter value t is the same as
the tangent line to x at u(t). Furthermore, the standard parametrizations are related by a linear
change of coordinates.

Proof. By definition, the tangent line to x at u(t) is the line joining x (u(t)) and x(u(t)) +
x'(w(t)). Similarly, the tangent line to y at ¢ is the line joining y(t) = x(u(t) ) and

y(®) +y' () =x(u(t)) +u'{t)x"(u®)) .

Since the line joining the distinct points (or vectors) a and a + b is the same as the line joining a
and a + cb if ¢ # 0, it follows that the two tangent lines are the same (take a = y(t), b = x/(u)
and ¢ = u/(t)).

In fact, we have obtained standard linear parametrizations of this line given by f(z) =a+zb
and g(w) = a+ cwb. It follows that g(w) = f(cw).m

Arc length is another property of a curve that does not change under reparmetrization.

PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c,d], let
u : [a,b] — [c,d] be a function with a continuous derivative that is nowhere zero, and let y(t) =

x(u(t)). Then ) )
/ ()] ds = / ¥ (0)] dt
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Proof. The standard change of variables formula for integrals implies that

d b
/ |x'(u)|du:/ I (u(t) ) o () dt .

Some comments about this formula and the absolute value sign may be helpful. If u is increasing
then the sign is positive and we have u(a) = ¢ and u(b) = d, so |u’(t)| = v/(t); on the other hand if
u is decreasing, then the Fundamental Theorem of Calculus suggests that the integral on the left
hand side should be equal to

a
/
so that the formula above holds because v’ < 0 implies |u/| = —u’. In any case, the properties of

vector length imply that the integrand on the right hand side of the change of variables equation
is |u/(t) - x"(u)|, which by the previous proposition is equal to |y’(¢)|.=

x’(u(t))‘-u’(t)dt = —/ab x’(u(t))‘-u’(t)dt = /ab x’(u(t))"[—u’(t)] dt

If v is a regular smooth curve defined on [a, b], then the arc length function

(0= [ Wl

often provides an extremely useful reparametrization because of the following result:

PROPOSITION. Let v be as above, and let x be the reparametrization defined by x(s) =
v(u(s)), where p is the inverse function to the arc length function X : [a,b] — [0,L]. Then
|x'(s)] =1 for all s.

Proof. By the Fundamental Theorem of Calculus we know that \'(t) = |v/(t)|. Therefore by the
Chain Rule we know that

x(s) = p(s)V(ls))

and by the differentiation formula for inverse functions we know that

and if we substitute this into the expression given by the chain rule we see that

1

X' (s)| = |T'(s)| V' (T(s))| = V(T

AV(T(s))] = 1=

Arc length for more general curves

The geometric motivation for the definition of arc length is described in Exercises 8-0 on pages
10-11 of DO CARMO; specifically, given a parametrized curve x defined on [a, b] one picks a finite
set of points ¢; such that

a = tog < t1 < - < ty,=0b
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and views the length of the inscribed broken line joining tq to t1, t; to t2 etc. as an approximation
to the length of the curve. In favorable circumstances if one refines the finite set of points by taking
more and more of them and making them closer and closer together, the lengths of these broken line
curves will have a limiting value which is the arc length. Exercise 9(b) on page 11 of DO CARMO
gives one example of a curve for which no arc length can be defined. During the time since do
Carmo’s book and the Schaum’s Outline Series book were published, a special class of such curves
known as fractal curves has received a great deal of attention. The parametric equations defining
such curves all have the form x(t) = lim,,_,~ X, (t), where each x,, is a piecewise smooth regular
curve and for each n one obtains x, from x,_; by making some small but systematic changes.
Some online references with more information on such curves are given below.

http://mathworld.wolfram.com/Fractal.html
http://ecademy.agnesscott.edu/~1lriddle/ifs/ksnow/lsnow/htm
http://en2.wikipedia.org/wiki/Koch_snowflake
http://en.wikipedia.org/wiki/Fractal_geometry
http://www.youtube.com/watch?v=a9xvz_Palg

The preceding discussion illustrates that parametrized curves include a wide range of objects
which do not have piecewise smooth reparametrizations. However, thus far the images of the
parametrizations “look like” the standard examples in some vague sense; namely, they are topolog-
ically equivalent to intervals in the real line or ordinary circles in the plane. It is also possible to find
even more bizarre examples of parametrized curves. In particular, one can construct parametrized
curves whose image is the entire coordinate plane or 3-space. Here is an online reference for such
space-filling curves:

http://en.wikipedia.org/wiki/Space-filling_curve
http://en.wikipedia.org/wiki/Hilbert_curve
A more formal account appears in Section 44 of the following graduate level textbook:

J. R. Munkres. Topology. (Second Edition), Prentice-Hall, Saddle River NJ, 2000.
ISBN: 0-13-181629-2.

I.4: Curvature and torsion

(Lipschutz, Chapter 4)

Many calculus courses include a brief discussion of curvature, but the approaches vary and it
will be better to make a fresh start.

Definition. Let x be a regular smooth curve, and assume it is parametrized by arc length
plus a constant (i.e., |x'(s)| = 1 for all s). The curvature of x at parameter value s is equal to

r(s) = [x"(s)].

The most immediate question about this definition is why it has anything to do with our
intuitive idea of curvature. The best way to answer this is to look at some examples.
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Suppose that we are given a parametrized line with an equation of the form x(t) = a+tb
where |b| = 1. It then follows that x is parametrized by arc length by means of ¢, and clearly we
have x”(t) = 0. This means that the curvature of the line is zero at all points, which is what we
expect.

Consider now an example that is genuinely curved; namely, the circle of radius r about the
origin. The arc length parametrization for this curve has the form

x(s) = (rcos(s/r),rsin(s/r))

and one can check directly that its first two derivatives are given as follows:
x'(s) = ( —sin(s/r), cos(s/r) )
X(s) = < _cos(s/r)  sin(s/r) >

)

r r
It follows that the curvature of the circle at all points is given by the reciprocal of the radius.m

The following simple property of the “acceleration” function x”(s) turns out to be quite im-
portant for our purposes:

PROPOSITION. The vectors x"(s) and x'(s) are perpendicular.

Proof. We know that |x/(s)]| is always equal to 1, and thus the same is true of its square, which
is just the dot product of x’(s) with itself. The product rule for differentiating dot products of two
functions then implies that

0 = %(x'(s}x’(s)) = 2(x'(s)-x"(s))

and therefore the two vectors are indeed perpendicular.m

Geometric interpretation of curvature

We begin with a very simple observation.

PROPOSITION. Ifx(s) is a smooth curve (parametrized by arc length) whose curvature k(s)
is zero for all s, then x(s) is a straght line curve of the form x(s) = x(0) + sx’(0).

Proof. Since k(s) is the length of x”(s), if the curvature is always zero then the same is true for
x"(s). But this means that x’(s) is constant and hence equal to x’(0) for all s, and the latter in
turn implies that x(s) = x(0) + sx’(0).m

Given a smooth curve, the tangent line to the curve at a point £ may be viewed as a first order
linear approximation to the curve. The notion of curvature is related to a corresponding second
order approximation to the curve at parameter value ¢t by a line or circle. We begin by making this
notion precise:

Defintion. Let n be a positive integer. Given two curves a(t) and b(t) defined on an interval J
containing to such that a(tg) = b(tg), we say that a and b are strong n*™® order approzimations to
each other if there is an € > 0 such that |h| < ¢ and to + h € J imply

blto+h) — alto+h)| < Ch™!
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for some constant C' > 0. The analytic condition on the order of approximation is often formulated
geometrically as the order of contact that two curves have with each other at a given point; as
the order of contact increases, so does the speed at which the curves approach each other. The
most basic visual examples here are the z-axis and the graphs of the curves ™ near the origin.
Further information relating geometric ideas of high order contact and Taylor polynomial approx-
imations is presented on pages 87-91 of the Schaum’s Outline Series book on differential geometry
(bibliographic information is given at the beginning of these notes).

LEMMA. Suppose that the curves a(t) and b(t) are defined on an interval J containing t( such
that a(ty) = b(tg), and assume also that a and b are strong n*® order approximations to each other
at ty. Then for each regular smooth reparametrization t(u) with to = t(ug) the curves a°t and bet
are strong n'® order approximations to each other at .

Proof. Let Jy be the domain of the function ¢(u), and let Ky be a closed bounded subinterval
containing ug such that the latter is an endpoint of K if and only if it is an endpoint of Jy. Denote
the maximum value of |#/(u)| on this interval by M. Then by hypothesis and the Mean Value
Theorem we have

b(t(ug+h)) — a(t(uo+h))| < Cltlug+h) —tlu)|"tt < CM™ . |p"H!

which proves the assertion of the lemma.m

In the terminology of n'® order approximations, if we are given a regular smooth curve x
then a strong first order approximation to it is given by the tangent line with the standard linear
parametrization

L(to + h) = X(to) + hX,(t) .

Furthermore, this line is the unique strong first order linear approximation to x.
Here is the main result on curvature and strong second order approximations.

THEOREM. Let x be a regular smooth curve defined on an interval J containing O such that
x' has a continuous second derivative and |x’| = 1 (hence x is parametrized by arc length plus a
constant).

(¢) If the curvature of x at 0 is zero, then the tangent line is a strong second order approximation
to x.

(#i) Suppose that the curvature of x at 0 is nonzero, let N be the unit vector pointing in the
same direction as x"'(0) (the latter is nonzero by the definition and nonvanishing of the curvature
at parameter value 0). If T' is the circle through x(0) such that [1] its center is x(0) + (x(0)) ~'N,
[2] it lies in the plane containing this center and the tangent line to the curve at parameter value
zero, then I' is a strong second order approximation to x.

For the sake of completeness, we shall describe the unique plane containing a given line and
an external point explicitly as follows. If a, b and c are noncollinear points in R? then the plane
containing them consists of all x such that x — a is perpendicular to

(b — a) X (c — a)
which translates to the triple product equation

[(x—a), (b—a), (c—a)] = 0.
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Suppose now that by and c¢; are points on the line containing b and c¢. Then we may write
by = ub 4+ (1-uw)c, ¢ = vb + (1-v)c
for suitable real numbers v and v. The equations above immediately imply the following identities:

(by —a) = ub —a) + (1-u)(c — a

(¢t —a) = vb—a) + (1—-v)(c — a).
These formulas and the basic properties of determinants imply
[(x—a).(by —a), (c1 —a)] =
[(x —a).u(by —a), v(c; —a)] + [(x—a).(1—u)(by—a), (1—-v)(c; —a)] =
w((x—a), (b—-a), (c-a) + (1-u)(l-v)[(x—a),(c—a), (b-a) =
wd — (1—u)(1—-v)0 = 0

and hence the equation
[(x—a), (b—a),(c—a) = 0

implies the corresponding equation if b and c are replaced by two arbitrary points on the line
containing b and c.m

Proof of Proposition. Consider first the case where x(0) = 0. Then the tangent line to
the curve has equation L(s) = sx’(0) and the second order Taylor expansion for x has the form
x(s) = sx'(0) + 1s2x”(0) 4+ s*6(s) where 6(s) is bounded for s sufficiently close to zero. The
assumption x(0) = 0 implies that x”(0) = 0 and therefore we have x(s) — L(s) = s36(s) where
6(s) is bounded for s sufficiently close to zero. Therefore the tangent line is a strong second order
approximation to the curve if the curvature is equal to zero.

Suppose now that x(0) # 0, and let N be the unit vector pointing in the same direction as

x"(0). Define z by the formula
1

——N
#(0)
and consider the circle in the plane of z and the tangent line to x at parameter value s = 0 such

that the center is z and the radius is 1/k(0). If we set r equal to 1/k(0) and T = x/(0), then a
parametrization of this circle in terms of arc length is given by

z = x(0) +

I'(s) = z — rcos(s/r)N + rsin(s/r)T .
Using the standard power series expansions for the sine and cosine function and the identity z =
x(0) —r N, we may rewrite this in the form
§2
I'(s) = x(0) + 2—N + s%a(s)N + sT + s*3(s)T
r
where a(s) and ((s) are continuous functions and hence are bounded for s close to zero. On the
other hand, using the Taylor expansion of x(s) near s = 0 we may write x(s) in the form
2

x(0) + sx'(0) + %x”(O) + S W(s)
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where W (s) is bounded for s close to zero. But x’(0) = T and

so that T'(s) — x(s) has the form sW(s) where W(s) is a bounded function of s. Therefore the
circle defined by I' is a strong second order approximation to the original curve at the parameter
value s = 0.m

Notation. If the curvature of x is nonzero near parameter value s as in the proposition, then
the center of the strong second order circle approximation

is called the center of curvature of x at parameter value s. The circle itsef is called the osculating
circle to the curve at parameter value s (in Latin, osculare = to kiss).

Complementary result. A more detailed analysis of the situation shows that if £(0) # 0 then
the circle given above is the unique circle that is a second order approximation to the original curve
at the given point.m

Computational techniques

Although the description of curvature in terms of arc length parametrizations is important for
theoretical purposes, it is usually not particularly helpful if one wants to compute the curvature of
a given curve at a given point. One major reason for this is that the arc length function s(¢) can
only be written down explicitly in a very restricted class of cases. In particular, if we consider the
graph of the cubic polynomial y = 23 with parametrization (¢, 3) on some interval [0, a] then the
arc length parameter is given by the formula

s(t) = /Ot\/l—i—9u4du

and results of P. Chebyshev from the nineteenth century show that there is no “nice” formula
for this function in terms of the usual functions one studies in first year calculus. Therefore it is
important to have formulas for curvature in terms of arbitrary parametrizations of a regular smooth
curve.

Remarks.

1. The statement about the antiderivative of v/1 + 9z is stronger than simply saying that
no one has has been able to find a nice formula for the antiderivative. It as just as impossible to
find one as it is to find two positive whole numbers a and b such that /2 = a/b or to find two even
positive integers whose sum is an odd integer.

2. A detailed statement of Chebyshev’s result can be found on the web link

http://mathworld.wolfram.com/IndefiniteIntegral.html

and further references are also given there.

The following formula appears in many calculus texts:
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FIRST CURVATURE FORMULA. Letx be a smooth regular curve, let s be the arc length
function, let k(t) = k(s(t)), and let T(t) be the unit tangent vector function obtained by multi-
plying x'(t) by the reciprocal of its length. Then we have

T/ (1)]

K= )

Derivation. We have seen that T (s) is equal to x’(s), and therefore by the chain rule we have
T'(t) = S OT'(s(t) = [xKH)x"(s).

Taking lengths of the vectors on both sides of this equation we see that
IT'@) = KO X'(s) = )]k

which is equivalent to the formula for k(t) displayed above.m
Here is another formula for curvature that is often found in calculus textbooks.

SECOND CURVATURE FORMULA. Let x be a smooth regular curve, let s be the arc
length function, let T(t) be the unit length tangent vector function, and let k(t) = x(s(t) ). Then

we have
Ix'(t) x x"(t)]

K0 PIOE

Derivation. As in the derivation of the First Curvature Formula we have x’ = s'T. Therefore
the Leibniz product rule for differentiating the product of a scalar function and a vector function
yields

X// — S//T + SIT/ .

Since T x T = 0 the latter implies
xX'xx" = ()P (TxT') .

Since |T| = 1 it follows that T - T’ = 0; i.e., the vectors T and T’ are orthogonal. This in turn
implies that |T x T'| is equal to |T| - |T'| so that

X' xx"| = |$'PITxT'| = |§'*IT]-[T| = (s)*IT'] = |x|*|T
(at the next to last step we again use the identity |T| = 1). It follows that

(X'() x x"(t)|

T/| =
T < (OF

and the Second Curvature Formula follows by substitution of this expression into the First Curva-
ture Formula.m

Computations of curvature for some familiar examples of curves are given in the file curvex-
amples.pdf.
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Osculating planes

Thus far we have discussed lines and circles that are good approximations to a curve. Given a
curve in 3-dimensional space one can also ask whether there is some plane that comes as close as
possible to containing the given curve. Of course, for curves that lie entirely in a single plane, the
definition should yield this plane.

Given a continuous curve x(t), and a plane II, one way of making this notion precise is to
consider the function A(t) giving the distance from x(¢) to II. If the point x(t¢) lies on II, then
A(tg) = 0 and one test of how close the curve comes to lying in the plane is to determine the extent
to which the zero function is an n'" order approximation to A(t) for various choices of n. In fact, if
k(to) # 0 then there is a unique plane such that the zero function is a second order approximation
to A(t), and this plane is called the osculating plane to x at parameter value t = ty. Formally, we
proceed as follows:

Definition. Let x(s) be a regular smooth curve parametrized by arc length (so that |x'| = 1),
and assume that x(sg) # 0. Let a =x(0), let T = x/(s¢), and let N be the unit vector pointing in
the same direction as x”(sg). The osculating plane to the curve at parameter value sg is the unique
plane containing the three noncollinear vectors a, a+ T, and a + N.

It follows that the equation defining the osculating plane may be written in the form

(y—a), T,N] = 0.

We can now state the result on the order of contact between curves and their osculating planes.

PROPOSITION. Let x be a regular smooth curve parametrized by arc length (hence |x'| = 1),
assume that x has a continuous third derivative, and assume also that k(sg) # 0. Let 11 be the
osculating plane of x at parameter value sq, and let A(s) denote the distance between x(s) and II.
Then the osculating plane is the unique plane through x(sq) such that the zero function is a second
order approximation to the distance function A(s) at sg.

Proof. Let a = x(sg), let T = x/(s¢), let N be the unit vector pointing in the same direction
as x”(sp), and let B be the cross product T x N. Then the oscularing plane is the unique plane
containing a, a + T, and a + N, and the distance between a point y and the osculating plane is
the absolute value of the function D (y) = (y —a) - B. The second order Taylor approximation to
x(s) with respect to s is then given by the formula

(s — 50)% K(s)
2

x(s)=a + (s—s0)- T + "N + (5—350)°W(s)

where W(s) is bounded for s sufficiently close to sg. Therefore since B is perpendicular to T and
N we have .
D (x(s)) = (550 W(s) B

where W(s) - B is bounded for s sufficiently close to sg. Therefore the given curve has order of
contact at least two with respect to its osculating plane.

Suppose now that we are given some other plane through a; then one has a normal vector V
to the plane of the form B+ p T + ¢ N where p and ¢ are not both zero. The distance between x(s)
and plane through a with normal vector V will then be the absolute value of a nonzero multiple of

the function
((X(S) — a) -V)
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which is equal to

s —50)? k(s
o) = om0 3]+ B 03 v )
We then have ( )
g\s — so o P q N
(s —s50)3  (5—s50)2 + (s — s0) + (W() V)

where the third term on the right is bounded. But since at least one of p and ¢ is nonzero, it follows
that the entire sum is not a bounded function of s if s is close to sg. Therefore the curve cannot
have order of contact at least two with any other plane through a.m

Torston

Curvature may be viewed as reflecting the rate at which a curve moves off its tangent line.
The notion of torsion will reflect the rate at which a curve moves off its osculating plane. In order
to define this quantity we first need to give some definitions that play an important role in the
theory of curves.

Definitions. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x/| = 1), assume that x has a continuous third derivative, and assume also that x # 0
near the parameter value sg. The principal unit normal vector at parameter value s is N(s) =
|x"(s)]7! x”(s). We have already encountered a special case of this vector in the study of curvatures
and osculating planes, and if T(s) = x'(s) denotes the unit tangent vector then we know that
{T(s), N(s) } is a set of perpendicular vectors with unit length (an orthonormal set).

If x is a space curve (i.e., its image lies in 3-space), the binormal vector at parameter value s
is defined to be B(s) = T(s) x N(s). It then follows that { T(s), N(s), B(s)} is an orthonormal
basis for R?, and it is called the Frenet trihedron (or frame) at parameter value s.

One can frequently define a Frenet trihedron at a parameter value sg even if the curvature
vanishes at sg, but there are examples where it is not possible to do so. In particular, consider the
curve given by x(t) = (¢, 0, exp(—1/t?)) if t > 0 and x(t) = (¢, exp(—1/t%)0) if ¢ > 0. If we set
x(t) = 0, then x will be infinitely differentiable because for each k£ > 0 we have

. dF 9

}51(1) o exp(—1/t*) = 0
(this is true by repeated application of L’Hospital’s Rule) and in fact the curvature is also nonzero
if t # 0 and t? # 2/3. Therefore one can define a principal unit normal vector N(t) when ¢ # 0
but, say, [t| < % However, if ¢ > 0 this vector lies in the zz-plane while if ¢ < 0 it lies in the
xy-plane, and if one could define a continuous unit normal at ¢ = 0 it would have to lie in both of
these planes. Now the unit tangent at t = 0 is the unit vector e, and there are no unit vectors that
are perpendicular to e; that lie in both the xy- and xz-planes. Therefore there is no way to define
a continuous extension of N to all values of . On the other hand, Problem 4.15 on pages 75-76
of Schaum’s Outline Series on Differential Geometry provides a way to define principal normals in
some situations when the curvature vanishes at a given parameter value.m

The following online notes contain further information on defining a parametrized family of
moving orthonormal frames associated to a regular smooth curve:
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http://ada.math.uga.edu/teaching/math4250/Html/Bishop.htm

One can retrieve the Frenet trihedron from an arbitrary regular smooth reparametrization with
a continuous second derivative.

LEMMA. In the setting above, suppose that we are given an arbitrary reparametrization with
continuous second derivative, and let s(t) denote the arc length function. Then the Frenet trihedron
at parameter value tq is given by the unit vectors pointing in the same directions as T(t), T'(t),
and their cross product. Furthermore, if one considers the reoriented curve y with parametrization
y(t) = x(—t), then the effect on the Frenet trihedron is that the first two unit vectors are sent to
their negatives and the third remains unchanged.

Proof. It follows immediately from the Chain Rule that the unit tangent T remains unchanged
under a standard reparametrization with s’ > 0. Furthermore, the derivation of the formulas for
curvature under reparametrization show that T'(t) is a positive multiple of x”(s). this proves
the assertion regarding the principal normals. Finally, if we are given two ordered sets of vectors
{a, b} and {c, d } such that ¢ and d are positive multiples of a and b respectively, then ¢ x d is
a positive multiple of a x b, and this implies the statement regarding the binormals.

If one reverses orientations by the reparametrization ¢ — —t, then the Chain Rule implies
that T and its derivative are sent to their negatives, and this proves the statement about the first
two vectors in the trihedron. The statement about the third vector follows from these and the cross
product identity a x b = (—a) x (—b).=

We are finally ready to define torsion.
Definition. In the setting above the torsion of the curve is given by 7(s) = —B'(s) - N(s).
The following alternate characterization of torsion is extremely useful in many contexts.
LEMMA. The torsion of the curve is given by the formula B'(s) = —71(s) N(s).

Proof. If we can show that the left hand side is a multiple of IN(s), then the formula will follow
by taking dot products of both sides of the equation with IN(s) (note that the dot product of the
latter with itself is equal to 1). To show that the left hand side side is a multiple of N(s), it suffices
to show that it is perpendicular to T(s) and B(s). The second of these follows because

d d dB
= —(1) = —(B-B) = 2B | —
0= L0 = LBB (%)
and the first follows because
dB d dN dN
= = %(TXN) = (kN xN) + <T><E> = TX<E>

which implies that the left hand side is perpendicular to T.=

We had mentioned that the torsion of a curve is related to the rate at which a curve moves
away from its osculating plane. Here is a more precise statement about the relationship:

PROPOSITION. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x'| = 1), assume that x has a continuous third derivative, and assume also that k(sg) # 0.
Let II be the osculating plane of x at parameter value sq. Then the image of x is contained in II
for all s sufficiently close to sq if and only if the torsion vanishes for these parameter values.
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The following identity is useful for many purposes, and it will be used in the proof of the
proposition: LEMMA. Ifa, b and ¢ form an orthonormal basis of R®, then an arbitrary vector
X in the latter can be written as

x = (x-a)a + (x-a)b + (x-c)c.

This follows immediately by taking dot products of both sides with a, b and c respecitvely.m

Proof of the proposition. Suppose first that the curve is entirely contained in the osculating
plane for s close to sg. The osculating plane at sq is defined by the equation

[(y_a)7 T, NO] =0

where a = x(s9) and Ty and Ny represent the unit tangent and principal normal vectors at
parameter value so. If we set y = x(s) and simplify this expression, we see that the curve x
satisfies the equation

x(s)-By = a-Byg

where By = Ty x Ng. If we differentiate both sides with respect to s we obtain the equation
x'(s) - Bg = 0. Differentiating once again we see that x”(s) - By = 0. Since x’(s) = T(s) and N(s)
is a positive multiple of x”(s) for s close to sy (specifically at least close enough so that x(s) is
never zero), then By is perpendicular to both T(s) and N(s). Therefore the identity in the lemma
implies that By = (B(s) - Bg) B(s) for all s, so that B(s) must be a multiple of B(s) for all s; since
both of these are unit vectors, it follows that B(s) must be equal to = Bj. By continuity we must
have that B(s) = By for all s close to so (Here are the details: Look at the function B(s) - By on
some small interval containing sg; its value is + 1, and its value at sq is +1 — if its value somewhere
else on the interval were —1, then by the Intermediate Value Theorem there would be someplace on
the interval where its value would be zero, and we know this is impossible). Thus B(s) is constant,
and by the preceding formulas this means that the torsion of the curve must be equal to zero.

Conversely, suppose that the torsion is identically zero. Then by alternate description of torsion
in the lemma we know that B'(s) = 0, So that B(s) = Bj. We then have the string of equations

0 = TBO :X,'Bg = %(XB())

which in turn implies that x-Bg is a constant, and this constant must be x(sg) - Bg. Therefore the
curve x lies entirely in the unique plane containing x(s¢) with normal direction Bg.m

Examples. A helix curve given by parametric equations like x(t) = (cost,sint,t) is a
simple example of a curve that is not planar. Curvature and torsion computations for curves of
this type are given in helix.pdf and helix2.pdf.

Other planes associated to a curve

In addition to the osculating plane, there are two other associated planes through a point on
the curve x at parameter value sy that are mentioned frequently in the literature. As above we
assume that the curve is a regular smooth curve with a continuous third derivative i arc length
parametrization, and nonzero curvature at parameter value sg.
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Definitions. In the above setting the normal plane is the unique plane containing x(sg),
x(sp) + N(sp), and x(s¢) + B(sp), and the rectifying plane is the unique plane containing x(sg),
x(s0) + T(so), and x(sp) + B(sp). These three mutually perpendicular planes meet at the point
x(sp) in the same way that the usual zy-, yz-, and zz-planes meet at the origin.

Oriented curvature for plane curves

For an arbitrary regular curve in 3-space one does not necessarily have normal directions when
the curvature is zero, but for plane curves there is a unique normal direction up to sign. Specifically,
if x is a regular smooth plane curve parametrized by arc length and B is a unit normal vector to a
plane II containing the image of x, then one has an associated oriented principal normal direction
at parameter value given by the cross product formula

o~

N (s) = Bxx/(s)

and by construction IT is the unique plane passing through x(s), x(s) + x’(s), and x(s) = ﬁ(s)
There are two choices of B (the two unit normals for 7 are negatives of each other) and thus there
are two choices for /I\T(s) such that each is the negative of the other. One can then define a signed
curvature associated to the oriented principal normal N given by the formula

k(s) = (x”(s) : N(s))

and since x”(s) is perpendicular to x’(s) and B this may be rewritten in the form

An obvious question is to ask what happens if x(sg) = 0 (which also equals k(s) in this case)
and the sign of k(s) is negative for s < sy and positive for s > sg. A basic example of this
sort is given by the graph of f(z) = 23 near & = 0, whose standard parametrization is given by
x(t) = (¢, t3). In this situation the graph lies in the lower half plane y < 0 for t < 0 and in the
in the upper half plane y > 0 for £ > 0, and the curve switches from being concave upward for
t < 0 to concave downward (generally called convex beyond first year calculus courses). The file
signed_curvature.pdf looks at this example more closely, and in particular the computations in
that file show that the signed curvature of the graph is positive if t > 0 and negative if £ < 0. More
generally, one usually says that f has a point of inflection in such cases.

The following result shows that more general plane curves behave similarly provided the cur-
vature has a nonvanishing derivative:

PROPOSITION. Let x be a regular plane smooth curve parametrized by arc length plus a
constant (hence |x’| = 1), assume that x has a continuous fourth derivative, let N define a family
of oriented principal normals for x, and assume that that k(so) = 0 but k’(sg) > 0. Then x(s) is
contained in the half plane

N (s0) - (y —x(s0)) < 0
for s sufficiently close to sq satisfying s < s, and x(s) is contained in the half plane

o~

N (s0) - (y —x(s0)) > 0
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for s sufficiently close to sg satisfying s > sg.

A similar result holds if £’(sg) < 0, and the necessary modifications of the statement and proof
for that case are left to the reader as an exercise.

Proof. To simplify the computations we shall choose coordinate systems such that x(s¢) = 0 and
the plane is the standard coordinate plane through the origin with chosed unit normal vector es.
It will also be convenient to denote the unit vector x’(s) by T(s). We shall need to work with a
third order approximation to the curve, which means that we are going to need some information
about x"”(sg). Therefore the first step will be to establish the following formula:

o~

k’/(so) = XW(SO) - N(s0)

To see this, note that

—

(x"'(s) : N(s)) + (x"(s) : ﬁ’(s)) - (x"’(s) . ﬁ(s)) + (ﬁ(s) : ﬁ’(s))

and the second summand in the right hand expression vanishes because |/N\ |2 is always equal to 1
(this is the same argument which implies that the unit tangent vector function is perpendicular to
its derivative).

Turning to the proof of the main result, the preceding paragraph and earlier consideration
show that the curve x is given near sg by the formula

— 2 __ _ 3
x(s) = (s—s0)T(s0) + M N (s9) + % x"(s0) + (s—50)*0(s)
where 6(s) is bounded for s suffieicntly close to zero. To simplify notation further we shall write

As = s — sq.

If we take the dot product of the preceding equation with ﬁ(so) we obtain the formula, in

which y(s) is the dot product of #(s) and ﬁ(so), so that y(s) is also bounded for s sufficiently
close to sg:

(x9)- N(s0)) = 20 (a0 g0 (29"

If s is nonzero but sufficiently close to zero then the sign of the right hand side is equal to the sign
of As because

(7) the sign of the first term is equal to the sign of As,
(13) if we let M be a positive upper bound for |y(s)| and further restrict As so that

K'(s0)
68

|As| <

then the absolute value of the second term in the dot product formula will be less than
the absolute value of the first term.

It follows that the sign of the dot product



is the same as the sign of the inital term

K'(s0)

i (As)?

which in turn is equal to the sign of As. Since the dot product has the same sign as As for s = 0 and
s sufficiently small, it follows that x(s) lies on the half plane defined by the inequality y- N (sg) < 0
if s < sg and x(s) lies on the half plane defined by the inequality y - N (sg) > 0 if s > s¢ .=

In fact, the center of the osculating circle also switches sides when one goes from values of s
that are less than sg to values of s that are greater than sg. However, the proof takes considerably
more work.

COMPLEMENT. In the setting above, let z(s) denote the center of the osculating circle to x at
parameter value at parameter value s # sq close to sg (this exists because the curvature is nonzero
at such points). Then z(s) is contained in the half plane

N (s0) - (y —x(s0)) <0

for s sufficiently close to sq satisfying s < s, and z(s) is contained in the half plane
N (s0) - (y — x(s0)) >0

for s sufficiently close to sg satisfying s > sg.

Proof. We need to establish similar inequalities to those derived above if x(s) is replaced by
z(s); note that the latter is not defined for parameter value sy because the formula involves the
reciprocal of the curvature and the latter is zero at sg.

The center of the osculating circle at parameter value s # so was defined to be x + //\ile,
where N is the ordinary principal normal; we claim that the latter is equal to x + k~!N. By
definition we have -

x" = kN = kN
and since k = £k is nonzero we know that x2 = k2. Dividing the displayed equation by this
common quantity yields the desired formula

kTN = E7IN .

Therefore the proof reduces to showing that the sign of

(%) + 15 N6 ) - W)

is equal to the sign of As.

Using the formula for x(s) near so that was derived before, we may rewrite the preceding
expression as

h(s) = k';“) (As)* +y(s) (As)" + %/N\(s) - N (s0) -

We need to show that h(s) has the same sign as k(s) and its reciprocal, and this will happen if

(o) = ho) =g = e AP A" + 5 N - (Nis) - R(o)
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is bounded for s # sg sufficiently close to zero. To see, this, suppose that |¢(s)| < A for some
A > 0. If we then choose ¢ > 0 so that |k(s)| < 1/A for for |As| < d but As # 0, if will follow that

As > 0 = h(s) = %+<h(s)—%> S A4 (—4) > 0

and similarly with all inequalities reversed and A switched with —A if As < 0.

In order to prove that £(s) is bounded, it suffices to prove that each of the three summands
is bounded for, say, |As| < r. The absolute value of the first is bounded by k’(sg)73/6 and the
absolute value of the second is bounded by Br? where B is a positive upper bound for |y(s)|. By
the Cauchy-Schwarz inequality the absolute value of the third is bounded from above by

— —~

N (s) — N(so)
[k (s)|

and using the Mean Value Theorem we may estimate the numerator and denominator of this
expression separately as follows:

(1) T\I\(s) — ﬁ(so) < P - |As|, where P is the maximum value of ]/N\/] on [sgp — 1, So + 7).

(i7) k(s) = K'(S1)As for some Sy between sy and s, so if we choose r so small that k&’ > 0 on
[so — 7, so + 7], then |k(s)| > Q As, where ) > 0 is the minimum of £’ on that interval.

It then follows that the quotient P/Q is an upper bound for the absolute value of the third term in
the formula for £(s), and therefore the latter itself is bounded. This completes the proof that z(s)
lies on the half plane described in the statement of the result.m

I.5: Frenet-Serret Formulas

(Lipschutz, Chapter 5 and Appendix I)

In ordinary and multivariable calculus courses, a great deal of emphasis is often placed upon
working specific examples, and as indicated in the discussion preceding Section 1.1 of these notes
there is a wide assortment of interesting curves that can be studied using the methods of the
preceding sections. However, the course notes up to this point have not included the sorts of
worked out examples that one sees in a calculus book. The Schaum’s Outline Series book gives
numerous examples, and the book by O’NEILL does include a few examples, but there are far fewer
than one might expect in comparison to standard calculus texts. We have reached a point in this
course where the reasons for this difference should be explained.

We already touched upon one reason when we described computational techniques for finding
the curvature of a curve. Even in simple cases, it can be extremely difficult — if not impossible
— to write things out explicitly using pencil and paper along with the techniques and results that
are taught in ordinary and multivariable calculus courses. For example, we noted that arc length
reparametrizations often involve functions that ordinary calculus cannot handle in a straightforward
manner. And the situation gets even worse when one considers certain types of curves that arise
naturally in classical physics, most notably those arising when one attempts to describe the motions
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of a gravitational system involving three heavenly bodies. In these cases it is not even possible
to give explicit formulas for the motion of the curves themselves, without even thinking about
the added difficulty of describing quantities like curvature and torsion. During the past quarter
century, spectacular advances in computer technology have provided powerful new tools for studying
examples. A few comments on the use of computer graphics in differential geometry appear in
O’NEILL. The following book is an excellent reference for further information on studying curves
and surfaces using the software package Mathematica:

A. Gray. Modern Differential Geometry of Curves and Surfaces. (Studies in Advanced
Mathematics.) CRC Press, Boca Raton, FL etc., 1993. ISBN: 0-8493-7872-9.

The emphasis in this course will be on qualitative aspects of the differential geometry of curves
and surfaces in contrast to the quantitative emphasis that one sees in ordinary and multivariable
calculus. In particular, we are interested in the following basic sort of question:

Reconstructing curves from partial data. 7o what extent can one use geometric invariants
of a curve such as curvature and torsion to retrieve the original curve?

Both curvature and torsion are defined so that they do not change if one replaces a curve by
its image under some rigid motion of R? or R?, so clearly the best we can hope for is to retrieve
a curve up to some transformation by a rigid motion. The main results of this section show that
curvature and torsion suffice to recover the original curve in a wide range of “reasonable” cases.

The crucial input needed to prove such results comes from the Frenet-Serret Formulas, which
describe the derivatives of the three fundamental unit vectors in the Frenet trihedron associated to
a regular smooth curve.

FRENET-SERRET FORMULAS. Let x be a regular smooth curve parametrized by arc
length (hence |x'| = 1), assume that x has a continuous third derivative, and assume also that
k(s0) # 0. Let T(s), N(s) and B(s) be the tangent, principal normal and binormal vectors in the
Frenet trihedron for x at parameter value sqg. Then the following equations describe the derivatives
of the vectors in the Frenet trihedron:

T = kN
N = — kT + 7B
B' = — 7N

Proof. We have already noted that the first and third equations are direct consequences of the
definition of curvature and torsion. To derive the second equation, we take the identity N = B x T
and differentiate it with respect to s:

N'(s) = B'(s) xT(s) + B(s)xT'(s) =

—7(s) (N(s) X T(s)) + K (B(s) X N(s))

Since T, N and B are mutually perpendicular unit vectors such that B = T x N, as usual the
“BAC-CAB” rule for threefold cross products implies that N x T = —B and

BxN = —-NxB = —-Nx(TxN) = =-T.

If we make these substitions into the displayed equations we obtain the second of the Frenet-Serret
Formulas.m
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The significance of the Frenet-Serret formulas is that they allow one to describe a curve in
terms of its curvature and torsion in an essentially complete manner. Conversely, it follows that
every pair of functions x and 7 with £(s) > 0 for all s can be realized as the curvature and torsion
functions for some curve. The Frenet-Serret formulas are the key to proving these results, but
the proofs also require some facts about solutions to systems of linear differential equations, so a
digression is needed to prove the necessary results about such systems.

The exponential function for matrices

The Frenet-Serret formulas can be written as a matrix differential equation F/ = A(s)F,
where F denotes the Frenet trihedron (T,N,B) and A(s) is the skew-symmetric 3 x 3 matrix

0 K(s) 0
—k(S) 0 7(s)
0 —7(s) 0

There is an exponential function on square matrices which provides a concise way of describing the
solutions to such systems of homogeneous linear differential equations, and it parallels the use of
ordinary exponentials to solve simple differential equations of the form y’ = Ay. For square matrices
the exponential function can be defined by the same sort of infinite series used in calculus courses,
but some work is needed in order to justify the construction of such an infinite sum. Therefore we
begin with some material needed to prove that certain infinite sums of matrices can be defined in
a mathematically sound manner and have reasonable properties.

Limits and infinite series of matrices

Limits of vector valued sequences in R™ can be defined and manipulated much like limits of
scalar valued sequences, the key adjustment being that distances between real numbers that are
expressed in the form |s—t| are replaced by distances between vectors expressed in the form |x —y]|.
Similarly, one can talk about convergence of a vector valued infinite series Y .- v, in terms of
the convergence of the sequence of partial sums s, = Y .~ , vi. As in the case of ordinary infinite
series, the best form of convergence is absolute convergence, which corresponds to the convergence
of the real valued infinite series > |v,,| with nonnegative terms. A fundamental theorem states
that a vector valued infinite series converges if the auxiliary series >~ |v,| does, and there is
a generalization of the standard M-test: If |v,| < M, for all n where ) M, converges, then
> Vn also converges.

We can view m x n matrices as mn-dimensional coordinate vectors, and we shall say that the
Euclidean magnitude of a matrix is the usual length of the associated mn-dimensional vector.

In order to work with infinite series of matrices, we need some information about how the
Euclidean magnitude behaves with respect to matrix products that is similar to the standard rule
|luv| = |ul - |v| for absolute values. The following result provides the key estimate.

PRODUCT MAGNITUDE ESTIMATE. Let A and B be matrices (not necessarily square)
so that the product AB is defined, and for an arbitrary matriz C let ||C|| be its Euclidean magnitude.
Then |[ABI| < [|All-[|B]-

Proof. It suffices to prove that the squares of the left and right hand sides are unequal in the
same order. This is helpful because the squares of the Euclidean magnitudes are the sums of the
squares of the matrix entries.
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Given a matrix P let Row;(P) and Col;(P) denotes its i * th row and j' column respectively.
We then have

1AB|> = 3 (Row;(A)- Col;(B))*

i,j=1

and applying the Schwarz inequality to each term in the sum we see that the latter is less than or
equal to

Z |R0Wi(A)‘2-‘Colj(B)|2 = (Z |Rowi(A)|2> . Z |colj(B)\2

i,j=1 i=1 i=1

But ||A||? is equal to the first factor of this expression and || B||? is equal to the second.m

One consequence of this estimate is the following matrix version of a simple identity for sums
of infinite series:

INFINITE SUM FACTORIZATION. Let Y >, Ay be a convergent infinite series of m x n
matrices with sum S, and let P and Q be s Xx m and n X t matrices respectively. Then 220:1 P A
and >"p~, Ak Q converge to P S and S Q respectively.

Proof. Let S, be the r*' partial sum of the original series. Then P S, and S, Q are the
corresponding partial sums for the other two series, and we need to show that these two matrices
become arbitrarily close to P S and S @Q if r is sufficiently large. By the hypothesis we know the
analogous statement is true for the original infinite series.

Let € > 0 be given, and let L be the maximum of ||P|| + 1 and ||@]|| + 1. Choose R so large
that ||S, — S|| <e/L if r > R. It then follows that
[PS.—PS| < |P|-]S =5 < e

and similarly we have

15 @ —=5Ql < ell-[S -S| < ¢

so that the limits of the partial sums have their predicted values.m
Power series of matrices

In order to work with power series of matrices having the form

o0
>
k=0

for suitable coefficients ¢, we need the following consequence of the Product Magnitude Estimate:

POWER MAGNITUDE ESTIMATE. If A is a square matrix, then for all integers k > 1 we
have || A*]| < || A|[*.

Proof. This is a tautology if k& = 1 so proceed by induction, assuming the result is true for
k—1>1. Then A* = A A*~! and therefore by the preceding result and the induction hypothesis
we have

1AM = AATT < Al IAMTHE <Al AR = Al .
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COROLLARY. Suppose that we are given a sequence of scalars ¢y for which

lim ’Ck+1‘ - I
k—oo ’Ck‘

and A is a nonzero square matriz such that ||A||~' > L. Then the infinite matriz power series

o0
>
k=0

converges absolutely.

Proof. The argument is closely related to the proof of the ratio test for ordinary infinite series.
Upper estimates for the Euclidean magnitudes of the terms are given by the inequalities

llew AMI| < few] - [1A]I*

and the latter converges if ||A||~! > L by the ratio test. But this means that the matrix power
series converges absolutely.m

SPECIAL CASE. If A is a square matriz, then the exponential series

oo

1
exp(4) = Z HAk

k=0

converges absolutely.m
Properties of matrix exponentials

It follows immediately that exp(0) = I, and there is also a weak version of the usual law of
exponents et = e ¢l

=e%e”:
PRODUCT FORMULA. If A and B are commuting matrices of the same size (i.e, AB = BA),
then exp(A + B) = exp(A) - exp(B).

Idea of the proof. As for ordinary infinite series, one needs to do a little work in order to view
the product of two infinite series sums as the sum of a third infinite series. Specifically, if one starts
with convergent infinite series ), ux and ), v with sums U and V, then one wants to say that

UV =5, wy, where
wg = Z Up - Vg -

p+q=k

This turns out to be true if the original sequences are absolutely convergent, and one can use the
same proof in the situation presented here because we know that A and B commute.n

It is important to note that the product formula does not necessarily hold if AB and BA are
not equal.

COROLLARY. For all square matrices A the exponential exp(A) is invertible and its inverse is
exp(—A).m

If the square matrix A is similar to a matrix B that has less complicated entries (for example, if
A is similar to a diagonal matrix B), then the following result is often very helpful in understanding
the behavior of exp(A).
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SIMILARITY FORMULA. Suppose that A and B are similar n X n matrices such that B =
P~ AP for some invertible matriz P, then exp(B) = P~ exp(A) P.

Proof. By definition we have

_ I =N |
P lexp(A)P = P! (Z HA’“) P

k=0

and by the Infinite Sum Factorization formulas (proven above) and the identity P~' A* P =
(P~1 A P)* we know that the right hand side is equal to

=1
H(P’lAP)k = > 58" = en®)
0 k=0

WK

[e’e] 1 B
Y. gbPt@Ah) =
k=0

e
|

which is what we wanted to prove.m
Differentiating matriz valued functions

Differentiation of a matrix valued function of one real variable makes sense so long as the
scalar valued functions corresponding to all the matrix entries are differentiable, and in this case
one defines the derivative entry by entry. These derivatives have many familiar properties:

If C is a constant then C’ = 0.
(A+B) = A"+ B

(kA =kA + K A.

(AB) =A'B+ AB'.

Perhaps the most noteworthy point is that one must watch the order of multiplication in
the last of these identities.

Just as for ordinary power series, one has good term by term differentiation properties, and
the proofs for ordinary infinite series go through with minimal changes:

TERMWISE DIFFERENTIATION. Suppose that we have an infinite power series of m xn
matrices B(t) = > po o t* By, such that the radius of convergence for the auwziliary series B(t) =
S nroth | Bill is at least r. Then the radius of convergence of B(t) is at least r, and inside this
radius of convergence we have B'(t) =327 t* (k+1) Byy1.m

If we apply this to the matrix exponential function F'(t) = exp(tA) we obtain the equation

F'(t) = Aexp(tA) = exp(tA)A.

All of this leads to the following result:

THEOREM. For a given n xn matrix A and an n x 1 column vector b, there is a unique solution
to the linear system of differential equations X' = A X with initial condition X (0) = b, and it is
given by exp(tA)b.

Proof. We first verify that the function described above is indeed a solution by applying the
Leibniz rule. If F(t) = exp(tA), the latter says that the derivative of the function is given by the
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derivative of F(t)b, which is equal to F’(t)b, and by the discussion before the statement of the
theorem this is equal to A F'(t)b. Also, the value at ¢t = 0 is b because exp(0) = I.

Conversely, suppose now that X(¢) solves the system of differential equation and has initial
condition X (0) = b. We proceed in analogy with the standard case where n = 1 and consider the
product

W(t) = exp(tA)™ ' X(t) = exp(—tA)X(t).

If we differentiate and apply the Leibniz Rule we obtain the following;:
W'(t) = —Aexp(—tA) X(t)+exp(—tA) X'(t) = —exp(—tA)AX(t) +exp(—tA)AX(t) = 0.
Therefore W (t) is constant and equal to W (0) = b. Left multiplication by exp(tA) then yields
exp(tA)b = exp(tA)W(t) = exp(tA) exp(—tA)X(t) = IX(t) = X(¢).
This proves that the exponential solution is the only one with initial condition X (0) = b.m
Differential equations with variable coefficients

The same methods also allow one to solve systems of differential equations of the form X' (t) =
A(t) X (t), where X(t) is an n X p matrix and A(¢) is an n X n matrix whose coefficients are, say,
continuous, or have continuous derivatives. The idea is very much the same one which is applied
to solve ordinary first order linear differential equations, and here is the main result:

THEOREM. For a given nxn matriz A(t) of functions whose entries have continuous derivatives,
and an n X p matriz vector Cy, there is a unique solution to the linear system of differential
equations X' (t) = A(t) X(t) with initial condition X (0) = Cy, and it is given by exp ( P(t)) Cy,
where P'(t) = A(t) and P(0) = 0.

The proof follows a standard pattern. One uses the Chain Rule and Leibniz Rule to show that
exp ( P(t)) Cy solves the differential equation and has the right initial value at ¢ = 0. Conversely,
if X (t) solves the differential equation let

V(t) = exp(—P(t) X(1) .
Then direct calculation shows that Y'(¢) = 0 so that Y (t) = Cy for all ¢. if we left multiply both

sides of this equation by exp ( P(t)), we find that X (¢) has the form described previously.m

COROLLARY. (Uniqueness Theorem for curves with prescribed curvature and torsion). Suppose
that x and y are two regular smooth curves parametrized by arclength such that both have the
same value at t = 0, both have the same Frenet-Serret trihedron at t = 0, and both have the same
curvature and torsion functions (with nonzero curvature everywhere) such that both functions have
continuous derivatives. Then x and y are identical.

Proof. Let (Tx, Ny, Bx) and (T, Ny, By ) denote the Frenet trihedra for x and y respectively.
Then the uniqueness result for systems of linear equations implies that the trihedra for x and y are
the same. It follows that

x(s) — x(0) = /0 To(u)du = /O Ty(w)du = y(s)—y(0)

and therefore the initial conditions y(0) = x(0) imply that y(s) = x(s) for all s.m
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It remains to prove that there are curves realizing arbitrary data of the form
(@) initial point on curve at ¢t = 0,

(b) initial Frenet trihedron at ¢ = 0,

(¢) prescribed curvature and torsion functions,

such that the data satisfy the Frenet-Serret conditions. The existence result for solutions to systems
of linear differential equations strongly suggests that this is true, but there are a few things that
we need to check.

Skew-symmetric matrices, orthogonal matrices and exponentials

The Frenet-Serret formulas are a system of differential equations as above such that n =p =3
and A(t) is a skew-symmetric matrix. The Frenet-Serret system of differential equations has a
solution with given initial trihedron, but we need to know that the solution

X(s) = (T(s),N(s),B(s))
has orthonormal columns and the 3 x 3 matrix on the right hand side has determinant equal to +1
(since B=T x N).

Recall that an n x n matrix P is said to be an orthogonal matrix if it satisfies the condition
P*P = PP* = I where P* denotes the transpose of P. By the definitions of matrix multiplication
and dot products, the entries of the product P*P are the dot products of various pairs of columns
in P, so that a matrix with orthonormal columns satisfies P*P = I; this condition implies that P
has maximum rank n and hence is invertible, which in turn implies that PP* = I. In other words,
the matrix P has orthonormal columns if and only if P is orthogonal.

This relates to solutions of the linear system X'(s) = A(s) X(s) as follows: We need to
show that if A(s) is skew-symmetric and the initial condition X (0) is an orthogonal matrix with
determinant +1, then each X (s) is also orthogonal with determinant +1, and the following result
is basically what we need in order to verify this.

The following result gives us everything we need:
THEOREM. If A is a skew-symmetric n X n matrix, then exp(A) is orthogonal.

Before beginning the proof, we note that if P(¢) is an arbitrary matrix valued function of one
variable, then we have the elementary identity

(P* )/ — (Pl)*
and standard identities for matrix transposition yield the identity

exp(A*) = exp(4)".

Proof of the theorem. Suppose that A*
therefore we have

—A. Then A* and A obviously commute, and

I = exp(0=A+A%) = exp(A) exp(4A") = exp(A) exp(A)*
and similarly I = exp(A) * exp(A), so that exp(A) is an orthogonal matrix.m
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The Fundamental Theorem

We can summarize everything into the Fundamental Theorem of Space Curve Theory:

Given smooth functions k and T such that the first is always positive, an initial vector xo and
an orthonormal set of vectors (a, b, ¢) such that a x b = ¢, then there is a unique (sufficiently
differentiable) curve x such that the tangent vectors to x at all point have unit length, the Frenet
trihedron of x at 0 is given by the standard unit vectors

<T(O), N(0), B(O)) = (a, b, c)

and the curvature and torsion functions are respectively given by k and 7.m

In particular, this result implies that space curves are completely determined by their curvature
and torsion functions together with the Frenet trihedron at some initial value.

Proof. The solution of the system of differntial equations for the Frenet trihedron has the
form exp(P(s)) Fy where P(s) is skew-symmetric and the initial value F| is an orthogonal matrix
with determinant +1. Standard matrix algebra identities imply that a product of two orthogonal
matrices is orthogonal; since exp(P(s)) is orthogonal by the previous theorem, it follows that the
solution to the Frenet-Serret system is always an orthogonal matrix. Also, the condition P*P =1
and standard determinant identities imply that the determinant of an orthogonal matrix is always
+ 1, and hence this is true for the determinant of the solution exp(P(s)) Fy. Now the determinant of
the latter is clearly a continuous function of s and since it is always either 41 or —1 the value of the
determinant is a constant function of s. If s = 0 then P(0) is the zero matrix by our construction of
the explicit solution to the system of differential equations, so that exp(P(0)) = I and this constant
value is det Fy = +1. Therefore the columns in the solution to the system of differential equations
satisfy the orthonormality and right hand conditions required for a Frenet trihedron.

To complete the proof we need to show that the solution

(T(s),N(s),B(s) )

actually corresponds to the Frenet-Serret data for some curve, but we can do this by defining a
curve via the formula

x(s) = x(0) + /OS T(u)du .

It is necessary to check that the solution does give the Frenet trihedron for this curve, but doing so
is a fairly straightforward exercise which is left to the reader (for example, the unit tangent vector
function is equal to T by construction).m

The following special case of the Fundamental Theorem is a companion to our earlier charac-
terization of lines as curves whose curvature is identically zero:

CHARACTERIZATION OF CIRCULAR ARCS. Letx be a curve satisfying the conditions
in the statement of the Frenet-Serret Formulas. Then x is a circular arc if and only if the curvature
is a positive constant and the torsion is identically zero.

This follows immediately because we can always find a circular arc with given initial value
Xg, initial Frenet trihedron (To, No, Bg) and constant curvature x > 0 (and also of course with
vanishing torsion); in fact, the equations for an osculating circle provide an explicit construction.m
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A strengthened Fundamental Theorem for plane curves

Since plane curves may be viewed as space curves whose third coordinates are zero (and whose
torsion functions are zero), the Fundamental Theorem of Local Curve Theory also applies to plane
curves, and in fact the Fundamental Theorem amounts to saying that there is a unique curve with
a given (nonzero) curvature function , initial value x( and initial unit tangent vector Ty; in this
case the principal normal Ny is completely determined by the. perpendicularity condition and the
Frenet-Serret Formulas.

In fact, there is actually a stronger version of the Fundamental Theorem in the planar case.
In order to state and prove the Fundamental Theorem for space curves we needed to assume the
curvature was positive so that the principal normal N could be defined. We have already noted that
one can define N for plane curves even if the curvature is equal to zero. Geometrically, a standard
way of doing this is to rotate the unit tangent T in the counterclockwise direction through an angle
of /2; in terms of equations this means that N = J(T), where J is the linear transformation

J(:Ea y) = (ya _:L') .

As noted in the previous section, if x is a regular smooth curve in R? parametrized by arc length
plus a constant, this means that if we define an associated signed curvature by the formula

k(s) = x"(s)-N(s) = x"(s)-[J(T)](s)
then |k(s)| = k(s).

For the sake of completeness, we shall formally state and prove the modified version of the
Frenet-Serret Formulas that holds in the 2-dimensional setting with IN defined as above.

PLANAR FRENET-SERRET FORMULAS. Let x be a regular smooth curve parametrized
by arc length (hence |x'| = 1), assume that x has a continuous third derivative. Let T(s) and N(s)
and be the tangent and principal normal vectors for x at parameter value sq. Then the following
equations describe the derivatives of T and N:

T = kN
N = — kT

Proof. By definition the first equation is a direct consequence of the definition of signed curvature.
To derive the second equation, we take the identity N(s) = J(T(s) ) and differentiate it with respect
to s, obtaining

k(s) J2(T(s)) = —k(s)T(s)
where the last equation follows because J? = —I.m

One can use the notion of signed curvature to state and prove the following version of the
fundamental theorem for plane curves:

FUNDAMENTAL THEOREM OF LOCAL PLANE CURVE THEORY. Given a suffi-
ciently differentiable function k on some interval (—c, ¢), an initial vector xo and an orthonormal

43



set of vectors (a, b) such that b = J(a), then there is a sufficiently differentiable curve x such that
x(0) = xq, the tangent vectors to x at all point have unit length, the tangent-normal pair of x at
at 0 is given by the standard unit vectors

(T(O), N(O)) — (a b)

and the curvature function is given by k.m

The proof of this result is a fairly straightforward modification of the argument for space curves
and will not be worked out explicitly for that reason.

Local canonical forms

One application of the Frenet-Serret formulas is a description of a strong third order approxi-
mation to a curve in terms of curvature and torsion.

PROPOSITION. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x'| = 1) such that x has a continuous fourth derivative and k(0) # 0, and let { T, N, B}
be the Frenet trihedron at parameter value s = 0. Then a strong third order approximation to x

. b
By s2K? s$°k SOk’ s3kT

Proof. We already know that x’(0) = T and x”(0) = x N. It suffices to compute x"”/(0), and the
latter is given by

(HN)/ = kN + kN’ = N — 2T + k7B
where the last is derived using the Frenet-Serret Formulas.m

Here are two significant applications of the canonical form for the strong third order approxi-
mation. By the basic assumptions for the Frenet-Serret Formulas we have x > 0.

APPLICATION 1. In the setting above, if 7(0) < 0 then the point x(s) lies on the side of the
osculating plane defined by the inequality (y — x(0)) - B < 0, when s > 0 and s is sufficiently close
to 0, and x(s) lies on the side of the osculating plane defined by the inequality (y — x(0)) - B > 0
when s < 0 and s is sufficiently close to 0. Similarly, if 7(0) > 0 then the point x(s) lies on the
side of the osculating plane defined by the inequality (y — x(0)) - B > 0 when s < 0, and x(s) lies
on the side of the osculating plane defined by the inequality (y —x(0)) - B < 0 when s > 0.m

Derivation. We shall only do the case where 7 > 0 and s > 0. The arguments in the other
cases are basically the same, the main difference being that certain signs and inequality directions
must be changed.

Let g(s) = (x(s) —x(0) ) - B; then the orthonormality of the Frenet trihedron { T, N, B } and
the canonical form yield the equation

3

STKT

3!

g(s) = + + 0(s)

where |0(s)| < |s|* - M for some positive constant M. It follows that if |s| is small and s > 0 then

we have

3

SKT

3!

g(s) > + M-st
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and the right hand side (hence also g(s)) is negative provided

Kl

1
3'M

APPLICATION 2. In the setting above, if K" # 0 and s # 0 is sufficiently close to zero then
x(s) lies on the side of the rectifying plane defined by the inequality

(y—x(0)) N < 0=
Derivation. Let g(s) = (x(s) —x(0)) - N; then the canonical form implies an equation
s2K s3K'
g(s) = —<7 T T > + 0(s)

where |0(s)| < |s|* - M for some positive constant M. We might as well assume that M > 1. It
follows that if |s| is small and nonzero then we have

2

S°K ’5’3"‘1" 4
> - = _ .
9(s)| = (2 2 M- s

and the right hand side is positive provided

s| < min<i ﬁ)

K 2M

It follows that g(s) is nonzero (and in fact negative) under the same conditions.m

Regular smooth curves in hyperspace

During the nineteenth century mathematicians and physicists encountered numerous questions
that had natural interpretations in terms of spaces of dimension greater than three (incidentally,
in physics this began long before the viewing of the universe as a 4-dimensional space-time in
relativity theory). In particular, coordinate geometry gave a powerful means of dealing with such
objects by analogy. For example, Euclidean n-space for and arbitrary finite n is given by the
vector space R", lines, planes, and various sorts of hyperplanes can be defined and studied by
algebraic methods (although geometric intuition often plays a key role in formulating, proving, and
interpreting results!), and distances and angles can be defined using a simple generalization of the
standard dot product. Furthermore, objects like a 4-dimensional hypercube or a 3-dimensional
hypersphere can be described using familiar sorts of equations. For example, a typical hypercube
is given by all points x = (x1,x9,z3,24) such that 0 < z; < 1 for all ¢, and a typical hypersphere
is given by all points x such that

x* = 2} + 23 + 23 + 2] = 1.
A full investigation of differential geometry in Euclidean spaces of dimension > 4 is beyond the
scope of this course, but some comments about the differential geometry of curves in 4-space seem
worth mentioning.
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One can define regular smooth curves, arc length and curvature for parametrized 4-dimensional
curves exactly as for curves in 3-dimensional space. In fact, there are generalizations of the Frenet-
Serret formula and the Fundamental Theorem of Local Curve Theory. One complicating factor
is that the 3-dimensional cross product does not generalize to higher dimensions in a particularly
neat fashion, but one can develop algebraic techniques to overcome this obstacle. In any case,
in four dimensions if a sufficiently differentiable regular smooth curve x is parametrized by arc
length plus a constant and has nonzero curvature and a nonzero secondary curvature (which is
similar to the torsion of a curve in 3-space), then for each parameter value s there is an ordered
orthonormal set of vectors F;(s), where 1 <14 < 4, such that F; is the unit tangent vector and the
sequence of vector valued functions (the Frenet frame for the curve) satisfies the following system
of differential equations, where k1 is curvature, ko is positive valued, and the functions k1, K2, K3,
all have sufficiently many derivatives:

Fll == K1 F2

F’2 = — K1 F1 + K9 F3

Fé = —ko Fo + k3 Fy
le = —K3 F3

The Fundamental Theorem of Local Curve Theory in 4-dimensional space states that locally
there is a unique curve with prescribed higher curvature functions x; > 0, k2 > 0 and k3, prescribed
initial value x(sg), and whose Frenet orthonormal frame satisfies F;(sg) = v; for some orthonor-
mal basis { vy, vo, v3, v4 }. An online description and derivation of such formulas in arbitrary
dimensions is available at the sites

http://www.math.technion.ac.il/~rbrooks/dgeol.7.ps
http://en.wikipedia.org/wiki/Differential geometry_of__curves

and a discussion of such formulas in complete generality (i.e., appropriate for a graduate level
course) appears on page 74 of HICKS.
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II. Topics from Geometry and Multivariable Calculus

This unit covers three topics involving background material. The first is a discussion of differ-
ential forms. These objects play a major role in O’NEILL’s treatment of the subject, and we shall
explain how one can pass back and forth between the classical vector formulations of concepts in
differential geometry and their restatements in terms of the more modern (and ultimately more
convenient) language of differential forms. Each approach appears frequently in the literature of
the subject, so an understanding of their relationship is always useful and sometimes absolutely
necessary. [Note: This material will note be covered in Winter2012.]

The second objective of this unit is to discuss some points regarding vector valued functions of
several variables, and especially those which will be needed for studying surfaces in Units I1I and
IV. One goal is to give concise and useful principles for working with such functions that closely
resemble well known results in elementary calculus (e.g., the linear approximation of functions near
a point using derivatives, the Chain Rule, differentiability criteria for inverse functions, change of
variables formulas in multiple integration). Finally, we shall use vector valued functions of several
variables to give an analytic definition of congruence for geometric figures, and we shall combine
this with the Frenet-Serret Formulas from Unit I to prove that two well behaved differentiable
curves are congruent if and only if their curvature and torsion functions are equal.

I1.1: Differential forms

For the Winter 2012 course, only the subsections on multiple integration and con-
nectedness will be covered.

During the 20" century mathematicians and physicists discovered that many advanced top-
ics in differential geometry could be handled more efficiently, and in greater generality, if certain
concepts were reformulated from vector terminology into slightly different notation. The central ob-
jects in this setting are called differential forms or exterior forms. Among other things, differential
forms provide answers to many cases of the following basic question:

Given a geometrical formula involving cross products in R®, how can one generalize it to higher
dimensions?

A detailed answer to this question in terms of differential forms is beyond the scope of this course.
However, O’NEILL works with differential forms frequently (but not exclusively), so it is worthwhile
to explain how one can pass between the language of vectors and differential forms. One basic use
of differential forms in differential geometry appears in Section 2.8 of O’NEILL, where an abstract
analog of the Frenet-Serret Formulas is described. Chapters 6 and 7 of O’NEILL discuss some other
basic aspects of classical differential geometry using differential forms.

BACKGROUND ON MULTIPLE INTEGRATION. The definition of differential forms is mo-
tivated by concepts involving double and triple integrals, so it will be necessary to discuss such
objects here. More precisely, we shall need material from a typical multivariable calculus course
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or sequence through the main theorems from vector analysis. Files describing the background
material (with references to standard texts used in the Department’s courses) are included in the
course directory under the names background2.pdf. Here are some further online references for
background material:

http://tutorial.math.lamar.edu/Al1Browsers/2415/DoubleIntegrals.asp
http://www.math.hmc.edu/calculus/tutorials/multipleintegration/
http://ndp.jct.ac.il/tutorials/Infitut2/node38.html
http://math.etsu.edu/MultiCalc/Chap4/intro.htm
http://www.maths.abdn.ac.uk/ igc/tch/ma2001/notes/node74.html

http://www.maths.soton.ac.uk/ cjh/mal56/handouts/integration.pdf

http://en.wikipedia.org/wiki/Multiple_integral
Topics from multiple integration will also figure in a few subsequent sections, including the

discussion of the Change of Variables Formula in Section II.3 and the remarks on surface area in
Section IIL.5.

The basic objects

Everything can be done in R" for all positive integers n, but we shall only need the cases where
n = 2 or 3 in this course, so at some points our statements and derivations may only apply for
these values of n.

Suppose that U is an open subset of R" , where n = 2 or 3. If 0 < p < n, then a differential
p-form may be described as follows.

The case p = 1. A 1-form is basically an integrand for line integrals over curves in U.
Specifically, it has the form ) . f;dx;, where 1 < i < n and each f; is a function on U with
continuous partial derivatives.

The case p = 2. If n = 2, then a 2-form is basically an integrand for double integrals over
subsets of U. Specifically, it has the form f(z,y)dz dy, where f has continuous partial derivatives.
If n = 3, then a 2-form is basically an integrand for certain surface integrals over subsets of U (more
precisely, flux integrals of vector fields taken over oriented surfaces). Specifically, these integrands
have the form

Pdydz + Qdzdx + Rdxdy

where P,Q, R are functions with continuous partial derivatives. For technical reasons that need
not be discussed at this point, one inserts a wedge sign A between the second and third factors, so
that a monomial form is written H du A dv.

The case p = 3. This case only arises when n = 3, where a 3-form is basically an integrand
for triple integrals over subsets of U. Specifically, it has the form f(z,y, z) dx dy dz, where f has
continuous partial derivatives. As in the case p = 2, one interpolates wedges between the differential
symbols dz, dy and dz so that the form is written f(z,y,2)dz A dy A dz.

Comparisons with vector fields

48



There is an obvious 1-1 correspondence between 1-forms and smooth vector fields, which we
may view as vector valued functions F from U to R™ such that each coordinate function has con-
tinuous partial derivatives. Specifically, if the coordinates of F are (P4, ..., P,,), then F corresponds
to the 1-form

W = Pldl‘l + -+ PndiL'n

and conversely the right hand side determines a smooth vector field whose coordinates are the
coefficients of the differential symbols dx;.

Of course, it is natural to ask why one might wish to make such a looking change of notation.
In particular, there should be some substantive advantage in doing so. One reason involves two
basic themes in multivariable calculus: (1) The gradient of a function. (2) Change of variables
formulas (e.g., among rectangular, polar, cylindrical or spherical coordinates). We shall think of a
change of variables as a generalization of the standard polar coordinate maps:

r = rcosb, y = rsinf

This takes open sets in the r 6 plane to open sets in the x y-plane. Comparing the formulas for a
function’s gradient in two such coordinate systems can be extremely awkward. However, if we look

at the exterior derivative of
df = dx;

)

rather than the gradient, then one obtains a much more tractable change of variables formula:

of of of of

If n = 3, there is a different but related 1-1 correspondence between 2-forms and vector fields,
in this case sending a vector field F with coordinate functions P, Q, R to the type of expression
displayed above.

Pdyndz + QdzANdx + Rdx Ady

The NV operator(s) and differential forms

The exterior derivative of a function is one case of a general construction of exterior derivatives
on differential forms, which sends every p-form w to a (p + 1)-form dw; this can be extended to
all nonnegative integers by agreeing that a 0-form is just a function and a p-form is zero if p > n.
The formal definition is a bit complicated, but for our purposes it suffices to know that exterior
differentiation is completely determined by the previous construction for df and following simple
properties:

(1) For all forms w we have d(dw) = 0.

(2) For all p forms w and A we have d(w + \) = dw + dA.

(3) For all p-forms w and pure differential 1-forms dx; we have d(w A dz;) = dw A dx;.
(4)

4) For all pure differential 1-forms dz; and dz; we have dx; A dx; = —dx; A dx; (hence it
vanishes if i = j).

Verification of these for n = 2 or 3 reduce to a sequence of routine computations.
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When one passes from the vector fields or scalar valued functions to differential forms, the V
operator(s) passes to exterior derivatives. Here is a formal statement of this correspondence.

THEOREM. Let p and n be as above. The the following conclusions hold:

(i) Suppose that p =1 and n = 2, and F is the vector field with coordinate functions (P, Q).
If wg is the differential 1-form corresponding to F, then

_ 0Q OP
dop = <%—a—y> dxdy .

(i) Suppose that p =1 and n = 3, and F is the vector field with coordinate functions (P, Q).
If wg is the differential 1-form corresponding to F, then

dwF = QG

where ¢ denotes the 2-form corresponding to G and G =V x F is the curl of F.
(#i1) Suppose that p = 2 and n = 3, and F is the vector field with coordinate functions
(P,Q, R). If Qg is the differential 2-form corresponding to F, then
Ay = (V- -F)dxdydz

where V - F denotes the divergence of F'.
Verifying each of these is a routine computational exercise.m

APPLICATIONS TO INTEGRAL FORMULAS IN VECTOR ANALYSIS. The preceding compar-
ison between exterior differentiation and the V operator leads to the following unified statement
which includes the classical theorems of Green, Stokes and Gauss (also called the Divergence The-

orem):
/ w = / dw
Bdy(X) b'e

Here X is a region in R? or R® or an oriented surface, and Bdy(X) denotes its boundary curve(s)
or surface(s).m

Proving this version of the theorems is beyond the scope of the course, but we have mentioned
it to suggest the potential usefulness of differential forms for expressing somewhat complicated
relationships in a relatively simple manner.

Connectedness
In many situations it is useful or necessary to assume that an open set has an additional

property called connectedness.

Definition. Let n = 2 or 3 (actually, everything works for all n > 2, but in this course we are
mainly interested in objects that exist in 2- or 3-dimensional space). An open subset U of R™ will
be called a connected open domain if for each pair of points p and q in U there is a piecwise smooth
curve I' defined on [0, 1] and taking values entirely in U such that I'(0) = p and I'(1) = q.

Most examples of open sets in this course are either connected or split naturally into a finite
union of pairwise disjoint open subsets. Here are some examples:
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Example 1. An open disk of radius » > 0 about a point p, consisting of all x such that
|x — p| < r is connected. If x and y belong to such a disk, then consider the line segment curve
v(t) =ty + (1 —t)x, where t € [0,1]. This is an infinitely differentiable curve (its coordinate
functions are first degree polynomials), it joints x to y, and we have

WOl < txl + A-Dlyl < tr+ Q-tr = r

so that y(t) lies in the open disk of radius r for all ¢ € [0, 1].

Example 2. Let ¢ be a number between 1 and n, and let H; be the set of all points in R"
whose I'*? coordinate satisfies z; # 0. Then H; splits into a union of the two sets H :r and H,; of
points where x; is positive and negative respectively. Each of these is connected, and in fact two
points in H f or H; can be joined by the same sort of line segment curve as in Example 1. The
reason for this is that if the i*" coordinates of x and y are positive or negative, the corresponding
property holds for each point ().

Note, however, that H itself is not a connected open domain. Specifically, there is no curve
joining the unit vector e; to its negative. If such a curve did exist, then its i*" coordinate z; would
be a continuous function from [0, 1] to the reals such that z;(0) = —1 and z;(1) = 1. By the
Intermediate Value Property for continuous functions on an interval, there would have to be some
parameter value u for which z;(u) = 0; but this would mean that y(u) could not belong to H;,
so we have a contradiction. The problem arises from our assumption that there was a continuous
curve in H; joining the two vectors in question, so no such curve can exist.m

To illustrate the role of connectedness, we shall consider the following question: Suppose
that U is an open subset of R? or R® and f is a real valued function on U such that all the partial
derivatives of f are defined and equal to zero. Is f a constant function?

The answer to this question depends upon whether or not U is connected.

Example. Let U = H;, and defined f such that f(x) = 1 if the coordinate z; is positive and
f(x) = —1 if the coordinate x; is negative. Then f is not constant but one can check directly that
the partial derivatives of f are always defined and zero.

THEOREM. Let U be a connected subset of R? or R?, and let f be a real valued function on
U such that all the partial derivatives of f are defined and equal to zero. Then f is a constant
function.

Proof. The key step is to prove the following: Suppose that p and q are points in U such that
the line segment joining p to q lies entirely in U. Then f(p) = f(q).

To prove this, let v = q — p, so that the line segment joining p to q has the parametrization
v(t) = p + tv. For each index i let v; denote the i coordinate of v. Let g(t) = f(~(t)); by the

Chain Rule we have of
gt) = Z O (’Y(t)) iz

%

and the right hand side is zero because all the partial derivatives of f are zero. Since g’ = 0, by
results from single variable calculus we know that g is constant, and this means that f(p) = ¢g(0) =
g9(1) = f(a).

To prove the theorem, suppose that p and q are arbitrary points in U. By the definition
of connectedness there is a broken line curve joining these points. Suppose that this broken line
curve consists of the line segments Sy, --- , S, such that p = xq, q = X,,, and the endpoints for
each S; are given by x;_; and x;. Then by the reasoning of the previous paragraph we know that
f(p) = f(x0) = f(x1), f(x1) = f(x2), and similarly all the values f(x;) are all equal to each other.
In particular, it follows that f(p) = f(x¢) = ... = f(xm) = f(q)m
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I1.2: Smooth mappings

(Lipschutz, Chapters 6-7)

From a purely formal viewpoint, the generalization from real valued functions of several vari-
ables to vector valued functions is simple. An n-dimensional vector valued function is specified by
its n coordinates, each of which is a real valued function. As in the case of one variable functions,
a vector valued function is continuous if and only if each coordinate function is continuous.

One reason for interest in vector valued functions of several real variables is their interpretation
as geometric transformations, which map geometric figures in the domain of definition to geometric
figures in the target space of the function. For example, in linear algebra one has linear transfor-
mations given by homogeneous linear polynomials in the coordinates, and it is often interesting
or useful to understand how familiar geometric figures in R? or R® are moved, bent or otherwise
distorted by a linear transformation. Examples are discussed in most linear algebra texts (for ex-
ample, see Section 2.4 of Fraleigh and Beauregard, Linear Algebra), and the following interactive
wev site allows the user to view the images of various quadrilaterals under linear transformations,
where the user has a wide range of choices for both geometric figure and the transformation:

http://merganser.math.gvsu.edu/david/linear/linear.html

The notion of a geometric mapping is also central to change of variables problems in multivariable
calculus. For example, it one wants to evaluate a double integral over a region A in the Cartesian
coordinate plane using polar coordinates, it is necessary to understand the geometric figure B in
the plane that maps to A under the vector valued function of two variables

Cart(r, ) = (r cos@, rsinf) .

Since many different sets of polar coordinates yield the same point in Cartesian coordinates, it is
generally appropriate to assume that B lies in some set for which Cartesian coordinates are unique
or almost always so. For example, one might take B to be the set of all points that map to A and
whose r and 6 coordinates satisfy 0 < r and 0 < 6 < 27. Some illustrations appear in the following
site; the collection of pictures in the first is particularly extensive and makes very effective use of
different colors.

http://loriweb.pair.com/8polarcoordl.html

omega.albany.edu:8008/calc3/double-integrals-dir/polar-coord-m2h.html

If a vector valued function of several variables is defined on a connected domain in some
R"™, then one can formulate a notion of partial derivatives using the coordinate functions and the
usual methods of multivariable calculus, but exactly as in that subject such partial derivatives can
behave somewhat erratically if they are not continuous. However, if these partial derivatives are
continuous, then one has the following critically important generalization of a basic result on real
valued functions of several variables:

LINEAR APPROXIMATION PROPERTY. Suppose that U is a connected domain in R™
and that f : U — R™ is a function with continuous first partial derivatives on U. Denote the
coordinate functions of f by f;, and for each x € U let D f(x) be the matrix whose i" row is given
by the gradient vector V f;(x). Then for all sufficiently small but nonzero vectors h € R" we have

fx+h) = f(x) + [Df(x)]h + [h|6(h)
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where 0(h) satisfies

ALH% 6(h) = 0.

The matrix D f(x) is often called the derivative of f at x. If n = m then the determinant
of this matrix is just the Jacobian which arises in the change of variables formula for multiple
integrals.

Sketch of proof. For scalar valued functions, a version of this result is established in multivariable
calculus; specifically, in our case this result says that the coordinate functions satisfy equations of
the form

filx+h) = fi(x) + Vfi(x)-h + |h|6(h)

where 6(h) satisfies

lim 6;(h) = 0.

h—0
By construction, the rows of D f(x) are the gradient vectors of the coordinate functions at x, and
consequently the coordinates of [D f (x)]h are given by the expressions V f;(x) - h. The function
6(h) is defined so that it coordinates are the functions 6;(h), and the limit of 6§ at 0 is 0 because
the limit of each 6; at 0 is O.m

The preceding result implies that a vector valued function of several variables with continuous
partial derivatives has a well behaved first degree approximation by a function of the form

g(x+h) = g(x) + Bh

for some m x n matrix B (namely, the derivative matrix).

WARNING. Frequently mathematicians and physicists use superscripts to denote coordinates.
Of course this conflicts with the usual usage of superscripts for exponents, so one must be aware that
superscripts may be used as indexing variables sometimes. Normally such usage can be detected
by the large number of superscripts that appear or their use in places where one would normally
not expect to see exponents.

Smoothness classes. As for functions of one variable, we say that a vector valued function of
several variables is smooth of class C" if its coordinate functions have continuous partial derivatives
of order < r (agreeing that CY means continuous) and that a function is smooth of class C if its
coordinate functions have continuous partial derivatives of all orders.

The concept of derivative matrix for a vector valued function leads to a very neat formulation
of the Chain Rule:

VECTOR MULTIVARIABLE CHAIN RULE. Let U and V be connected domains in R"
and R™ respectively, let f : U — V be a map whose coordinate functions have continuous partial
derivatives at x, and let g : V' — R? be a map whose coordinate functions have continuous partial
derivatives at f(x). Then the composite g° f defined by

g°fly) = 9(f(y))

also has coordinates with continuous partial derivatives at x and

Dlg°fl1(x) = D(g) (f(x)) °Df(x) .
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Proof. This follows directly by applying the chain rule for scalar valued functions to the partial
derivatives of the coordinate functions for g° f.m

COROLLARY. In the preceding result, if f and g are smooth of class C", then the same condition
holds for their composite ge f.

Proof. First of all, if the result can be shown for r < oo the case r = oo will follow out because
C® is equivalent to C® for all s < co. Therefore we shall assume r < oo for the rest of the proof.

If h is a ¢-dimensional vector valued function of p variables of class C", then the derivative
matrix of h may be viewed as a p X ¢ matrix valued function of p variables, or equivalently as a
pg-dimensional vector valued function of p variables, and this function is smooth of class C™~'. We
shall use this fact to prove the corollary by induction on 7.

Suppose first that 7 = 1. Then the Chain Rule states that the entries of D[g°f](x) are
polynomials in the entries of D(g) (f(x)) and D f(x). Since Dg, Df and f are all continuous and a
composite of continuous functions is continuous, it follows that D [g° f] (x) is a continuous function
of x.

Suppose now that we know the result for s < r, where r > 2. Then exactly the same sort of
argument applies, with C"~! replacing “continuous” in the final sentence; this step is justified by
the induction hypothesis.m

The file changevarexamples.pdf (as usual in the course directory) describes some examples
of smooth transformations f from R? to itself.

I1.3: Inverse and Implicit Function Theorems

(Lipschutz, Chapter 7)

The following topics are often discussed very rapidly or not at all in multivariable calculus
courses, but we shall need them at many points in the discussion of surfaces. The text for the
Department’s courses on single and multivariable calculus courses (Colley, Multivariable Calculus)
discusses these results as an optional part of Section 2.6 on pages 162—-167. More detailed statements
and proofs of the results are contained in the text for the Department’s advanced undergraduate
course on real variables (Rudin, Principles of Mathematical Analysis, Third Edition). A statement
of the one result (the Inverse Function Theorem) also appears on page 131 of Do CARMO. Here
are some online references:

http://www.ualberta.ca/MATH/gauss/fcm/calculus/ (continue with next line)
multvrbl/basic/ImplctFnctns/invrs_fnctn_explntn_illstrtn2.gif

http://artsci.wustl.edu/~e4111jn/InvFT14.pdf
http://www.sas.upenn.edu/~kim37/mathcamp/Eduardo_inverse.pdf

http://en.wikipedia.org/wiki/Inverse function theorem

We shall begin our discussion with the Implicit Function Theorem. The simplest form of this result
is generally discussed in the courses on differential calculus. In these courses one assumes that some
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equation of the form F(z,y) = 0 can be solved for y as a function of x and then attempts to find
the derivative y’. The standard formula for the latter is

a (%)
© ()

where of course this formula can be used only if the denominator is nonzero. In fact if we have a
point (a, b) such that F'(a,b) = 0 and the second partial of F" at (a,b) is not zero, then the simplest
case of the Implicit Function Theorem proves that one can indeed find a differentiable function
f(z) for all values of x sufficiently close to a such that f(a) = b and for all nearby values of = we
have

y=f(z) < Flz,y)=0.
Here is a general version of this result:

IMPLICIT FUNCTION THEOREM. Let U and V be connected domains in R" and R™
respecitvely, and let f : U x V' — R™ be a smooth function such that for some p = (a, b) e U x V'
we have f(a, b) = 0 and the partial derivative of f with respect to the last m coordinates is
invertible. Then there is an r > 0 and a smooth function

g:N.(p) =V

such that g(a) = b and for all u € Uy we have f(u,v) =0 if and only if v = g(u).m

EXPLANATIONS. (1) We view the Cartesian product U x V as a subset of R"*" under the
standard identification of the latter with R™ x R™.

(2) The partial derivative of f with respect to the last m coordinates is the derivative of the
function f*(v) = f(x,v), and smooth means smooth of class C" for some r such that 1 < r < cc.

Although it is possible to prove simple cases of this result fairly directly, the usual way of
establishing the Implicit Function Theorem is to derive it as a consequence of another important
result known as the Inverse Function Theorem. We shall be using this result extensively throughout
the remainder of the course.

Once again it is instructive to recall the special case of this result that appears in single variable
calculus courses. For real valued functions on an interval, the Intermediate Value Property from
elementary calculus implies that local inverses exist for functions that are strictly increasing or
strictly decreasing. Since the latter happens if the function has a derivative that is everywhere
positive or negative close to a given point, one can use the derivative to recognize very quickly
whether local inverses exist in many cases, and in these cases one can even compute the derivative
of the inverse function using the standard formula:

b
f'(9(y))

Of course this formula requires that the derivative of f is not zero at the points under consideration.

g = 1 = Jd =

If we are dealing with a function of n variables whose values are given by n-dimensional vectors,
one has the following far-reaching generalization in which the nonvanishing of the derivative is
replaced by the invertibility of the derivative matrix, or equivalently by the nonvanishing of the
Jacobian:
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INVERSE FUNCTION THEOREM. Let U be a connected domain in R", let a € U, and
let f: U — R"™ be aC" map (where 1 < r < oo) such that D f(a) is invertible. Then there is a
connected domain W C U containing a such that the following hold:

(¢) The restriction of f to W is 1 — 1 and its image is a connected domain V.

(17) There is a C" inverse map g from V' to some connected domain Uy C U containing a such
that g(f(x)) =x on Uym

For the purposes of this course it will suffice to understand the statements of the Inverse and
Implicit Function Theorems, so we shall restrict attention to this point and refer the reader to Rudin
for detailed proofs; a similar treatment of this material appears in Section I1.2 of the following set
of notes for another course that are available online:

http://www.math.ucr.edu/~res/math205C/lectnotes.pdf

WARNING. The Inverse Function only implies the existence of an inverse and does not provide any
general method for expressing the inverse in terms of the functions studied in first year calculus,
even if the coordinates of the original function have such a form. In fact, this is true even if we
restrict attention to real valued functions of a single real variable. One example of such a function
is the inverse function to f(z) = x + e”; note that this function is strictly increasing since its
derivative is always positive, and its limits as * — 400 are equal to +oc0 respectively. Therefore it
follows that f has a strictly increasing inverse function, but it turns out that this function cannot
be expressed in terms of the functions one encounters in first year calculus. The online documents

http://math.ucr.edu/~res/math205A/Lambertfcn.pdf
http://apmathw.uwo.ca/~djeffrey/offprints/ITSF2006.pdf

provide some information and further references for this example and the closely related Lambert
W -function, which is defined by the identity

z = W(z)eV® |

Another noteworthy example of a simply described function with a relatively nonsimple inverse is
given by f(z) = 2% + 23 + x. This function is also strictly increasing, and its limits as z — +oo
are equal to +o00 respectively, so that an inverse function exists. However, this function cannot be
expressed in familiar sorts of terms using addition, subtraction, multiplication, division, and taking
nt roots for n < 5. Further discussion of this example appears in Section IL.3 of the following
document:

http://math.ucr.edu/~res/mathl44/transcendentals.pdf

On a more positive note, the functions z+e? and 2° 423+ have convergent power series expansions
for all real values of x (of course, in the second case there are only finitely many nonzero terms),
and for each example and each real number a the inverse function also has convergent power series
expansions at x = a; these formulas are valid over suitable open intervals centered at a of the form
(a — Ry,a + R,) for some R, > 0, but these expansions are not valid over the entire real line. In
fact, one can set up equations for the power series coefficients of the inverse functions in terms of
the coefficients for the power series of original functions at = a (see the file inverse-series.pdf
in the course directory for more information).

REMARKS ON PROOFS. Finally, here are online references for the proofs of the Inverse and
Implicit Function Theorems. These are similar to the proofs in the previous online reference for
the theorems studied in the present section.
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http://planetmath.org/encyclopedia/Proof0fInverseFunctionTheorem.html
http://planetmath.org/encyclopedia/Proof0fImplicitFunctionTheorem.html

Change of variables in multiple integrals

In multivariable calculus courses, one is interested in changes of variables arising from smooth
mappings that are 1-1 and onto with Jacobians that are nonzero “almost everywhere.” The stan-
dard polar, cylindrical and spherical coordinates are the most basic examples provided that one
restricts the angle parameters § and ¢ (in the spherical case) so there is no ambiguity; the Jacobian
condition is reflected by the fact that this quantity is nonzero for polar and cylindrical coordinates
if r # 0, and it is nonzero for spherical coordinates so long as p?sin¢ # 0. Further discussion of
this result in the general case appears on pages 333-336 of the background reference text by Mars-
den, Tromba and Weinstein, and on pages 995-1001 of the background reference text by Larson,
Hostetler and Edwards. Exercises 37—40 on page 339 of the first reference and exercises 60—61 on
page 1004 of the second are recommended as review. Other possible sources for background include
Section 5.5 of COLLEY and the following online commentary regarding the latter:

http://math.ucr.edu/~res/math10B/comments0505. pdf

For the sake of completeness, here is a statement of the basic formula that applies to all
dimensions (not just 2 and 3).

CHANGE OF VARIABLES FORMULA. LetU andV be connected domains in R", and let
f:U —V be a map with continuous partial derivatives that is 1 — 1 onto has a nonzero Jacobian
everywhere. Suppose that A and B are “nice” subsets of U and V respectively that correspond
under f, and let h be a continuous real valued function on V. Then we have

/h(v)dv = /h(f(u))]deth(u)|du.-
B A

As in the case of polar, cylindrical and spherical coordinates, the result still holds if the
Jacobian vanishes on a set of points that is not significant for computing integrals (in the previous
terminology, one needs that the Jacobian is nonzero “almost everywhere,” and this will happen if
the zero set of the Jacobian is defined by reasonable sets of equations).

One can weaken the continuity assumption on h even more drastically, but this requires a more
detailed insights into integrals than we need here.n

There is an extensive discussion of the proof of this result along with some illustrative examples
in Section IV.5 of the book Advanced Calculus of Several Variables, by C. H. Edwards, and a
mathematically complete proof appears on pages 252-253 of the previously cited book by Rudin.
As noted on page 252 of Rudin, this form of the change of variables theorem is too restrictive for
some applications, but in most of the usual applications one can modify the proof so that it extends
to somewhat more general situations; generally the necessary changes are relatively straightforward,
but carrying out all the details can be a lengthy process.

Remark on the absolute value signs. In view of the usual change of variables formulas for
ordinary integrals in single variable calculus, it might seem surprising that one must take the
absolute value of the Jacobian rather than the Jacobian itself. Some comments about the reasons
for this are given in the middle of page 252 in Rudin’s book. In fact, we dealt specifically with this
issue in Section 1.3, when we proved that arc length remains unchanged under reparametrization.
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I1.4: Congruence of geometric objects

(Lipschutz, Chapter 6)

The notion of congruence for geometrical figures plays a central role in classical synthetic
Euclidean geometry. For some time mathematicians — and users of mathematics — have generally
studied geometrical questions analytically using vectors and linear algebra (these often provide
neat and efficient ways of managing the usual coordinates in analytic geometry). A few simple
examples often appear in introductory treatments of vectors in calculus books or elsewhere, and in
fact one can state and prove everything in classical Euclidean geometry by such analytic means.
However, there are still numerous instances where it is useful to employ ideas from classical synthetic
geometry, and in particular this is true in connection with the Frenet-Serret Formulas from Unit
I. Therefore we shall formulate the analytic notion of congruence rigorously, and we shall use it to
state an important congruence principle for differentiable curves.

Isometries of R™

Definition. Let F': R"™ — R" be a mapping (with no assumptions about continuity or differen-
tiability). Then f is said to be an isometry of R" if it is a 1-1 correspondence from R™ onto itself
such that

fx) = f)l = x =yl
for all x, y € R".

Two subsets A, B C R" are said to be weakly congruent if there is an isometry f of R" such
that B is the image of A under the mapping f. If A and B are weakly congruent, then one often
writes A = B in the classical tradition.

Since inverses and composites of isometries are isometries (and the identity is an isometry), it
follows that weak congruence is an equivalence relation.

The first step is to prove the characterization of isometries of a finite-dimensional Euclidean
space that is often given in linear algebra textbooks. To simplify our notation, we shall use the
term finite-dimensional Euclidean space to denote the vector spaces R™ with their standard inner
products.

PROPOSITION. IfE is a finite-dimensional Fuclidean space and F' is an isometry from E to
itself, then F' may be expressed in the form F(x) = b+ A(x) where b € E is some fixed vector and
A is an orthogonal linear tranformation of E (i.e., in matrix form we have that TA = A=! where
T A denotes the transpose of A).

Notes. It is an elementary exercise to verify that the composite of two isometries is an isometry
(and the inverse of an isometry is an isometry). If A is orthogonal, then it is elementary to prove
that F'(x) = b+ A(x) is an isometry, and in fact this is done in most if not all undergraduate linear
algebra texts. On the other hand, if A = I then the map above reduces to a translation of the
form F(x) = b + x, and such maps are isometries because they satisfy the even stronger identity

F(x—y) = X —Yy.

Therefore every map of the form F(x) = b + A(x), where b € E is some fixed vector and A is
an orthogonal linear tranformation of E, is an isometry of E. Therefore the proposition gives a
complete characterization of all isometries of E.
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Sketch of proof. This argument is often given in linear algebra texts, and if this is not done
then hints are frequently given in the exercises, so we shall merely indicate the basic steps.

First of all, the set of all isometries of E is a group (sometimes called the Galileo group of E). It
contains both the subgroups of orthogonal matrices and the subgroup of translations (G(x) = x+c¢
for some fixed vector c¢), which is isomorphic as an additive group to E with the vector addition
operation. Given b € E let Sy, be translation by b, so that A = S_p(g)°F is an isometry from E
to itself satisfying G(0) = 0. If we can show that G is linear, then it will follow that G is given by
an orthogonal matrix and the proof will be complete.

Since G is an isometry it follows that

Gx) -Gy)|* = |x—y

and since G(0) = 0 it also follows that g is length preserving. If we combine these special cases
with the general formula displayed above we conclude that (G(x),G(y)) = (x,y) for all x, y € E.
In particular, it follows that G sends orthonormal bases to orthonormal bases. Let {uy, --- ,u,}
be an orthonormal basis; then we have

and likewise we have
G(x) = Z (G(x),G(w)) - G(u;) -

Since G preserves inner products we know that
(x,u) = (Gx),G(w))  G(uw)

for all 4, and this implies that G is a linear transformation.m

Since an isometry is a mapping from R" to itself, it is meaningful to ask about its continuity
or differentiability properties. The following result answers such questions simply and completely.

PROPOSITION. Let F: R" — R" be a mapping of the form F(x) = b + A(x), where b € R"
is some fixed vector and A is an arbitrary square matrix. Then for all x € R"™ we have DF(x) = A.

COROLLARY. LetV be open in R™, let g : V — R"™ have a continuous derivative, and let A
be an n X n matrix; by an abuse of language, let A also denote the linear transformation from R"
to itself defined via left multiplication by A. Then we have D(A°g) = A°Dg.

Proofs. The statement in the proposition follows from the definition of the derivative as a matrix
whose entries are the partial derivatives of the coordinate functions. In this case the coordinate
functions are all first degree polynomials in n variables. The statement in the corollary follows from
the proposition and the Chain Rule.n

The concept of weak congruence is close, but not identical, to the idea that there is a dynamic
rigid motion taking one figure to another; the main difference is that weak congruence also allows
the possibility that one figure is a mirror image of the other. For our purposes it is enough to know
that if F' is an isometry then the orthogonal linear transformation DF' has determinant equal to
+1, and the intuitive concept of rigid motion corresponds to the case where the determinant is
equal to +1. Therefore we shall say that F' is a rigid motion if this determinant is 4+1, and we shall

99



say that two weakly congruent figures A and B are strongly congruent, or more simply congruent,
if there is a rigid motion taking one to the other.

The file congruence000.pdf describes the relation of congruence or isometry in these notes
to congruence in elementary geometry more explicitly; also, the file

http://math.ucr.edu/~res/math133/metgeom.pdf

discusses the relationship of linear algebra to elementary geometrical congruence and similarity in
more detail (but at a somewhat higher level).

Congruence and differentiable curves

We shall say that two continuous curves «, 3 : [a,b] — R" are congruent if there is an isometry
F of R™ such that § = Fea. We are interested in the relationship between the curvatures and
torsions of congruent curves.

PROPOSITION. Leta,f: [a,b] — R be congruent differentiable curves whose tangent vectors
have constant length equal to 1 and whose curvatures are never zero. Then the curvature and
torsion functions for o and 3 are equal.

Proof. Let F be a rigid motion of R® such that 3 = Fea, express F in the usual form
F(x) = b+ A(x) where b € R? and A is an orthogonal transformation whose determinant is equal
to +1, and suppose that « has k continuous derivatives. By the Chain Rule we know that 3 also
has k continuous derivatives, and in fact %) = Ao,

Since || = || = 1, it follows that the curvatures are given by k, = |@”| and kg = |5"].
Since 3" = A°a” and A is orthogonal, it follows that |3"”| = |&|, and hence the curvatures of «
and [ are equal.

We shall now show that the Frenet trihedra for the curves are related by
(To N By ) = (A(Ta), A(NL), A(B,) ) .
The result for the unit tangent vector is just a restatement of the relationship 8’ = A°d/, and the

result for the principal unit normal follows because we have

_ 1 "o L " _ L " —
Yo = T ) T ) =

A(ﬁa”) — A(N.) .

We must next compare the binormals; this amounts to checking whether the following cross product
formula holds:
AB.) = A(T.) x A(N.) = Ta x Nj

We shall do this using the Recognition Formula from Section I.1. By that result, all we have to
check is that the triple product satisfies

[A(T.), A(N,), AB,)] = +1.
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This triple product is just the determinant of the matrix whose columns are the three vectors. This
matrix in turn factors as a product of A and the matrix whose columns are the Frenet trihedron
for «, and by the multiplicative properties of determinants we then have

[A(T,), AN,), ABy)] = detA-[To, No, Bo] = (+1)-(+1) = +1

so that the Recognition Formula implies the cross product identity. This completes the verification
of the relationship between the Frenet trihedra.

To complete the proof we need to show that the torsions satisfy 74 = 7,. By definition we
have 75(s) = —Bg'(s) - Ng(s). Since Bz = A(B,), there is a corresponding identity involving
derivatives, and therefore by the preceding paragraph we have

T3(s) = —A(Ba'(s))'A(Na(s)).

Since A is orthogonal, it preserves inner products, and consequently the right hand side is equal to
—B,'(s) - N4(s), which by definition is just 7,(s). Combining these observations, we see that the
torsions of « and ( are equal as claimed.m

Uniqueness up to congruence

We are now ready to prove that curvature and torsion often determine a differentiable curve
up to congruence.

UNIQUENESS UP TO CONGRUENCE. Let a and (8 be sufficiently differentiable curves in
R? defined on the same open interval .J containing sq, and assume that their curvatures and torsions
satisfy ro = rg > 0 and 7, = 75. Then there is an isometry F of R® such that det DF(x) = +1
for all x and B = Fea.

Proof. Let (Ta77 N., B, ) be the Frenet trihedron for the curve x = « or 8 at parameter value sg.
If P and @ denote the matrices whose columns are given by {Ta, N., B, } and {T/g, N3, Bg }
respectively, then P and ) are orthogonal matrices with determinants equal to +1 (this follows
because the columns are orthonormal and the third is the cross product of the first two). Therefore
the matrix C = P Q! is also orthogonal with determinant equal to +1. If we define F' by the
formula

fx) = Cx) + (B(so) —also))

then v = F e« is a curve whose curvatures and torsions are equal to those of a and 3, and and its
Frenet trihedron at parameter value sg is equal to the corresponding trihedron for 5. By the local
uniqueness portion of the Fundamental Theorem of Local Curve Theory, it follows that there is an
open subinterval J’ C .J containing so such that the restrictions of vy = Fea and 3 to J' are equal.m

There is a more detailed proof of the preceding result in the file curve-congruence.pdf.

It is possible to prove a similar result on uniqueness up to congruence for plane curves with a
given curvature function; as in the 2-dimensional versions of the result from Section 1.5, there is no
torsion function and it is not necessary to assume that the curvature is everywhere nonzero. The
precise formulation of this result and its proof are left to the reader.m
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I11. Surfaces in 3-dimensional space

In Unit I we discussed two approaches to studying a curve, either by viewing it as a set of points
in the plane or 3-dimensional space, or in terms of a parametrization. Similar considerations apply
to surfaces in R3. Intuititvely speaking, a surface should be a subset that resembles a portion of
the plane near every point, and this will be the case if we have a suitable description of the surface
by parametric equations defined on some connected domain in R?. However, as noted on page 57
of DO CARMO, there is a major difference. For curves, it is often best simply to think of the curve
in terms of the vector valued function given by a parametrization. On the other hand, for surfaces
there is more of a balance between them as subsets of 3-dimensional space and objects given by
their parametrizing functions. As noted on page iz of O’NEILL, a clear an adequate definition of
surfaces is important, but this is not always given in the classical references; our definition will be
equivalent to the ones in O’NEILL and DO CARMO.

One of the ultimate goals of classical surface theory is an analog of the Fundamental Theorem of
Local Curve Theory, which states that many regular smooth curves in R* are completely determined
near a point by their curvatures and torsions. The corresponding result for surfaces may be viewed
as a statement that a surface in R? is determined by a pair of 2 x 2 matrix valued functions known
as the first and second fundamental forms; in fact, both of these forms take values in the set
of symmetric 2 x 2 matrices, and the possibilities for the first fundamental form are even more
significantly restricted. This unit and the next one develop many of the basic concepts that are
needed to study the differential geometry of surfaces, including some needed to formulate and to
prove a fundamental theorem for local surface theory. As in the case of curves, much of the work
involves generalizations of material from standard multivariable calculus courses. We shall not get
to the fundamental theorem in this course, but there is a discussion of this result in Section V.2 of
these notes.

II1.1: Mathematical descriptions of surfaces

(Lipschutz, Chapter 8)

One weakness of classical differential geometry is its lack of any adequate defini-
tion of surface.

O’NEILL, Preface, p. ix.

Some of the most basic examples of curves in R? are given by the graphs of differentiable
functions, and they can be described either as the set of points (x,y) where y = f(z) or alternatively
using a parametrization of the form r(¢) = (¢, f(¢)). Likewise, some of the most basic examples of
surfaces in R? are given by the graphs of differentiable functions, and they can be described either
as the set of points (z,y,z) where z = f(z,y) or else by means of a parametrization S(u,v) =

(u, v, f(u,v)).
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If F is a function of two variables defined near (a,b) so that F'(a,b) = 0 but the second partial
derivative at (a,b) is nonzero, then the Implicit Function Theorem implies that locally one can
solve the equation F'(x,y) = 0 for y in terms of =, and it follows that locally the set F(x,y) = 0
is the image of a parametrized curve. More generally, if we know that VF(z,y) # 0 whenever
F(z,y) = 0, then at each point we can locally solve for one coordinate in terms of the other,
and using these solutions one can generally find a parametrization of the level set defined by the
equation F'(z,y) = 0 which makes the latter into a regular smooth curve, at least if the level set
consists of only one connected piece (this happens for the circle defined by 2 + y* = 1 but not
for the hyperbola y? — 22 = 1). Proofs and more details about such constructions appear on pages
68-73 of THORPE (see pages 16 and 26 of the latter for some key definitions).

Similarly, if F' is a function of three variables such that VF(x,y, z) # 0 whenever F(z,y) = 0,
then at each point we can locally solve for one coordinate in terms of the other two, so we have
local parametrizations at each point. However, it is far more difficult to put together a global
parametrization even if the level set defined by F(z,y,z) = 0 consists only of one connected piece.
Perhaps the most basic example of this occurs for the unit sphere S?2, which corresponds to the
equation 22 + y? + 22 = 1. It is easy to check the gradient condition for this example, and it is
also easy to see write down explicit solutions for one variable in terms of the other two. However,
it is not easy to write down a parametrization in elementary terms. The obvious parametrizations
that one gets at different points cannot be pieced together as easily as one can piece together
parametrizations for curves. In the case of curves, it is enough to match things up at boundary
points of the intervals on which the partial parametrizations are defined , but the boundary sets
for the two dimensional planar regions cannot be dealt with so easily. Another point to consider is
that the parametrization of S? by spherical coordinates

X0, ¢) = (COSH sin ¢, sin 6 sin ¢, cos ¢)

is somewhat less regular than the corresponding parametrization of the unit circle as (cos 6, sin6)
because it sends the infinite set of all parameter pairs with ¢ = 0 to the north pole, and it also
sends the infinite set of all parameter pairs with ¢ = 7 to the south pole. Just as we want
parametrizations for curves that are regular in the sense that their derivatives are zero, we shall
also want parametrizations for surfaces that are regular in the sense that every directional derivative
at every point is nonzero.

These considerations suggest that we need more flexibility with surface parametrizations than
we had for curve parametrizations. All of this will be made mathematically precise in the next
section.
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II1.2 : Parametrizations of surfaces

(Lipschutz, Chapter 8)

The first objective is to define a regular smooth surface parametrization. This definition is
very close to the definition of a regular smooth parametrization for a curve.

Definition. A regular smooth surface parametrization of class r > 1 is a smooth C” map x from
a connected domain U in R? to R? such that the 3 x 2 matrix Dx(u,v) has maximum rank (which
equals 2) for all (u,v) € U.

The condition on the matrix is equivalent to the nonvanishing of the cross product of the

partial derivative vectors

ox ox

_ X —_

ou v
at all points of U, and in fact this is the form of the condition that is most often used in the
classical differential geometry of surfaces. Another consequence of the matrix condition is that the
directional derivatives of x in all directions and at all points are nonzero.

We should note that the standard parametrization of the sphere by the spherical coordinate
map X(0,¢) = (cos@sin ¢,sinfsin ¢, cos ¢) is not quite a regular parametrization for the entire
sphere, for we have

aa—{: X ?)_;( = — (cos&sin2 &, sin 6 sin? qﬁ,cosgbsinqﬁ)

and this vector vanishes when sin ¢ = 0; in other words, when ¢ is an integral multiple of m, or
equivalently at the points which map to the north and south poles. — On the other hand, it is
possible to find a regular parametrization for the entire sphere such that the domain is a connected
region, and an example is given in the file plane2sphere.pdf, but this also has an important
disadvantage; namely, the associated map X is very far from being 1-1, either everywhere or
“almost everywhere.”

Normal thickenings of surfaces

The following result is not always mentioned in differential geometry texts, but it will be helpful
for our purposes.

NORMAL THICKENING PRINCIPLE. Letx be a regular smooth surface parametrization
of class r as above, let

ox 0x
y(S,t) = %(Sat) X %(370

for (s,t) € U, and let ®(s,t,w) = x(s,t) + wy(s,t) for (s,t) € U and w € (—h,h) for some

small h > 0. Then for each (s,t) there is an € > 0 (depending on (s,t) ) such that the following
conclusions hold on the disk

D = {(z,y,2) €R® | (z—s)? +(y—t)>+22 < &2} :

(i) The restriction of ® to D is 1 — 1 and its image is a connected domain V.
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(17) There is a C" inverse map ¥ from V to some connected domain Uy C U containing (s.t,0)
such that V(®(z,y,2)) = (z,y,2) on Uym

The map ® may be viewed as a thickening of x such that the vertical line segments (sg, to, w) —
where the first two variables are held constant — are mapped to curves that are in some sense per-
pendicular (or normal) to the surface at the point x(sg, tp). The figure in the file thickening.pdf
depicts the special case where the surface is a fragment of a sphere.

Proof. By the Inverse Function Theorem it suffices to show that D®(s,t,0) is invertible for all
(s.t) € U, or equivalently that the Jacobian of ® at these points is always nonzero.

Let x,, and x,, denote the partial derivatives of x with respect to the first and second variables
respectively. Then the Jacobian of ® at (s,¢,0) is equal to the value of the vector triple product

[XU7 X'Ua Xu X X'U]

at (s,t). But the triple product is equal to |x, X X, |?; as noted above, since Dx has rank 2 its
columns — which are x,, and x, — are linearly independent, so that the cross product x, X x,
is nonzero for all (s,t) € U, and therefore its length is positive for all such points. Therefore the
Jacobian of @ is positive at all points (s,t,0) such that (s,t) € U.u

EXAMPLE. Consider the parametric surface describing a part of the sphere by the spherical
coordinate map ¥ described above where both 6 and ¢ are assumed to lie in (—m, 7). The image of
this function is the set of all points on S? except for the great circle arc through (—1,1,0) joining
the north and south poles. Direct calculation then shows that >, x 3, is equal to sin ¢-3. Therefore
the normal extension is given by the formula

®(0,p,w) = (14+wsinh)-X(6,9) .

Note that this function maps the entire surface given by the graph w = —1/siné into 0, and
therefore the normal extension is not globally 1-1. Furthermore, the Jacobian at points on the
curve must vanish because the second partial derivative of ® at such points is equal to zero (note
that the second partial is equal to (1 + w sinf) - ¥).

In this example one still knows that there is some h > 0 such that ® is 1-1 and has nonvanishing
Jacobian for all (s,t,w) such |w| < h and (s,t) € U. However, it is also possible to construct
examples for which one cannot find a positive constant h that works for every point in U. The best
one can do in general is find a positive valued continuous function h(s,t) such that ® is 1-1 and
has nonvanishing Jacobian for all (s,t, w) such |w| < h(s,t) and (s,t) € U.

We now proceed to define a concept of surface that is equivalent to the definition on page 126
of O’NEILL (and also the definition in DO CARMO).

Definition. A geometric reqular smooth surface ¥ is a subset of R® such that for each p € ¥
there is a smooth 1-1 map ¢ defined on some open disk centered at 0 in R® such that the following
hold:

(i) The map v sends 0 to p, its Jacobian is nowhere zero, and its image W is an open connected
domain containing p.

(#4) If r is the radius of the disk on which 1 is defined, then the set W N X is the set of all
points of the form 9 (u, v,0) where u? + v? < r2.

CONSEQUENCE 1. IfX denotes the restriction of ¢ to the set of points whose third coordinate
is zero, then X is a regular smooth parametrization for > N W.
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Proof. Let D be the open disk, let Dy be the corresponding disk in R? consisting of all points
in D whose third coordinate is equal to zero, and let j denote the inclusion of Dy in D. Then by
the Chain Rule we have that DX (u,v) = D (u,v,0)- Dj(u,v). Now Dj is simply the 3 x 2 matrix
whose columns are the first two unit vectors, and accordingly it has rank 2, and by hypothesis we
know that Di(u,v,0) has rank 3. Therefore the composite, which is DX (u, v), must have rank 2.m

We shall sometimes say that the maps satisfying (i) and (i7) are thickened (regular smooth)
parametrizations near p.

It is natural to ask why we do not simply define a geometric regular smooth surface to be the
image of a smooth 1-1 regular parametrization. The reason for the more complicated definition is
to eliminate some “bad” examples that are described at the end of this section.

CONSEQUENCE 2. IfY¥ is a above and U is a connected domain such that > N U is not
empty, then the latter is also a geometric regular smooth surface. Conversely, if ¥ C R® and for
each p € ¥ there is an open disk V}, centered at p such that ¥ NV, is a geometric regular smooth
surface, then ¥ itself is a geometric regular smooth surface.

Proof. We begin by verifying the first inclusion. Let p be a point in the intersection, let 1 be
the map given in the definition above, and let D be the disk on which 1 is defined. The continuity
of ¢ implies that there is some smaller disk D’ C D centered at the origin such that the image of
D’ is contained in U. If we define ¢’ to be the restriction of 1) to U, then this restriction satisfies
the condition of property (i7) in the definition.

For the second conclusion, if v is a map satisfying all the required conditions with respect to
¥ N Vp, then it also satisfies these conditions with respect to ¥ itself. Since every point p on the
surface lies in a suitable connected domain V},, it follows that property (i7) in the definition of a
geometric regular smooth surface is satisfied at every point.m

The basic examples

Before proceeding further we should check that most or all the objects informally described
as surfaces are indeed surfaces in the sense of our definition. There are several separate cases to
consider.

GRAPHS OF SMOOTH FUNCTIONS. Suppose that we are given a function f that is defined
on a connected domain U C R? and has continuous partial derivatives at every point. Then the
graph of f is given by the standard regular smooth parametrization

gz,y) = (2,9, f(z,9))

and we claim that Dg always has rank 2 (or equivalently that the cross product of the first and
second partial derivatives of g is nonzero at all points). Direct computation shows that

1 0
0 1
or of
ox Oy

and it follows that the cross product of the columns has a third coordinate which is equal to +1.
This cross product will be used repeatedly throughout the remainder of the course, so we shall
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write it down explicitly:

_9f
ox
gg  Jg _ | _os
dr Oy 9y
1

The preceding shows that we have a 1-1 regular smooth parametrization for the graph of f.
We also need to show that property (i) in the definition of a geometric regular smooth surface is
satisfied. The first step in doing so is to define a 3-dimensional thickening of the parametrization
map that is similar to the normal extension discussed previously. Specifically, if W is the connected
domain on which f is defined, then we thicken if to a map F defined on W xR by the simple formula

F(u,v,t) = (u, v, t+ f(u,v)) .
It follows immediately that F' is a smooth map with a smooth inverse given by
G(ua th) = (’LL, v, - f(ua U) )

and that the graph of f is the image of W x {0}. Suppose now that p is a point on the graph of
f and that p = (u, v, f(u,v)) for suitable v and v. Let q denote the vector (u,v), and suppose
that r > 0 is chosen so that the open 2-dimensional disk of radius r centered at q lies in W. If D
represents the 3-dimensional disk of radius r centered at 0 then the necessary map 1 for the point
p is given by ¥ (x) = F(x + q); the right hand side is always defined because x + q always lies in
W xR when x € D.n

In the preceding discussion, we have described graphs in which z and y are the independent
variables and z is the dependent variables. Needless to say, one can permute the roles of the three
coordinates to consider graphs where each coordinate becomes the dependent variable, and similar
considerations show that such subsets are surfaces.m

Notation. Parametrizations of surfaces as graphs of smooth functions are often called Monge
parametrizations or Monge patches in the literature (the pronunciation of the name “Monge” sounds
something like “mawzh”).

LEVEL SETS OF REGULAR VALUES OF SMOOTH FUNCTIONS. These can be viewed as
generalizations of graphs, and they also include the usual quadric surfaces in R?, at least if one
removes a relatively small number of “bad” point that are generally described as singularities;
perhaps the simplest example involves the cone defined by the equation 2 4+ y? — 22 = 0, whose
vertex at 0 is clearly an exceptional point.

Suppose that we are given a smooth function f defined on a connected domain U C R?, and
let C' be a constant. We generally expect that the level set defined by the equation f(x,y,z) = C
(where (x,y,z) is assumed to lie in U) should define a surface. Perhaps the most fundamental
examples of this sort are planes that have equations of the form

Ax + By + Cz = D

(where not all of A, B, C are zero) and spheres defined by equations of the form

(x—a)* + (y=0)? + (z—¢)* = r?
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(where r > 0). The best way to avoid pathologies is to require that C be a regular value in the
sense that the gradient V f(z,y, z) is not equal to 0 if f(x,y,z) = C. In both of the cases described
above one can check this out directly. For the plane, the gradient is equal to (A, B,C) and this
vector is nonzero because we assumed that at least one of the three coefficients was nonzero. In
the case of the sphere, the gradient of f at an arbitrary point (x,y, z) is equal to

2(az—a,y—b,z—c)

and therefore vanishes only at the point (a, b, ¢) which does not lie on the sphere (we assumed that
r > 0).

We now explain why such level sets are geometric regular surfaces in the sense described above;
if we modify our original function by subtracting off the constant C, we obtain a new function such
that the gradient is nonzero where the value of the function is zero, so there is no real loss of
generality in assuming that C' = 0. Suppose that p = (a,b,c) is a point for which f(a,b,c) = 0.
Since we know that Vf(a,b,c) # 0, at least one partial derivative of f at (a,b,c) is nonzero.
If, say, the third partial is nonzero,, then the Implicit Function Theorem implies that there is a
small connected domain of the form V x W containing p — where V is a connected domain in R?
containing (a,b) and W is an open interval in R containing ¢ — and a smooth implicit function g
defined on W such that the intersection of the zero set of f with V' x W is equal to the graph of g.
We can then use the standard parametrization of a graph as the regular smooth parametrization
that is required at the point p. If one of the other partial derivatives at (a,b,c) is zero — say the
one with respect to the i*" variable — then the the same considerations show that locally the zero
set is given by the graph of a function expressing the i*" coordinate as a function of the other two.

One can check that this also works for the other basic types of quadric surfaces in the list
below, where all exceptional points are noted.

e Ellipsoids of the form

JZQ y2 22

etptae =1
where a, b, ¢ # 0. As in the case of the sphere, the gradient of the function on the left
hand side vanishes only at 0 and the latter does not belong to the level set described

above.

e Hyperboloids of the form

72 Y2 52 o,
a2 T 2
where a, b, ¢ # 0. As in the previous case, the gradient of the function on the left hand
side vanishes only at 0 and the latter does not belong to the level set described above.
e Cones of the form
2 Y2 )
ﬁ + b—2 - Z =0
where a, b # 0 and we restrict to the open connected domain of points that are not equal
to 0. As in the previous cases, the gradient of the function on the left hand side vanishes

only at 0 and the latter has been excluded.
e Elliptic and hyperbolic paraboloids of the form



where a, b # 0. In these cases the gradient for the difference of the left and right hand
sides never vanishes.

e Circular, elliptic and hyperbolic cylinders of the form

where a, b # 0. In these previous case, the gradient for the difference of the left and right
hand sides vanishes only at points where x = y = 0, and no point of the form (0,0, z)
belongs to one of the level sets described above.

e Parabolic cylinders of the form

where a # 0. In these cases the gradient for the difference of the left and right hand sides
never vanishes.

This list is not quite exhaustive, but the only types of nondegenerate quadrics that are missing
are given by two planes that either intersect in a line (the hyperbolic cylinder equation with the
right hand side set equal to 0 rather than 1) and pairs of parallel lines defined by an equation of
the form % = a? > 0 (see the end of Section IV.3 for more information on this point). In the first
case one must exclude the entire z-axis, but in the second case it is not necessary to exclude any
points at all.

CYLINDRICAL SURFACES. We have already discussed some standard examples of cylindrical
surfaces. Generalizations of these examples turn out to play an important role in many aspects
of geometry, so it is worthwhile to explain how some of them can be parametrized. The simples
examples of cylindrical surfaces arise when one takes a curve in R? defined by y = f (z) and
considers the set of all points (z,%, z) € R® such that y = f(z). If J is the interval upon which f is
defined, then this surface is the subset of J x R x R consisting of all points satisfying the equation
y— f(z) = 0, so this set will be a geometric surface because the gradient of y — f(z) is the nonzero
vector (—f'(x), 1, 0). In this case one also has a simple explicit parametrization

X(U7U) = (uv f(u)a U)

that maps J x R to the surface in a 1-1 onto fashion.

In the preceding example, one uses lines that are perpendicular to the xy-plane, but one can
also form such surfaces using a family of mutually parallel lines such that these lines are neither
parallel to nor contained in the xy-plane. The corresponding smooth parametrization in such cases
is given by the formula

E(t7 5) = (ta f(t)a 0) + s (CL, b7 C)
where ¢ # 0.

SURFACES OF REVOLUTION. Several of the quadric surfaces described above can be viewed
as surfaces of revolution about a coordinate axis, and more general surfaces of revolution also play
an important role in geometry. Therefore we shall consider the two basic types of examples that one
encounters in single variable calculus courses. Given a curve y = f(z) as above such that f(z) > 0
for all z, then we can construct a corresponding surface of revolution in R® about the z-axis. Such
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a surface is defined by an equation of the form y? + 22 = f(x)? on the set J x R x R, where J is
an open interval on which f is defined, and an explicit 1-1 global parametrization is given by

S(t,0) = (¢, f(t) cosO, f(t), sinf) .

Verification that this description yields a geometric surface is left to the reader as an exercise.

Similarly, if we are given a curve y = f(z) as above that is defined on an interval for which
x is always positive, then we can also construct a corresponding surface of revolution in R? about
the y-axis. In this case an explicit 1-1 global parametrization is given by

S(t,0) = (tcosb, f(t),tsind) .

Alternatively, one can view a surface of revolution about the y-axis as given by the equation
y = f(Va? 4 22); if f is defined on the interval (a,b) where a > 0, then the domain of definition
for the corresponding function of  and z is the annulus defined by the inequalities

a® < 22422 < v,

We shall give a slight generalization of this which shows that the torus given by rotating a circle
such as (z —1)? + y? = 1 about the y-axis is a surface in the sense of these notes. Suppose we are
given a simple closed curve x in R? which can also be described as the set of solutions to F(u,v) = 0
where VF(a,b) # 0 at all points such that F(a,b) = 0, and suppose that the first coordinates of
all solutions to F(u,v) = 0 are greater than some positive number a. A parametrization of the
resulting surface of revolution is given by

X(t,0) = (u(t)cosb, v(t), u(t) sinb)

and if we set G(z,y,2) = F(vVx? + 22, y), then the surface of revolution consists of all points such
that G(x,y,z) = 0. In order to verify that this defines a surface in our sense, we need to show that
the gradient of GG is nonzero at all points of the zero set of G. Here is a sketch of the proof: At each
point (u,v) such that F'(u,v) we know that either the first partial derivative F(u,v) or the second
partial derivative Fy(u,v) is nonzero. Suppose now that G(z,y,z) = 0 and let u = Va2 + 22 and
v = y. If the second partial derivative of F' is nonzero at (u,v), then the second partial derivative
of G is also nonzero at (z,y, z). If the first partial derivative of F' is nonzero at (u,v) and z # 0,
then elementary calculations show that the first partial derivative of G is also nonzero at (x,y, z),
while if the first partial derivative is nonzero and z # 0, then the third partial derivative of G is also
nonzero at (x,vy,z). Since u > a > 0 by hypothesis we know that 22 4+ 22 > a? > 0, and therefore
at least one of x and z is always zero; this proves that the gradient of G is nonzero at every point
of the zero set.

RULED SURFACES. More generally, one can define another important generalization of cylin-
drical surfaces that also includes the cone that are ruled in the sense that one has parametrizations
for the entire surface of the form

X(u,v) = a(u)+v-b(u)

where a’(u) is never zero and the vectors a’(u) and b(u) are always linearly independent. Here are
some basic examples that are not cylindrical in the sense described above:
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e A hyperbolic paraboloid. Consider the surface of this type defined by the equation
z = 22 — y2. The right hand side factors as a product (z — y) (x + y), so the intersection
of the surface with the plane x —y = C'is just the line at which the planes r —y = C' and
z = C'(x+y) intersect. This leads to the definition of parameters u = x —y and v = z +y,
and one can use these to parametrize the surface as

X(u,v) = (%(u—{—v), %(u—v),uv).

Here the curves defined by holding either u or v constant are straight lines, and one can
rewrite the parametrization in the form y(u) + vg(u) where

y(w) = Ju(er+eg)

and
gu) = 1(ei+ey) + ues.

e A hyperboloid of one sheet. Consider the surface of this type defined by the equation
22 + 9% — 22 = 1. One can check directly that this surface can be parametrized using the
function

(cosu, sinu) + wv-(—sinwu, cosu,l)

and that a(u) = (coswu, sinu) and b(u) = (—sinu, cosu, 1) satisfy the basic conditions
described above.

e A cone. We shall only consider the nonsingular piece of the cone 22 + y? — 22 = 0 in
the upper half plane where z > 0. In this case the parametrization is given by
X(u,v) = (vcosu, vsinu, v)
where u € R and v > 0. One can give ruled parametric equations by the alternate formulas

(cosu, sinu, 1) + v - (cosu, sinu, 1)

where again u € R but this time v > —1.

e The Mobius strip. Intuitively, this is formed by taking a rectangle A B C' D for which
the length |AB| = |CD| is much greater than the width |[BC| = |AD| and gluing sides
BC and AD so that B corresponds to D and A corresponds to C. One can model this
using the parametric equations

X(u,v) = (cosu,sinu,0) + v- <cosucos(u/2), sin u cos(u/2), Sin(u/2)>

where u € R and v € (—3, 1) (or one can take |v| < £ for some arbitrary e that is positive
but less than 1).

In order to show this satisfies the condition for a surface, it will suffice to find a set of open
domains U; such that every point in the image of the parametrization X lies in one of the domains
U, and that on each set U; the intersection of the Mobius strip with the zero set of some well
behaved smooth function on U;. Geometrically, the key to doing this is to look at the intersection
of the surface with the planes containing the z-axis, which are defined in cylindrical coordinates
by equations of the form # = C'. In such planes one sees that the points of the Mobius strip are
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the points satisfying (r — 1)? + 22 < €2 and either z = (1 — r)tan 3C if C is not an odd multiple
of m or else by 1 — r = zcot %C’ if C' is not an even multiple of 2. Therefore, on the set of
points in R? satisfying (r — 1)2 + 22 < &2 and either z > 0 or y # 0, the intersection with the
Méobius strip is given by the equation z = (1 — r)tan %9, while on the set of points satisfying
(r —1)? + 22 < €2 and either x < 0 or y # 0, the intersection with the Mdbius strip is given by
the equation (1 —r) = zcot 10.a

Here are some online references, including some with animations showing the one-sidedness of
the Mobius strip.

http://www.worldofescher.com/gallery/A29.html

http://www.mikejwilson.com/solidworks/ (continue with next line)
files/mobius_II__animation.zip (This requires RealOne Player.)
http://www.physlink.com/Education/AskExperts/ae401.cfm
http://www.uta.edu/optics/sudduth/4d/ (continue with next line)

nonorientable/moebius_strip/math/mathematics.htm
http://www.mapleapps.com/categories/animations/gallery/anim_pg3.shtml
http://www.tattva.com/vladi/director.html#6 (Scroll down the Movie List to the
last entry, which is called ”Mobius strip.” There are QuickTime and RealOne Player
versions of this loop.)

http://mathworld.wolfram.com/MoebiusStrip.html (This is a curious animation.)

Significant counterexamples

On the basis of our examples thus far, it is natural to ask whether the image of a parametrized
surface is always a geometric surface. It turns out that the answer is negative, even if one restricts
attentions to simple parametrizations that are globally 1-1. Here is one counterexample: Consider
the figure 8 curve p(t) = (sin 2t,sint) for t € (0, 27). One then has an associated cylindrical surface
with regular smooth parametrization ¥(¢,w) = (sin2¢, sint, w) for t € (0,27) and w € R. This
parametrization is also 1-1, but its image fails to satisfy the definition of a geometric surface when
p = 0. The key to seeing this is the following simple observation:

PROPOSITION. Let X be a geometric regular smooth surface in R®, and let p € ¥. Define K,
to be the set of all vectors in R® that are realizable as tangent vectors y’ (0), where y is a smooth
curve entirely contained in ¥ such that y(0) = p. Then K, is a 2-dimensional vector subspace of
R®.

Proof. Let ¢ be a smooth 1-1 map ¢ defined on some open disk centered at 0 in R® such that
() it sends O to p, its Jacobian is nowhere zero, and its image W is an open connected domain
containing p, (ii) if r is the radius of the disk on which 1) is defined, then the set W N X is the set
of all points of the form v (u,v,0) where u? 4+ v? < r2.

Let ¢ be the inverse mapping to v, and suppose that y is a curve of the type described in
the conclusion of the proposition. By restricting to a small interval centered at 0, we may as well
assume that the image of y is contained in the image of 1 so that ¢ °y is defined. This is a curve
in the uv-plane, so its tangent vector at 0 also lies in this plane. By the Chain Rule, the tangent
vector to y = 1p°(pey) lies in the subspace of R® spanned by Dv(0)e; and Dv(0)e,. Conversely,
every vector in this subspace is the tangent vector of a curve in the surface of the form v (¢ v) where
v lies in the subspace of R® spanned by the first two unit vectors.m
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Returning to the example, we now consider all curves of the form
(sin2at, sina(t —cm),bt)

where a and b are arbitrary real numbers and ¢ = 0 or 1. Each of these curves lies entirely in the
image of the parametrized surface, and at parameter value ¢ each curve passes through 0. What
are the tangent vectors to these curves? They are equal to (2a,+a,b). We claim there is no
2-dimensional vector subspace W of R® that contains this set. To see this, note that the set of all
tangent vectors described above contains the 2-dimensional subspace W spanned by (2,1,0) and
(0,0,1), and if W is a 2-dimensional subspace containing these and possibly other tangent vectors,
then W = Wy. On the other hand, the given set of tangent vectors includes (2. — 1.0), which is
definitely not in Wy. — It follows that the image of the 1-1 parametrization map is not a geometric
regular smooth surface in this case.m

ANOTHER (more complicated) EXAMPLE. The cylindrical surface in Exercise 19 on pages
68—69 of DO CARMO illustrates another way in which the image of a 1-1 parametrization may fail
to be a smooth surface. According to the defining conditions, for every point p of a geometric
surface X, for every connected domain W containing p there is a connected subdomain U C W
containing p such that every other point in ¥ N U can be joined to p by a smooth curve lying
entirely in ¥ N U. This property fails to hold for the surface described in the exercise; specifically,
consider the disk W of radius % about the origin and the points q,, with coordinates

(&)

We claim that there are no smooth curves in X NW joining the origin to such points. If there were,
then by the Intermediate Value Theorem for each value of ¢t between 0 and 1/n 7 there would be
points on these curves, and hence on the surface X, whose first coordinates are equal to t. However,
examination of the graph of sin(1/z) shows that the only point with first coordinate 2/( (2n+1) )
on this curve have second coordinates with absolute values > 1 and therefore such points do not
lie in W. If U is an arbitrary connected domain containing the origin, then it contains a disk of
some positive radius, and this disk contains all but finitely many of the points q,,. Since one cannot
join these points to 0 in X N W by smooth curves lying completely within the latter intersection,
one certainly cannot find such curves in the even smaller intersection > N U. Therefore 3 does not
satisfy the second condition required for a geometric surface.

Piecewise smooth surfaces

In Unit I we noted that there are many contexts in which it is necessary to consider curves
that are piecewise smooth, and likewise there are many contexts in which it is necessary to consider
piecewise smooth surfaces. In particular, such objects play important roles in multivariable integral
calculus, and perhaps the most obvious examples are given by the surfaces of cubes and cylinders.
For the sake of completeness, we note that formal definitions of piecewise smooth surfaces are given
in Section 7.1 of COLLEY (see Definition 1.3 on page 413) and in the following online file:

http://math.ucr.edu/~res/mathl10B/comments0701.pdf
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IT1.3: Tangent planes

(Lipschutz, Chapter 8)

Special cases of tangent planes are introduced in multivariable calculus courses, particularly
for surfaces that are graphs of functions with continuous partial derivatives. In order to specify a
plane, it is enough to specify a point on the plane and a line that is perpendicular — or normal —
to that plane; the latter can be given by vector that determines the perpendicular direction. For
graphs, the point is supposed to have the form (z, y, f(z,y) ), and the the direction vector is equal

to
(4%
ox’ Oy’

which we have seen before in another context. Accordingly, the first degree equation defining the
tangent plane at (a,b,, f(a,b)) is given by

z— f(a,b) = fz(a,b) - (x —a) + fy(a,b)-(y—0)
where f, and f, denote the partial derivatives with respect to x and y respectively.

There is an important characterization of tangent planes in terms of tangent lines.

PROPOSITION. If x is a regular smooth curve in the graph of a smooth function f, and
x(0) = (a,b, f(a,b)), then the tangent line to x at parameter value t = 0 lies in the tangent plane.
Conversely, if L is a line through (a, b, f(a,b)) that lies in the tangent plane, then there is a regular
smooth curve x in the graph of f such that x(0) = (a,b, f(a,b)) and the tangent line to the curve
at (a,b, f(a,b)) is L.

Proof. Suppose that x is a regular smooth curve with parametric equations given by
x(t) = (u(t), v(t), w(t)) .

Then the relation w = f(u,v) and the chain rule imply that w’(0) = f,(a,b)-u'(0) + f,(a,b)-0v'(0),
and it follows immediately by substitution that the tangent line to x at parameter value 0 lies in
the tangent plane to the graph at (a,b, f(a,b) ).

Conversely, every line L of the given type has a parametrization of the form
(avbaf(aab)) +t- (Ma Na P)

where —M f,(a,b)—N f,(a,b)+ P = 0. Choose r > 0 so that the open disk of radius r is contained
in the domain U on which f is defined. If we let

) r r
o mm{ B+ 1 N+ }
then for |t| < r¢ the parametrized segment (a + ¢ M, b+t N) lies in U, and the curve
x(t) = (a+tM,b+tN, fla+tM,b+tN))
lies on the graph of f. Furthermore, we know that
x'(0) = (M,N, fu(a,b)M + f,(a,b)N)
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and by the first sentence of this paragraph the third coordinate is equal to P. Therefore the tangent
line to x at parameter value ¢ = 0 is equal to L.m

One can also define tangent planes for regular parametrizations by a similar formula. Specif-
ically, if X is a parametrization for the surface that is defined on the connected domain U and
(a,b) € U, then the tangent plane at parameter value (a,b) is the unique plane through X(a,b)
whose normal direction is given by

0X oX
%(Cb,b) X %(Cb,b) .

If X is a graph parametrization with z given as a function f(z,y), then the the cross product above
reduces to the familiar vector
- fm (a7 b)

_fy(a7 b)
1

and therefore the definition of tangent plane for parametrizations reduces to the previous definition
if X is a graph parametrization.

The previous characterization of tangent planes generalizes as follows: If L is a line through
X(a,b) in the tangent plane, then every direction for vector for L is perpendicular to the cross
product of x,(a,b) and x,(a,b) and hence is a linear combination of these two vectors; for the sake
of definiteness, express a direction vector for L in the form M x,(a,b) + N x,(a,b). It follows that
the curve y(t) = X(a +t M, b+t N) has tangent vector y'(0) = M x,(a,b) + N x,(a,b). Thus L
is the tangent line to a curve through X(a,b) that lies in the image of the parametrized surface.
Conversely, if we are given a curve in the image of X, whose value at ¢ = 0 is equal to (a,b), by the
Inverse Function Theorem we know that for |¢| sufficiently small we may write the curve as

y(t) = X(u(t), v(t))
and therefore we have

YO = Db 0) + Db v (0).

Since this vector is perpendicular to the normal direction for the tangent plane, it follows that the
tangent line to y at parameter value ¢t = 0 lies in the tangent plane.m

The tangent planes described above may be described as all vectors of the form p + w, where
w is the tangent vector to a curve that goes through p and lies completely in the parametrized
surface. If P is an arbitrary plane containing the point p and its normal direction is IN, then the
set of all vectors having the form y — p is merely the set of all vectors that are perpendicular to N,
and hence they form a 2-dimensional subspace of R? that we shall call the space of tangent vectors
at p for the parametrization of the surface. By construction this subspace is either equal to the
tangent plane at p or else it is the unique plane through the origin that is parallel to the tangent
space; the first holds if O lies in the tangent plane, and the second holds if it does not.

ALTERNATE CHARACTERIZATION OF TANGENT PLANES. The tangent plane
to the parametrized surface X at parameter value (a,b) is the unique plane through p = X(a,b)
that is parallel or equal to the 2-dimensional subspace spanned by [D X(a,b)]e; fori =1,2.

This is essentially contained in earlier results, the point being that the direction vectors for lines
L in the tangent plane containing p all have the form [D X(a, b)]v;, where v is a linear combination
of e; and ey .m
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SPECIALIZATION TO LEVEL SETS. Suppose we have a surface that is defined as the set of
all solutions to the equation f(z,y,z) = 0, where f is a smooth function such that Vf(z,y,2) # 0
whenever f(z,y,z) = 0. The following result provides a very simple description of the normal
direction to the tangent plane.

GRADIENTS ARE THE NORMALS TO LEVEL SETS. Let f be as above, and suppose
that f(a,b,c) = 0. Then there is a local parametrization of the surface near (a,b,c) such that the
normal direction for the tangent plane at (a,b,c) is equal to V f(a, b, c).

Proof. In principle, it suffices to do this when the third coordinate of V f(a, b, ¢) is nonzero; the
other cases follow by interchanging the roles of the three coordinates.

If the third coordinate is zero, then there is a small connected domain V' containing (a, b, ¢)
such that the set of solutions for f(a,b,c) = 0 is given by the graph of some smooth function
z = g(u,v). Therefore the normal direction of the plane at (a, b, c) is given by the familiar vector
(—gu(a,b),—gy(a,b),1) . On the other hand, the Implicit Function Theorem implies that g, =
—fu/f. and g, = —f,/ ., and therefore the gradient is equal to the scalar product of the partial
derivative f,(a,b,c) with (—gy(a,b),—gy(a,b),1) .=

IMPORTANT SPECIAL CASE. For the sphere defined by the equation 22 + y? + 22 — 12 = 0,
the gradient of f(z,y,2) = 22 + y? + 22 — r? is equal to 2 (z,y, ), and this confirms a well known
property for the tangent planes to points on a sphere: They are perpendicular to the radial line at
the point of contact.

This preceding result describes the tangent plane in a manner that is independent of the choice
of parametrization; in particular, if all three coordinates of V f(a, b, c) are nonzero, then one gets
three distinct parametrizations locally by viewing each coordinate as the graph of a function in
the other two near (a,b,c). For an arbitrary geometric regular smooth surface ¥, it is natural to
expect that all regular local smooth parametrizations for the surface near a point p yield the same
tangent plane at p. The following result proves this is always the case.

COMPATIBILITY THEOREM. Let Y be a geometric regular smooth surface, let p € X, and
let ¥y and 1o be thickened regular smooth parametrizations at p. Let Q be the subspace of R?
spanned by the first two unit vectors. Then the images of Q under the maps D1)1(0) and D1i)5(0)
are equal.

It follows that the common image is the natural candidate for the 2-dimensional space of
tangent vectors to % at p.

Proof. Suppose that v; is defined on an open disk D(r;) of radius r; > 0 centered at 0. By
the continuity of the mappings ; and their inverses, we can find a real number s5 > 0 such that
s < r9 and 1o maps the open disk D(s2) into 11 (D(r1)). It follows that there is a smooth map

G : D(s3) — D(r1)

defined by G(w) = 97 (12(w). By construction it follows that v, °G = 5. Furthermore, by
the conditions on thickened parametrizations we know that the Jacobian of G is always nonzero,
G(0) =0, and

G(u,v,0) = (z(u,v), y(u,v), 0)

for suitable smooth functions x and y. The last formula shows that if q lies in Q, then [D G(0)](q)
also lies in Q; the converse also holds because [D G(0)](q) is invertible (hence the image of Q is a
2-dimensional subspace that we know is contained in Q, and therefore it must be equal to Q —
since the derivative is 1-1 nothing else can map into Q).
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If we apply the Chain Rule to ¥, °G = 1, it follows that
Di1(0) - DG(0) = D (0) .

Let q be an arbitrary vector in the subspace Q spanned by the first two unit vectors as above.
Since we have seen that q € Q implies [D G(0)](q) € Q, it follows that D5(0)q lies in the image
of Q under D11 (0). Conversely, suppose that we are given a vector of the form D, (0)p for some
p € Q. Then by the preceding paragraph we may write p = [D G(0)](q) for some q in Q, and
by the formula displayed at the beginning of this paragraph it follows that D11 (0)p = D12(0)q.
Therefore the two subspaces in question are equal as required.m

In fact, we have the following characterization of tangent planes to geometric surfaces which
can be stated without using local parametrizations.

COROLLARY. Let X be a geometric regular smooth surface, and let p € ¥. Then the tangent
space to ¥ at p is the set of all vectors of the form p + ~'(0) where ¥(t) is a smooth curve such
that its image lies entirely in . and v(0) = p.=

This corollary can be also derived without appealing directly to the Compatibility Property,
for the Normal Thickening Principle implies that implies that the space described in the corollary is
equal to the image of the wv-plane under the maps DX (ug,vg) and D®(ug,vg,0), where X(u,v) =

@(UO,’U0,0) =PpP.

II1.4: The First Fundamental Form

(Lipschutz, Chapter 9)

The First and Second Fundamental Forms are comparable to the curvature and torsion of a
curve in that surfaces are locally characterized up to geometric congruence by these forms just as
curves are so characterized by their curvatures and torsions. The two fundamental forms are also
important for numerous other reasons as well. In particular, the First Fundamental Form is
crucial to virtually all work in the differential geometry of surfaces and their higher
dimensional generalizations.

There are two definitions of the fundamental form, one for parametrizations and one for ge-
ometric surfaces. We shall begin with the latter and then indicate how it is given in terms of
parametrizations.

The definitions of the First and Second Fundamental Forms for a geometric surface both involve
an object that is generally called the tangent space in differential geometry.

Definition. Let S be a geometric surface in R?, and for each p € S let T}, (S) denote the 2-
dimensional vector space of tangent vectors to S at p; in the previous section we showed that this
2-dimensional subspace did not depend upon the choice of local parametrization. The tangent
space of S, denoted by T(S), is the defined to be the set

{(p,q)€R3xR3\p€S and q € Tp(S)}

In some sense this consists of all the tangent planes to points in R3, but we have spread things
out over six dimensions so that the analogs of tangent planes at different points do not have any
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vectors in common (in contrast, note that every point on the unit sphere z2 + y? + 22 = 1 lies on
more than one tangent plane; in elementary plane geometry, this corresponds to showing that there
are two tangents to a circle going through a given external point). Projection onto the first factor
defines a map 7g from T(S) to S, which corresponds geometrically to sending each tangent vector
to the “point of application.” Similarly, one can view projection ® onto the last three coordinates
as defining a map from T(M) to R? that sends a tangent vector to its associated “free vector” (no
point of application) in R3.

EXAMPLES. If S is the (regular) level set of of zeros for some smooth function f(z,y, z), then
T(S) is the set of all points
(z,y,2, X,Y,Z) € R*xR?

such that f(x,y,z) =0 and (X,Y, Z) is perpendicular to V f(z,y, z). If we specialize further to a
sphere defined by z2 4+ y? + 22 — r2 = 0 we see that the tangent space consists of all 6-tuples such
that (z,y, z) lies on the sphere and is perpendicular to (X,Y, 7).

Definition. Let T(?)(M) be the set of all ordered pairs of points (vy, vy) in T(M) x T(M) such
that 75(vy) = 7g(v2). The First Fundamental Form of S is the map Ig ending (vi, v3) to the
usual inner product (®(v1), ®(vy)) of two vectors in R,

Perhaps the simplest motivation for the First Fundamental Form is that it can be used to
describe arc lengths. In particular, if x is a parametrized smooth curve lying entirely on S and we
define a tangent lifting T'L(x) of x to T(M) by the formula

TLx)(w) = (x(u), x/(u))

then the length of the curve is given by
b 1/2
/ (IS(TLx(t), TLx(t)> dt .

In fact, this formula motivates the definition of the First Fundamental Form for parametrized
surfaces as follows:

Definition. Let X be a regular smooth surface parametrization defined on some connected
domain U. Then the First Fundamental Form of X is the function defined on U x R? x R? by the
formula

Ix(p;y, z) = (DX(u)|(y), [DX(u)](2))
where the right hand side denotes the inner product of two vectors in R?.

It follows immediately that if we have a curve c defined in U, then the length of X cc can
be computed either by means of the first fundamental form as defined here or by the previous
definition of the first fundamental form. For the sake of completeness, if the curve c is given in
parametric form by c(t) = (u(t),v(t) ), then by the Chain Rule then the tangent vectors to X °c

are equal to
0X d_u 0X d_v

oudt T v dt
and the length of the curve is given by to the following integral:

/b 0X du 0X dv
dt

udt T ov dt
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Classical references use somewhat different notation that we shall now describe. Consider the
square of the expression inside the length integral given above. Using the bilinear nature of the

inner product we may write this as follows:
OX|* [du\? 0X 09X\ du dwv OX* [du\?
. — + 2 == | == + |= — dtdt
ou dt ou Ov dt dt ov dt

Using the standard formal convention of setting

dw
d = —dt
v di

we may rewrite this expression in the form
E(u,v)dudu + 2F(u,v)dudv + G(u,v)dvdv
where the smooth functions F, F' and G are defined by

0X 90X 0X 90X o0X 90X
E=%aw '~ @waw 7 %

This is the classical formula for the First Fundamental Form.

Digression: Diagonalizing symmetric matrices

The First Fundamental Form of a surface in R® is essentially a special case of a geometrical
structure called a Riemannian metric. Before describing such objects formally, we shall briefly
review some important facts about symmetric square matrices which are closely tied to the definition
of a Riemannian metric. These will play an extremely important role throughout the rest of this
course.

PROPOSITION. If A is a symmetric n X n matrix and X,Y are n x 1 column vectors then we
have
AX-Y = AY - X

where “” denotes the dot product.

Sketch of proof. Direct calculation and the symmetric matrix identity a; ; = a;; show that
both of the displayed expressions are equal to ) a; jz;x;m

THEOREM. If A is a 2 x 2 symmetric matrix over the real numbers, then A has an orthonormal
basis of eigenvectors.

In our setting, an eignevector for A is a nonzero 2 x 1 column matrix X such that AX = cX
for some real number c; as usual, ¢ is called an eigenvalue for A.

Proof. We recall an important fact from linear algebra: For a given real number c, there is a
nonzero vector X such that AX = ¢X if and only if A — cl is not invertible, or equivalently if and
only if ¢ is a root of the characteristic polynomial x o(t) = det(A — tI).

(& )
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for suitable real numbers a, b, d. We claim that the roots of the characteristic polynomial x 4(t) are
real. Direct calculuation shows that

xa(t) = t* — (traced)t + (detA) = t* — (a+b)t + (ab—d?)
and thus the roots of this polynomial are real if and only if the discriminant
(a+b)* — 4(ab — d?)
is nonnegative. But direct calculation shows that the latter equals
a> — 2ab + b® +d* = (a—b)? + d&*

and the latter is nonnegative because it is a sum of squares.

The final step in the proof is to verify that A has an orthonormal basis of eigenvectors. There
are two cases depending upon whether the characteristic polynomial has one or two roots. If there
is only one root then the discriminant is zero, which means that (a — b)? + d? = 0, and the latter
holds if and only if @ — b = d = 0. This implies that A = ¢l for ¢ = a = b, and the existence of an
orthonormal basis of eigenvectors is obvious because every nonzero vector is an eigenvector.

Assume now that the characteristic polynomial has two distinct roots ¢; and ¢o, and for ¢ = 1,2
let X; be a nonzero vector such that AX; = ¢; X;. If we apply the identity in the preceding result,
we obtain the following;:

AX1 . X2 = Cle . XQ 5 AX1 . X2 = X1 . AX2 = X1 . 62X2 = CQXl . XQ

Combining these equations, we see that c1(X; - X2) = c2(X; - X2). Since ¢ # co it follows that
X1 - X5 =0, so that the nonzero vectors X; and Xy are orthogonal. If we multiply these vectors by
the reciprocals of their lengths we obtain a pair of orthonormal vectors in the space of 2 x 1 column
matrices which are also eigenvectors. Since the space of 2 X 1 column matrices is 2-dimensional and
nonzero orthogonal vectors are linearly independent, it follows that our orthonormal set is a basis.n

Abstract Riemannian metrics

In the middle of the nineteenth century G. F. B. Riemann observed that certain generalizations
of the First Fundamental Form had were strongly connected to other central problems in geometry
including the subject of Noneuclidean Geometry. In simplified form, his insight was to consider
arbitrary expressions of the form

g(u,v) = E(u,v)dudu + 2F(u,v)dudv + G(u,v)dvdv

where E, F' and G are smooth functions on some connected domain U such that the real symmetric

" s < (B ) (e o)

(where g12 = g¢21 in the second matrix) is said to be positive definite in one of the following
equivalent senses:

(1) For every nonzero vector x the inner product (M (u,v)x, x) is positive.
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(2) The eigenvalues of M(u,v) are all positive real numbers.
(3) The diagonal entries and determinant of M(u,v) are all positive.
This type of structure is called a riemannian metric.

Given a riemannian metric defined on a connected domain U and a regular smooth curve
x(t) = (u(t), v(t) ) in U, then one can define the length of x with respect to this riemannian metric
by the formula

/ \/<M(u(t),v(t) )x!(t), x'(t)) dt

because positive definiteness implies that the expression inside the square root sign is always posi-
tive. The classical Noneuclidean Geometry developed by Bdlyai, Lobachevsky and others can then
be described by taking U to be the open unit disk about the origin in R? and the riemannian metric
equal to the so-called Poincaré metric:

drdx + dydy

(1— 22 — )2
To illustrate these ideas, we shall compute the Poincaré length of the closed segment [0, 7] on the
z-axis, where 0 < r < 1. The formulas imply that the length is given by the integral

| 1 1+r
——dt = -1 .
/0 1— 2 Og<1—7‘>

Notice that this expression goes to +o0o as r — 1.

Shortest curves joining two points. In this and other systems involving riemannian metrics,
one basic question is to determine the shortest smooth, or piecewise smooth, curve joining two
points. For the Poincaré metric there are two cases.

(I) If one has points x and y in U such that the line joining them contains the origin, then
the shortest curve is the ordinary line segment joining them. However, the length of this
curve with respect to the Poincaré metric will NOT be equal to its Euclidean length.

(IT) If O is not on the line joining x and y, then the shortest curve is a circular arc whose
endpoints are x and y, where the circle K containing the arc meets the unit circle z2 41?2 =
1 orthogonally; i.e., for each of the two points where K and the unit circle meet, the tangent
lines to K and the unit circle at the common point are perpendicular to each other. Proving
this is definitely not a trivial matter and requires methods beyond the scope of this course.

Here are some online references regarding Noneuclidean Geometry:
http://mathworld.wolfram.com/PoincareHyperbolicDisk.html
http://mathworld.wolfram.com/HyperbolicGeometry.html

Incidentally, relativity theory uses a generalization of riemannian metric in which the positive
definiteness condition is replaced by something weaker. Perhaps the most basic example is the
Lorentz metric given by

dtdt — drdr — dydy — dzdz .

Riemannian metrics are basic examples of a common theme in more advanced studies of differ-
ential geometry; the main idea is summarized in the following passage from the Preface to O’NEILL:

Every surface has a differential and integral calculus of its own, strictly analogous
to the familiar calculus of the plane.
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For example, at every point of a surface one has a 2-dimensional vector space of tangent vectors,
and one can devise a meaningful definition of smooth mapping between two smooth surfaces. Some
aspects of this principle will play a significant role in later units of these notes.

III.5: Surface area

(Lipschutz, Chapter 9)

This is mainly a review of material covered in multivariable calculus courses. Two textbook
references are to Sections 13.5 and 14.5 on pages 971-977 and 1051-1060 of Calculus (Seventh
Edition), by Larson, Hostetler and Edwards, and also Section 6.3 on pages 382-395 of Basic Mul-
tivariable Calculus, by Marsden, Tromba and Weinstein. Here are a couple of online references
which also cover the topic:

http://math.ucr.edu/~res/math10B/comments0701.pdf
http://math.ucr.edu/~res/math10B/discoballs.pdf

The basic idea behind surface area formulas is to find approximations using areas of pieces
of various tangent planes. For example, suppose we have the graph of a function z = f(x,y) and
we want to compute the area of the portion of the surface lying over some rectangle in the plane
whose sides lie on lines that are parallel or equal to the coordinate axes. One first cuts the large
rectangle into many smaller rectangles, then chooses a point (z,y) in each rectangle, and next for
each point one finds the area of the portion of the tangent plane (z,y, f(x,y)) which lies above
the small rectangle containing the original point (x,y), and finally one adds up all these areas
to get an approximation to the surface area we wish to compute. If we take increasingly larger
decompositions into smaller and smaller rectangles and let the maximum lengths and widths go to
zero, the one expects the limit to be the surface area, and this is indeed the case. A more detailed
discussion of this appears on pages 306-307 of O’NEILL (see also Section 2-8 of DO CARMO; most
multivariable calculus texts also discuss this topic at some length).

Important cautionary note. In view of the standard description of arc length of a
“reasonable” curve I' as the limit of broken line curves that are inscribed in I', it is natural to ask
is surface area could be defined more simply by considering polyhedral pieces that are inscribed
in surface and defining the area of the surface to be the limit of the areas of such polyhedral
approximations. However, this approach does not always yield the expected answer, even
in simple cases like the lateral portion of the cylinder defined by z2 + 3> = 1 and
0 < z < 1. A discussion of this issue, including some pictures, is contained in the file surface-
area-critique.pdf, which is taken from the 1946 edition of Widder, Advanced Calculus (a Second
Edition also exists); the specific reference is Subsection 7.4.

Standard special cases. For a surface parametrization given as the graph of a smooth
function f, the area of the portion of the surface over a reasonable subset A in the plane is given
by the integral

/A VI A@ 0 T Falwy) de dy

where f; and fy denote the partial derivatives with respect to the first and second variables. If we
are given a regular 1-1 surface parametrization X and A is a reasonable subset of the connected
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domain U on which X is defined, then the standard formula for the area is given by

// | Xy X X,y | dudv
A

where X, and X,, denote the partial derivatives of X. The area can also be expressed in terms of
the coefficients of the First Fundamental Form as follows:

Area = /\/EG—FQdudU
A

Derivation. This follows directly from the standard length formula
|Xu X Xv|2 = |Xu|2 : |}(v|2 - |Xu : Xv|2

and the definitions of the functions F, I’ and G in the preceding section of these notes.m

The preceding discussion shows how to find the areas of portions of a surface but it does
not directly address the question of finding the area of the entire surface. In order to do this,
one needs to decompose the surface into disjoint or nonoverlapping pieces, find the areas of the
different pieces separately, and then add the results together. In many cases one can also simplify
the computations by using parametrizations that are well behaved almost everywhere; making this
term precise mathematically is beyond the scope of this course, but some simple examples include
cases where the bad behavior is limited to some finite set of points or some finite collection of
regular smooth curves. For example, if one wants to compute the surface area of the unit sphere,
one can take the spherical coordinate parametrization defined for 6 € [0,27] and ¢ € [0,n]. This
parametrization is not 1-1 on boundary points and Xy x X4 vanishes at some boundary points,
but it is a regular smooth 1-1 parametrization away from these boundary points and thus gives the
area for, say, the portion of the sphere not including the semicircular meridian through the north
and south pole and the point (1,0,0). The meridian by itself has zero area, and this is why there
is no problem using the formula even though things do not work well on the boundary.

Areas associated to riemannian metric. If we are given a riemannian metric g defined on an
open region U in R?, we can use the First Fundamental Form to define areas for a reasonable subset
A of U by generalizing the formula derived above:

Area(A) = //A \/mdUd”

In particular, if U is the open unit disk and ¢ is the previously introduced Poincaré metric for

noneuclidean geometry
drdx + dydy

(1— 22 —y2)2

we can compute the hyperbolic area of the closed disk A, defined by z2 4+ y? < 72 < 1 as follows:
The coefficients g; ; are given by

1

1= 2 = T ey g2 = 921 = 0

and hence the area of A, is given by

1
//AT —(1—x2—y2)2d$dy'
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We can compute this by converting to polar coordinates, obtaining the equivalent integral

27 r t 1 r 7,,2
o amm e = e, < Tie

Notice that this goes to co as r — 1.

ITI1.6 : Curves as surface intersections

(No suitable text reference)

Given two distinct planes in R® that have at least one point in common, a standard axiom or
theorem in 3-dimensional Euclidean geometry states that their intersection is a line. Specifically, if
the point a lies on both planes P and Q and normal vectors to these planes are given by p and q
respectively, then the line in question consists of all vectors expressible as a sum a+t (p X q), where
t is some real number; examples are discused on page 755 of Larson, Hostetler and Edwards). There
are many familiar situations in which the intersection of more general surfaces are also curves, and
some of these will play a key role in the definition of curvature for surfaces. Therefore we shall
spend some time discussing the realizations of curves as intersections of surfaces.

If 3 is a sphere and p is a point on X, then for almost every plane Q passing through p the
intersection of ¥ and Q is a circle, the only exception being when Q is the tangent plane atp.

Consider next the intersection of a sphere whose radius is b > 0 and whose center is the origin
with a cylinder H whose axis is the z-axis. If the radius a of this cylinder is less than b, then the
intersection consists of the two circles with parametric equations

(a cos t, asint, +b>—a?)

which are the latitude lines on X that lie cos™!(a/b) radians above the equatorial circle formed
by the intersection of ¥ with the xy-plane. The point of this example is that the intersection is
not one curve but two curves, and it is meant to suggest that in general we should first consider
the intersection of two surfaces locally. In fact, we shall generally restrict attention to the local
situation.

Returning to the intersection of a sphere and a plane, or the intersection of two distinct planes,
elementary calculations show that the normal lines for two such surfaces at points of intersection
are always distinct (except when one has the tangent plane to a point on a sphere). Furthermore,
the same thing happens at the intersection points of the sphere and cylinder that were discussed
above. Alll these examples serve as motivation for the following general result, which shows that
the intersection of two level surfaces ¥; and Y is locally a curve near a point provided the tangent
planes to X1 and Y5 and the common points are distinct.

TRANSVERSE INTERSECTIONS OF LEVEL SURFACES. Let f and g be smooth
functions defined on a connected domain U, let 3(f) and X(g) denote their zero sets, and suppose
that Vf and Vg are nonzero at all points of ¥(f) and X(g) respectively. Suppose that p lies on
Y(f)NX(g) and that V f(p) and Vg(p) are linearly independent (i.e., the intersection is transverse
at p). Then there is an open domain U containing p such that UNY(f)N3(g) is a regular smooth
curve.
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Another example. Consider the surfaces of revolution formed by rotating the standard

circle 22 4 y? = 4 and ellipse
2

T
— + (y-1)%*=1

g T W1

about the y-axis. The intersection of these surfaces splits into two pieces, one of which consists of

the point (0,2,0) and the other of which is the circle parametrized by

@COSG 1 @sinﬁ
4 47 4 '

At points of the latter the tangent planes to the two surfaces are distinct, but at (0,2,0) they are
not. This illustrates that the intersection of two surfaces might be transverse at some points but
not necessarily at others.

Proof of transverse intersection property. This will be a consequence of the Implicit Function
Theorem. Let

H(x,y,z) = (f(x7y?z)7 g(Z’,y,Z))

so that H is a smooth function and D H is the 2 x 3 matrix whose rows are the gradients of f and
g. Since the gradients are linearly independent at p, it follows that D H(p) has rank 2. Therefore
there is a 2 x 2 submatrix of D H(p) whose determinant is nonzero. It will suffice to consider
the case where the determinant of the square submatrix constructed from the last two columns is
nonzero; the other cases can be handles similarly by interchanging the roles of the variables.

Express p in coordinates as (a,b,c). We then know there is an open interval Uy containing a
and a smooth 2-dimensional vector valued function k on Uy such that k(a) = (b, ¢) and for all x € Uy
and (y, z) close to (b, ¢), say in some connected domain Vj containing (b, c) we have H(z,y,z) =0
if and only if (y,2) = k(z). It follows that the intersection of the surfaces with Uy x Vp, which
is just the intersection of the latter with the zero set of H, is equal to the image of the regular
parametrized curve whose first coordinate is given by ¢ and whose second and third coordinates are
given by k(t).m

Note. One can describe the tangent line to this curve at p in terms of f and g; specifically, it
is the line through p whose direction is given by V f(p) x Vg(p). This follows because the tangent
vector at p is perpendicular to both gradients.m

COMPLEMENT. The same result holds for arbitrary surfaces X1 and Y9 provided the tangent
planes at a common point p are distinct.

The proof of this depends upon the following observation.

LEMMA. IfY is a geometric surface and p € X, then there is a connected domain U containing
p and a smooth real valued function f : U — R such that the gradient of f is nonzero at all points
in the zero set of f, and this zero set is equal to X NU.

Proof of Lemma. By the definition of a geometric surface there is a smooth 1-1 map 1 defined
on some open disk centered at 0 in R® such that (7) the map v sends O to p, its Jacobian is nowhere
zero, and its image W is an open connected domain containing p, (i) if 7 is the radius of the disk
on which v is defined, then the set W N X is the set of all points of the form v (u,v,0) where
u? + v? < r2. Let ¢ be the inverse to 1, and let ¢3 be the smooth map on R® which sends each
point to its third coordinate. Then the zero set of the function cz°y is equal to X N U, so it is
only necessary to verify that the gradient is nonzero at all such points. However, the gradient of
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this map is given by the third column of the matrix Dy(x), and since we know that this matrix is
invertible for all x € W (by the corresponding fact for D)), it follows that the gradient is indeed
nonzero as required.m

Proof of Complement. Since the conclusion is local, it suffices to take the intersections of the
surfaces with some open disk containing p, and by the preceding result we can choose the radius of
this disk small enough so that the two surfaces are level sets. Furthermore, the conditions on the
tangent planes imply that the gradients of the associated functions must be linearly independent at
p. Therefore we may apply the transverse intersection property to show that locally the intersection
of the two surfaces is given by a regular smooth curve.m

The preceding results yield the following ”intuitively obvious” fact:

COROLLARY. Let X be a geometric surface, let p € 3, and suppose that Q is a plane through
p that is not the tangent plane to the surface at p. Then there is a connected domain U containing
p such that >N QN U is a regular smooth curve through p.m

Finally, we shall show that every regular smooth curve can be realized locally as the inter-
section of two surfaces. There are corresponding global statements, but their proofs require more
mathematical tools than we currently have or wish to develop in this course.

REALIZATION PRINCIPLE. Let x denote a regular smooth curve defined on a closed interval
[—h, h|such that x(0) = p. Then there is a connected domain U containing p and two geometric
surfaces 1 and Yo such that X1 N Yo NU is equal to the intersection of U with the image of p.

Proof. A regular smooth curve is locally 1-1, so we can assume that A > 0 is so small that x is
globally 1-1 on the interval [—h, h].

Since x’(0) is nonzero, one can find vectors y and z such that x’(0), y and z form a basis for
R3. Consider the smooth map F defined by

F(t,u,v) = x(t) + vy + vz.

By construction DF(0,0,0) is the matrix whose columns are given by the basis x’(0), y and z and
therefore this derivative matrix is invertible. Applying the inverse function theorem, we can find
an open disk U centered at 0 on which F has a smooth inverse and nonzero Jacobian; let » > 0 be
the radius of this disk, where we choose r < h. By construction, if L denotes the x-axis, then the
image of LN U is a piece of the curve x.

We claim that if we shrink the radius sufficiently we can find a subdisk Uy C U such that
F(Up) does not contain any other points on the curve aside from those that lie in the image of
L NUy. Consider the images of the closed intervals [—h, —r] and [r, h|. Neither image contains 0,
and by continuity the distance from points on these curves to 0 assumes some positive minimum
value, say m. If we take Uy to be the disk of radius s centered at 0, where 0 < s < m, then it will
follow that F(UyN L) is equal to the intersection of Uy with the image of the original curve defined
by x.

Finally, if we let ¥; and Y5 be the images of the intersections of the xy-plane and xz-plane
under F and set W = F(U), then it follows that ¥; and ¥s are surfaces and the intersection
o1 N Yo N U is just the portion of x that lies in Uy.m
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IT11.7 : Map projections

(No suitable text reference)

The theory of mapmaking provides many examples of parametrizations for the unit sphere that
are 1-1 on the regions where they are defined (and points in these regions are marked to indicate
the locations of their images on the sphere). Of course, an important objective of mapmaking is to
minimize the distortion that occurs when one maps a flat surface onto a curved one, so the most
useful examples have special properties reflecting this goal. For example, in some cases straight line
segments in the plane will correspond to great circle arcs on the sphere, in other cases the angle
between certain curves in the plane will be equal to the angle between their images on the sphere
(for example, if one curve is a latitude or longitude lines), and in still others one wishes to minimize
or at least strictly control the distortions in areas that occur when one takes a region in the plane
and maps it to a piece of the sphere. One standard and example is the familiar map projection due
to G. Mercator (1512-1594); a picture of this projection can be found on page 11 of the document

http://math.ucr.edu/~res/math153/history08.pdf

and a more detailed mathematical discussion is given in Section 3.7 of D. V. Widder, Advanced
Calculus, Second Edition, Dover, New York, 1989, ISBN: 0-486-66103-2). Explicit formulas relating
the xy coordinates to the latitude A and longitude ¢ can be found at the following online site:

http://mathworld.wolfram.com/MercatorProjection.html

The Mercator projection is very good near the equator, but it becomes extremely distorted as one
approaches the north and south poles. For example, in the Mercator projection Greenland appears
to be larger than Australia, but in fact Australia is more than 3% times as large as Greenland. A
drawing to compare the areas of these land masses and further examples of Mercator distortion are
given in the following online reference;

http://en.wikipedia.org/wiki/Mercator projection

One way of creating a more accurate map near the poles is to use stereographic projection;
this mapping method was essentially known to Greek mathematicians like Hipparchus of Rhodes
(c. 190 B.C.E. — ¢. 120 B.C.E.) more than 2000 years ago and it probably even dates back to ancient
Egyptian mathematics. The stereographic projection from the North Pole N is defined at every
point P of the sphere except the North Pole itself, and it sends P to the point where the line NV
and P meets the tangent plane to the South Pole (see stereographic0.pdf). The explicit formula
for stereographic projection at a point (z,y,2) € S? is given by

£ Y
Fa,y.2) = <1—z’1—z>'

If we write F'(z,y, z) = (u,v), then one can solve for (z,y, z) in terms of (u, v); this parametrization
is discussed in the exercises.

Finally, many other elementary aspects of mapmaking theory are covered from a mathematical
viewpoint in the following recent book, which is written at the undergraduate level:

T. G. Freeman, Portraits of the FEarth: A Mathematician Looks at Maps, American Math-
ematical Society, Providence RI, 2002, ISBN 0-8218-3255-7.
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IV. Oriented surfaces

Given a surface ¥ and a point p on X, it is meaningful to talk about the normal line to X at
p which is simply the unique line that is perpendicular to the tangent plane at p. Each such line
may be viewed as having two distinct senses of direction, and an orientation is basically a way of
specifying a sense of direction for every normal line to the surface. The theory of surface integrals
in multivariable calculus requires the use of orientations, and Stokes’ Theorem is a basic result
for which orientations of surfaces are absolutely necessary; this is particularly reflected by the fact
that the result does not hold for the Mobius strip. Orientations also play an important role in
describing the curvature properties of a surface, and curvature was originally defined for surfaces
using orientations. Although many basic curvature properties do not depend upon orientations,
the original approach to curvature using orientations provides numerous important insights that
are often difficult at best to understand from other approaches.

IV.1: Normal directions and Gauss maps

(Lipschutz, Chapter 9)

If ¥ is a surface and p is a point of X, then the space of tangent vectors to X at p is a
2-dimensional subspace of R®. The orthogonal complement of this subspace is the 1-dimensional
space of normal vectors. At each point p there are precisely two normal vectors that have unit
length.

Definition. If ¥ is a surface, then an orientation of ¥ is a continuous map N : ¥ — R? (i) such
that for each p € ¥ the vector N(p) is a normal vector to p with unit length, (i7) for each p there
is an open disk D centered at p on which N extends to a smooth map from D to R>. A surface
> is orientable if one can define an orientation for ¥, and if N is an orientation for 3 we say that
(3,N) is an oriented surface (or surface with orientation).

Clearly orientations are not unique; in particular, if IN is an orientation for ¥ then so is —IN.
Furthermore, if one considers the pair of parallel planes defined by the equation z? = 1, then one
clearly has at least two choices for the orientation on each plane (namely, take N = +ej3, where
the signs can be chosen independently on each of the planes). However, the following result shows
that locally there are only two possible orientations for a surface.

PROPOSITION. Let X be a surface, let p be a point of X3, and let A and B be orientations of
>.. Then there is an open disk U containing p such that B=+A on U N X.

Proof. For each point q € ¥ we know that B(q) = = A(q). In particular, for each q this means
that either |B(q) F A(q)| = 0 or else |B(q) ¥ A(q)| = 2. Suppose that B(q) = A(q). Then by
continuity we know there is some small disk D containing p such that [B(q) F A(q)| < 1 for all
q in ¥ N D. Since there are only two choices for the distance |B(q) F A(q)| and one of them is
greater than 1, it follows that the distance must be zero on all such points, so that B is equal to A
on ¥ N D. Similarly, if B(q) = —A(q), then there is an open disk V' centered at p such that B is
equal to —A on XN D.m
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There are two fundamental examples of orientable surfaces for which orientations are easy to
construct.

LEVEL SURFACES. Suppose that ¥ is the zero set of a smooth function f defined on a
connected domain U, where as usual we assume that V f is always nonzero on Y. In this case we
know that the gradient of f is perpendicular to the 2-dimensional space of tangent vectors, and
therefore we may define an orientation by the formula

1
N(p) = V7o) -Vf(p) -

The condition that N extend to a smooth disk about each point is automatically satisfied because
one can use the formula to define N on some open disk containing p on which the gradient is
nonzero.m

SURFACES WITH GOOD GLOBAL PARAMETRIZATIONS. Suppose now that there is a 1-1
regular parametrization X for X that is defined on some connected domain U. Let

p) = To(st) x P(st)

where (s,t) € U is the unique point such that X(s,¢) = p, so that Q(p) is a nonzero vector that is
perpendicular to the tangent plane at p. Then we may define an orientation by the formula

To verify the extension condition, let ® be the normal thickening described in Section III.2, take

0o 0P

=30 % &

note that ) is nonzero on an open disk containing p, and as before take N to be € divided by its
length.

A nonorientable example. The standard example is the Mdbius strip; the usual way of
explaining nonorientability is by studying the behavior of a unit normal vector to the surface as
it travels around the central circle in the surface; as one goes around this circle once, the normal
vector moves continuously from itself to minus itself. We can make this mathematically precise
using the parametrization at the end of Section II1.2. The central circle in the Mobius strip is just
the circle in the zy-plane with parametric equations (cost,sint,0) for ¢t € [0, 27|, and the curve
with parametric equations

<— cosusin(u/2), — sinusin(u/2), cos(u/2)>

defines a unit normal to the surface at z(t) for every choice of t. Direct computation shows that
y(0) = (0,0,1) and y(27) = (0,0,—1). In order to prove that the Mdbius strip is not orientable,
it suffices to show that this sort of thing cannot happen if one has an orientation for a surface.

PROPOSITION. Let (X,N) be an oriented surface, let z be a regular smooth closed curve
defined on [0, 27| and taking values in X, and let y be another smooth closed curve such that y(t)
is a multiple of N(z(t) ) for all t, with y(0) = N(z(0)) and y(2r) = —N(z(2x) ). Then there is a
point « € [0, 27| such that y(a) = 0.
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Proof. The hypothesis that that y(¢) is a multiple of N(z(¢)) for all ¢ and a standard inner
product formula imply that

and therefore the coefficient
f@) = (y(t), N(z(t)))

is a continuous function of ¢. By construction we have f(0) = 1 and f(27) = —1, and therefore the
Intermediate Value Theorem implies the existence of some « € (0,27) such that f(a) =0.m

The Gauss map

The orientation map for an oriented surface is also known as the Gauss map. This map will
play an important role in the rest of the course.

It is instructive to look at some examples. First of all, if ¥ is a plane, then the normal lines at
different points are all parallel to each other, and in fact if one views a plane as the set of points
satisfying an equation of the form

Ax + By + Cz = D

where (A, B, C) # (0,0,0), then the natural choice for the Gauss map is the normalized gradient

1

and accordingly the Gauss map is constant in this case. On the other hand, if one takes the sphere
defined by the equation x2+y?+ 22 —1 = 0, then the normalized gradient of the function at (x,y, 2)
is simply (z,y,2). In this case the image of the Gauss map is the entire sphere. Frequently the
image of the Gauss map is somewhere between these two extremes. For example, if we consider
the circular cylinder defined by the equation 2 + 2 — 1 = 0 then the normalized gradient at an
arbitrary point (z,y, z) of the cylinder is (z,y,0), and the image of the Gauss map is the circle in
the zy-plane defined by the equation 22 4+ y> — 1 = 0. As a final example consider the parabolic
cylinder y — 22 = 0. The gradient at a typical point of this surface has the form (—2z, 1,0), and
the corresponding set of unit vectors consists of all points on the unit semicircle in the xy-plane
defined by the equation 22 + y? — 1 = 0 and the inequality y > 0.
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IV.2: The Second Fundamental Form

(Lipschutz, Chapter 9)

The First Fundamental Form carries an enormous amount of information about the geometry
of a surface. However, it does not completely characterize surfaces up to rigid motions in the sense
of Section 1.5 (i.e, the existence of a map ® as in that section such that one of the surfaces is locally
the image of the other under ®). To see this, consider the plane defined by the equation =1 and
the cylinder defined by 2 + % = 1 at the point (1,0,0). Clearly these surfaces are not equivalent
under a rigid motion. However, if one takes parametrizations near (1,0,0) for surfaces of the forms
A(u,v) = (1,u, v) and B(u,v) = (cosu, sinu, v) one obtains the same First Fundamental Form
in terms of u and v; in each case one has I = dudu + dvdv. Physically, this reflects the fact
that we can roll a flat piece of paper onto a portion of a cylinder without stretching or tearing
it. Thus it is clear that we need additional data in order to characterize surfaces locally up to
rigid motions. The objective of this unit is to investigate the classical description of this additional
information using the Second Fundamental Form. As the name indicates, this is similar to the First
Fundamental Form in some key respects, but as one might expect from the organization of these
notes, its formulation requires an orientation for the surface and its definition involves the Gauss
map.

Suppose that (X, N) is an oriented surface in R3. We would like to define a derivative for this
map D N such that for each p € ¥ we have a linear transformation D N(p) on the tangent space
T5(X) and in an appropriate sense D N(p) is a smooth function of p. Formally, one can achieve
many of these goals by taking a smooth extension N# of N on some open disk U containing p;
given a vector v in T, (X) we can then provisonally define

[DN(p)](v) = [DN*#(p)](v).

The smoothness of this map is immediate, but it is necessary to check that the right hand side
does not depend upon the choice of extension N# and that it sends tangent vectors at p to tangent
vectors at p. We shall verify these in order.

LEMMA 1. The right hand side of the defining equation for [D N(p)] (v) does not depend upon
the choice of extension N#.

Proof. Let y be a regular smooth curve in ¥ such that y(0) = p and y’(0) = v. Then the Chain
Rule shows that the curve

z(t) = Ney(t) = N¥ey(t)

)
is also a smooth curve and [N°y]'(0) is equal to the right hand side of the defining equation for
[DN(p)] (v). Since z'(0) = [Ne°y]'(0) does not depend upon the choice of extension, this proves
that the definition for [D N(p)] (v) also does not depend upon the choice of extension.m

LEMMA 2. Ifv e Ty(X) then [DN(p)] (v) also lies in Tp(X).
Proof. We shall use the notation of the preceding lemma, so that

[DN(p)l (v) = 2'(0)

where z = Ney. It suffices to show that z’(0) is perpendicular to N(p). For each q € ¥ the
normal vector N(q) has unit length by construction, and therefore we know that |z(t)|2 = 1. If we
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differentiate this and apply the Leibniz Rule for dot products of vector valued functions, we see
that p

0 = EIZ(@!2 = 2(z(t), 2'(1))

and if we evaluate the inner product on the right hand side at ¢ = 0 we see that it is equal to

(N(p), [DN(p)] (v))

and therefore we conclude that this inner product vanishes; i.e., the vector [D N(p)] (v) is perpen-
dicular to N(p).m=

If we are given a local parametrization of X near p by some regular smooth parametrization
X, defined on some connected domain U, then we can use the local formula for N to describe the
map

(D (N“X)] (u.0)

as a linear transformation on R? using the identity

1 0X o0X
NeX = 7<1ength>‘<%> X(%)

but we shall find a better way to compute this map in terms of local coordinates.

Standard terminology. In textbooks and elsewhere the map —D N(p) (note the sign!!)
is often called the Weingarten map or, particularly as in O’NEILL, the SHAPE OPERATOR for
the oriented surface (3, IN). The reason for the term in O’NEILL is related to the Fundamental
Theorem in Local Surface Theory, which is discussed in Section V.2 of the notes. The appendix to
this section studies this Shape Operator in further detail.

Important special cases. At each point p the space of tangent vectors at p has a basis
given by the partial derivative vectors X, and X,. By construction, the Weingarten map or Shape
Operator at p is the unique linear transformation which sends the tangent vectors X, and X, at
p to —N,, and —NN,, respectively. Lemma 2 implies that the latter two vectors also lie in the space
of tangent vectors at p. It follows that the Weingarten map or Shape Operator sends a general
tangent vector aX, + bX, to —alN, — bN,.

The Second Fundamental Form is defined in terms of the Weingarten map or Shape Operator
as follows:

Definition. Let T (X) be the set of all ordered pairs of points (v1, v2) in T(X) x T(X) such
that 75(v1) = 7= (v2), and let x; be the second coordinate of v;. The Second Fundamental Form
of ¥ is the map Iy on T (X) sending (v1, v2) to

— ([DN(p)] (x1), x2)

(note the sign!!!) where as usual (..., ...} denotes the usual inner product of two vectors in R?

At this point it is helpful to understand what this means for the basic examples we discussed
in the previous section.

Examples. 1. If X is a plane and N is some orientation, then N is parallel to the normal
direction for the plane at all points and therefore N is at least locally constant by the observations
in Section IV.1. In fact, one can take the extension N also to be constant, and it follows that in
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this case D N(p) = 0 for all points p on the plane, and therefore the Second Fundamental Form is
also zero at every point of the plane.

2.  In contrast, if X is the sphere and N is the standard outward pointing orientation then
N(p) = p and therefore DN(p) = I for all points p on the sphere; in this case the Second
Fundamental Form is the negative of the First Fundamental Form. Of course, if we would replace
N by its negative, then the Second and First Fundamental Forms would be equal.

3. Finally, suppose that X is the cylinder defined by 22 + y? = 1. In this case N(xz,y,2) =
(x,y,0) and the tangent space at (x,y,z) has an orthonormal basis given by (—y,z,0), which is
the tangent vector to the circle a(f) = (cos @, sinf, z) at (x,y, z), and (0.0.1), which is the tangent
vector to the vertical line b(t) = (z,y,t) at (x,y,z). Direct computation shows that these two
vectors are eigenvectors for D N(z,y, z) and the associated eigenvalues are 1 and 0 respectively. It
follows that the Second Fundamental Form is given by

— ([DN(p)] (pa’ + ¢b’),ra’ + sb’)

and by the observations in the preceding sentences this is equal to — pr. In particular, the Second
Fundamental Form vanishes for some but not all pairs of vectors. At the beginning of this section
we mentioned that the First Fundamental Forms for the plane and the cylinder were the same, but
we have now seen that their Second Fundamental Forms are different.

Computational formulas

We would also like to understand the behavior of the Second Fundamental Form for the
hyperboloid of one sheet given by the equation 22 + y? — 22 — 1 = 0, and in order to do this we
need to follow through on our earlier comment about developing a way of computing DN and
the Second Fundamental Form in a efficiently using a regular smooth parametrization X. The first
point is to observe that the Second Fundamental Form is completely determined by its values for
pairs of tangent vectors such that each is either X, and X, (this includes cases where both vectors
in the pair are the same and where the two vectors are different). This is true because

IIpX, + ¢X,), rX, + sX,) =

priII (X,, X,) + psII (X,, X,) + ¢rIl (X,, X,) + ¢sII (X,, X,) .
We then have the following important formulas:

BASIC VALUES FOR SECOND FUNDAMENTAL FORMS. Suppose we are given a
regularly parametrized smooth surface Y. with parametrization X, and assume that the normal
vector function is given by N. Then the following identities hold for the second fundamental form:

[1] IT (Xua Xu) = <N7 Xu,u>
[2] I1 (Xm Xv) = <N7 Xu,v> = <N, Xv,u> =11 (Xv, Xu)
[3] II (Xva Xv) = <N7 Xv,v>

Proof. All the derivations are of a similar nature, so we start with the first one. Since N is
perpendicular to the tangent plane at every point we know that

(N, X,) = 0.
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Next, observe that D N(p) X,, is merely the partial derivative D, (N°X), and we shall stretch our
conventions to write this as D, N. Taking partial derivatives of the equation above with respect
to u and applying the Leibniz Rule for dot products of vector valued functions, we see that

0 = (D,N,X,) + (N, X,)

and since the first summand on the right hand side is the negative of IT (X,,, X,,) it follows that
the latter is equal to (N, X, ,, ) as required. The derivation of the third identity is nearly identical,
the only difference being that u is replaced by v in each equation.

Similarly, if we take partial derivatives of both sides of the equation
(N, X,) = 0

with respect to v we conclude that IT (X,, X,) = (N, X, ,). Furthermore, if we interchange
the roles of u and v in this argument we also see that II (X,, X,) = (N, X, ). Under the
assumption that the regular surface parametrization has continuous second partial derivatives, we
know that X, , = X, , and using this we see that IT (X,, X,) = IT (X,, X,,). This completes
the derivation.m

Notational conventions. In the literature and textbooks the quantities IT (X,,, X, ),
II (X,, X,) =1II (X,, X, ) and IT (X,, X, ) are often denoted by e, f and g respectively or by
L, M and N respectively; in these notes we shall use the first notation in order to avoid confusion
between N and N. If one writes a typical tangent vector in the form X du + X dv where du and
dv are viewed as scalars, then this yields the classical expression for the Second Fundamental Form:

IT (X, du+ X, dv, X, du+ X, dv) =
e(u,v)dudu + 2 f(u,v)dudv + g(u,v)dvdv

Example. We shall apply all this to describe the Second Fundamental Form for the hy-
perboloid of one sheet described above. If we let h(z,y,z) = 22 + y? — 22 — 1 then Vh(x,y,2) =
2 (z,y,—z) and therefore the unit normal is given by

1

TS5 > w7y7
Va?+y?+ 22 (

This can be simplified slightly by noting that 22 + y? + 22 = 1 + 2 22 for points on the surface, but
it will also be useful for us to let Q(z,y,2) = (z,y, —2), so that Q(x,y, z) is a positive multiple of
the unit normal N described above.

N(z,y,z) = —z) .

We shall use the following standard parametrization for the hyperboloid of one sheet:
X(u,v) = (cosu coshv, sinu coshv, sinhv)
One can then describe the normal vector ) by the following formula:
Qu,v) = (cosu cosh v, sinu coshv, — sinh v)

One can compute the second partial derivatives of X in a very direct manner, and if one takes inner
products with € one obtains the following results:
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(Q, Xy ) = —cosh®v
(Q, Xyo)=(2, X)) =0
<Q7 XU,U > =1
Therefore it follows that the coefficients e(u,v) are always negative, the coefficients f(u,v) are
always zero and the coefficients g(u,v) are always positive. Thus the Second Fundamental Form in
this case looks quite different from those in the cases previously described.

Since many surfaces are expressed as graphs of functions of two variables, we shall describe
the First and Second Fundamental Forms for a surface defined as the graph of a smooth function

z = h(x,y). In order to state these formulas concisely we shall let a(z,y) = /1 + h2 + h2.

E=1+h
F=hgh,
G=1+h;
e=hy /o
f=hey/a
g=hyy/a

All of these formulas may be verified directly using the identities established above and the
fact that the regular smooth parametrization of the surface is given by X(z,y) = (z,y, h(x,y) ).

Appendix: More on shape Operators

Since the Shape Operator plays such a central role in O’NEILL and similar modern approaches
to the subject, it seems extremely worthwhile to include a few more identities involving it that
are useful for computational purposes. We shall also state explicitly the symmetry property of the
Second Fundamental Form which plays a central role in Sections IV.3 — IV.5 (and also in Unit V).

Formal definition of the Shape Operator

Since the Shape Operator was only described informally in the preceding discussion, we shall
begin with a more systematic approach. Since we are interested in local formulas here, we shall
assume that our surface X is the image of some smooth parametrization X which is defined on a
connected domain and is 1-1. Suppose that N* is an orientation for 3. If we take the standard
orientation associated to the parametrization given by N which is the unit vector pointing in

the same direction as
0X 00X

ou " o

Then for each point p = X(u,v) on 3 we have
N2(X(w,0)) = e(p) NP (u,0)

where £ = +1 and is continuous. As noted before, it follows that ¢ is locally constant, so at least if
we cut down the domain of X to a small open disk containing some point (ug,vg) we can assume
that e is constant, and in this case for the sake of convenience we shall assume that € = 1.
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The definition of the Shape Operator involves the notion of tangent space to ¥ defined at the
beginning of Section I11.4; by construction an element of the tangent space T'(X) is a pair (p,q)
consisting of a point p € ¥ and a tangent vector q to ¥ at p (in other words, there is a smooth
curve v in R3 such that v(0) = p, the image of  is contained in ¥, and 7/(0) = q). We would like
to define a mapping Wy from T'(X) to R3 with the following properties:

(1) In the setting above, W maps (p,q) € T'(X) to

— (N¥29)"(0)
where 7 is given as above.

(2) The function W is linear in the second variable q when p is held constant.

(3) For each (p,q) € T'(X) the vector W (p, q) lies in the space of tangent vectors Th(X) to X
at p.

(4) The mapping W has reasonable continuity and differentiability properties.
If we have such a map W, then the SHAPE OPERATOR is formally defined by the formula

S(p,a) = (p, W(p,q))

and for each p the associated linear map from T, (X) to itself will be denoted by Sp.

The third property is shown explicitly in the notes, and we shall consider the remaining ones
in order.

Independence of choice of curve. In order to show this, we shall use the parametrization.
Let p = X(u,v); the Normal Thickening Principle in Section III.2 implies that, at least locally,
we can write 7 = Xea for some smooth curve « in the domain of X such that a(0) = (u,v) and
w = d/(0) satisfies q = DX (u,v)[w]. It then follows from the defining formulas and the Chain
Rule that

(N®29)" (0) = (N®°X°a)' (0) =

(NPelon)' (0) = DN™!(y,0)a/(0) = DN°(u,v)w .

If we have chosen some other curve ; with the right properties, then we would obtain a similar
curve «; in the domain of X such that o/(0) = a}(0) = w. Therefore it follows that we would
obtain the same tangent vector if we used ~; instead of 7, and this proves (1).m

Linearity in the second variable. This is an immediate consequence of the equations dis-
played above. If we have curves 1 and s in the surface through p, then we have the corresponding
curves a1 and ae in the domain of X through (u,v). Consider the curve

ap(t) = a1(t) + az(t) — (u,v) .

Then we have a(0) = (u, v) so that the curve lies in the domain of X for ¢ sufficiently close to 0,
and in addition we have the identity

ap(0) = 1(0) + ay(0) .
If we let v = X°aq, then the Chain rule implies
70(0) = 71(0) + 15(0)
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and the additivity property of W follows immediately from this and the previously displayed for-
mulas. Similarly, if we are given v and « as before and ¢ is a scalar, then the curve 8(t) = y(ct)
satisfies 5'(0) = ¢+/(0) and 3(t) = Xea(ct), which implies the homogeneity of W with respect to
scalar multiplication. These observations show that W is linear in q if p is held fixed.m

Continuity and smoothness properties. We shall be somewhat sketchy about these because
although they may be intuitively clear, writing out all the details is lengthy and not particularly
instructive; furthermore, we can often avoid using these properties directly in elementary work.
Since continuity and smoothness only depend on the behavior of a function very close to an arbitrary
point, we shall focus on an arbitrary point pg = X(ug, vg) of the surface and all point sufficiently
close to pg so that an smooth inverse to the normal thickening map ® (from Section II1.2) can be
defined. We then have a nonzero vector valued function Gy = ®; x ®,, where ®; is the 4t partial
derivative vector, and we take G to be the unit vector pointing in the same direction as Gg. It
follows that
Wp.a) — ~DN" (0 (p))z

where

z = D& '(p)q

and this description yields all the continuity and smoothness properties one could hope for.m
Local formula for the shape operator

The derivation of the first property yields the following description of the shape operator in
terms of the parametrization:

LOCAL FORMULA. Ifp = X(u,v) and q = DX(u,v)w in the setting above, then
S(p,a) = (X(u,v), —DNlocal(u,v)W) .

This is merely a reformulation of the previously displayed identity.m
Computing the Second Fundamental Form

Once again, the global object on ¥ and the local object defined on the domain of a parametriza-
tion are often identified with each other during informal discussions, so we shall begin by describing
and comparing the local and global versions.

GLOBAL VERSION. Given two points (p,a) and (p,b) in T'(X) representing tangent vectors
to the same point, the global Second Fundamental Form is defined by

I”((p,a), (p,b)) = (W(p,a),b)

where (—, —) denotes the usual inner product in R3 and the Second Fundamental Form is often
written more compactly as as IIIE,(a, b).

LOCAL VERSION. This is defined for all (u,v) in the domain of X and all vectors y and z in
R? by the classical formula

IIlocal (y’ Z) _ _< DNIOCal(u, U)Ya DX(U, ’U)Z >

(u,v)

where (—, —) denotes the usual inner product in R2. The corresponding classical formula for the
First Fundamental Form is

It (v.2) = —(DX(u,v)y, DX(u,v)z) .
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The previous observations yield the following identity for passing from one version of the
Second Fundamental Form to the other:

COMPATIBILITY RELATION. In the preceding discussion, suppose that p = X(u,v),
DX(u,v)y = a and DX(u,v)z =b. Then we have

I3 (v,2z) = IL(a,b) =

(u,v)

Symmetry property of the Second Fundamental Form

One advantage of the local version of the Second Fundamental Form is that it quickly yields
the following basic symmetry property.

PROPOSITION. In the setting above we have
IIlocal (y7 Z) — IIlocal (Z, y)

(u,v) (u,v)
for allu, v, y and z.

COROLLARY. In the setting above we have
o) b
IT;(a,b) = II;(b,a)
for all p, a and b.

The corollary follows from the proposition and the compatibility relation between the local
and global versions of the Second Fundamental Form.

Proof of Proposition. As in the result at the beginning of Section IV.3, it suffices to prove this
when y and z are the standard unit vectors e; and es. It will be convenient for us to denote the
partial derivatives of N = Nl and X by N, and X, here.

By definition we have
IIlocal (el, eg) = —< Nl, X2 >

(u,v)
and by the computations of Section IV.2 we know that the right hand side is equal to (N, X1 ).

Similarly, we have
IIlocal (eg, el) = —< NQ, X1 >

(u,v)
and by the computations of Section IV.2 we know that the right hand side is equal to (N, X 5).
Since X9 1 = X 2 by equality of mixed partial derivatives, it follows that we have proven the
symmetry condition in the special case, and as noted before the general case follows from this.=

Since the Second Fundamental Form is defined in terms of the standard inner product on R?
and the shape operator, we also have the following consequence.

PROPOSITION. In the setting above, for each p € X the linear transformation Sy defined on
Tp(X) by the shape operator has the following SELF — ADJOINTNESS property:

(Sp(a),b) = (Sp(b),a)

Proof. This follows from the previous results because the left and right hand sides are equal to
the values of the Second Fundamental Forms at (a,b) and (b, a) respectively.m

The self-adjointness identity is extremely important, and it is used extensively in the remainder
of the notes. In the next section we shall develop some algebraic tools that will allow us to use
self-adjointness effectively.
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IV.3: Quadratic forms and adjoint transformations

(No suitable text reference)

The First and Second Fundamental Forms are examples of quadratic forms on a real vector
space with an inner product. It is particularly useful to study some aspects of the Second Funda-
mental Form using a few basic algebraic facts about such quadratic forms, so we shall summarize
what is needed here. For our purposes it will suffice to restrict our attention to quadratic forms on
2-dimensional real inner product spaces.

The following result is an easy algebraic exercise:

PROPOSITION. Let V be a 2-dimensional real inner product space with basis vectors x and
y, and let T : V — V be a linear transformation from V to itself. If (T (x), y) = (x, T(y)), then
(T'(w), z) =(w, T(z)) forallw,z € V.

Proof. Express w and z as linear combinations of x and y:
W = pX + qy zZ = rxX 4+ sy
We then have

and similarly we have

(w, T(z)) = prix, T(x)) = qr{xT(y)) = ps{y, Tx)) = as{y,T(¥))-

We always have
(T(X)7 X) = <X, T(X)>

and similarly if y replaces x, so the hypothesis (T'(x), y) = (x, T(y) ) combines with these to show
that (I'(w), z) = (w, T'(z)) forall w, z € V.m

Linear transformations satisfying the conclusion of the preceding result are said to be self-
adjoint. If we are given an orthonormal basis u and v for our inner product space V and we
construct the 2 x 2 matrix representing T’ with this orthonormal basis

T(u) = au + bv T(v) = cu+ dv
then T is self-adjoint if and only if
c=(u,T(v)) = (T'(a),v) = b

or in other words the matrix representing 7" is symmetric. (SKETCH OF PROOF: If T is self-adjoint,
then the displayed formula is merely a special case of the general definition for a self-adjoint linear
transformation. Conversely, if w and z are arbitrary vectors, then we may write them as linear
combinations of u and v, and by combining the displayed formulas with some elementary but
slightly messy algebraic expansions we can check directly that (T'(w), z) = (w, T'(z) ).m).

Every real symmetric matrix has an orthonormal basis of eigenvectors; this is a standard result
on matrices, and in the 2 x 2 case one can see this very easily by computing the characteristic poly-
nomial and noting that it has real roots. Other basic results in linear algebra imply a corresonding
result of this sort for self-adjoint linear transformations.
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Let V and T be as above. In the next section we shall be interested in finding the maximum
and minimum values of the quotient

(T'(x), x)

(x, x)

k(x) =

where x ranges over all nonzero vectors in V. Let u and v be an orthonormal basis of eigenvectors
for T', and let o and (8 be the eigenvalues associated to u and v respectively. One of these eigenvalues
is greater than or equal to the other, and we shall assume that we have labeled everything so that
a<pf.

RAYLEIGH’S PRINCIPLE. The maximum and minimum values of the above expression are
the eigenvalues 3 and «, and these values are attained at the eigenvectors v and u respectively.

Proof. If x is an arbitrary nonzero vector in V' we may write
x = rcosfu + rsinfv
for some r > 0 and 6 € R. It follows that
k(x) = o cos® 0 + 3 sin? 6 .
Since a < G it follows that
a = acos’f+asin®’d < acos’f+(sin?0 <[ cos’f+f(sin? = f

and it also follows that k(u) = a while k(v) = G.u

Trace and determinant formulas

Recall that the trace of a square matrix is equal to the sum of its diagonal entries, and if a
matrix is diagonalizable then the trace is equal to the weighted sum of the eigenvalues

> n(A)A

A

(one way to see this is by means of the characteristic polynomial — both numbers are (—1)"~!
times the coefficient of t"~! if the matrix in question is n x n). One can then define the trace
of a diagonalizable linear transformation on a finite-dimensional vector space by means of the
corresponding weighted sum of eigenvalues. This is entirely analogous to the situation for the
determinant. For diagonalizable matrices the latter is equal to the weighted product of eigenvalues

I n) A

and one can define the determinant of a diagonalizable linear transformation on a finite dimensional
vector space using this formula.

We shall need information about the following purely algebraic question:
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Problem. Suppose that we are given a 2-dimensional real inner product space V', a basis z;
and zs for V, and a self-adjoint linear transformation 7": V' — V. Suppose that

a c
v ()
is the matrix whose entries are defined by the formulas

T(zy) = ax; + bze and T(z1) = axy; + bzg.

Express the entries of A in terms of the inner products (z;, z; ) and (T'(z;), z; ) where 1 < i,j < 2.

Motivated by our terminology for the First and Second Fundamental Forms, we shall denote
the various inner products as indicated in the matrices below:

(o o) = (P e)  (Hm e =G

Direct calculation then yields the following equations:

e = (I(z1),z21) = (T(azy + bz2),21) = aF + bF
f = (T(z2),21) = (T(czy +dz3),21) = cE + dF
f = (T(z1),22) = (T(azy + bzg),22) = aF + bG
g = (T(z2),22) = (T(czy +dzs),21) = c¢F + dG

These equations are equivalent to the following matrix equation:

e f\ _ (a ¢\ (E F
f g a b d F G
If we now assume that the matrix with entries E, F' and G is invertible (as it is in the case of the

First Fundamental Form), then one can solve for A and obtain descriptions of its entries in terms
of the entries of the other two matrices. These lead directly to the identities we want:

TRACE AND DETERMINANT FORMULAS. The determinant of A is equal to
eg—f*
EG - F?

and the trace of A is equal to
eG—-2fF+gFE
EG - F?

Derivation. The first of these follows from the matrix equation and the fact that det(BB2) =
det By - det By. For the second formula we need to compute

(5o

101



and take the sum of its diagonal entries. By Cramer’s Rule the inverse is given by

1 G -F
EG — F? -F F

and if substitute this into the preceding formula, compute the product, and add the diagonal entries
then we obtain the expression for the trace in the formula.m

Quadratic forms in three or more variables

Basic results of linear algebra state that quadratic forms with real coefficients can always be
diagonalized as in the 2 x 2 case. A detailed account of these results appears in Sections IV.3 and
V.1 of the following online notes:

http://math.ucr.edu/~res/math132/linalgnotes.pdf

Section V.2 of the latter also describes a fundamental geometric application of this result
to conic sections and quadric surfaces; namely, every “genuine” conic is congruent to one of the
examples in the first list below, and every “genuine” quadric surface is congruent to one in the
second list:

NONDEGENERATE CONICS:

1. Ellipses (and circles) of the form a?z? + b*y? = 1, where a,b > 0.

2. Hyperbolas of the form a?2? + b?y? = 1, where a,b > 0.

3. Parabolas of the form a?2? = by, where a > 0 and b # 0.

NONDEGENERATE QUADRIC SURFACES:

Ellipsoids (and spheres) of the form a?z? + b%y? + ¢?2% = 1, where a, b, c > 0.
One sheeted hyperboloids of the form a?x? + b%y? — c?2% = 1, where a,b,c > 0.
Elliptic (and circular) cones of the form a?z? + b%y? + c?2% = 0, where a,b, ¢ > 0.
Two sheeted hyperboloids of the form a?z? — b?>y? — c?2? = 1, where a,b,c > 0.
Elliptic paraboloids of the form a?x? 4 b%y? = cz, where a,b > 0 and ¢ # 0.
Elliptic (and circular) cylinders of the form a?z? + b?y? = 1, where a,b > 0.
Hyperbolic paraboloids of the form a’z? — b%y? = 1, where a,b > 0.

Hyperbolic cylinders of the form a’z? + b%y? = 1, where a,b > 0.

© 2 N3 ok W

Parabolic cylinders of the form a?z? = by, where a > 0 and b # 0.

The term “genuine” is meant to exclude degenerate or singular possibilities including a pair of
lines or planes, one point sets defined by equations like 2 + 32 + 22 = 0, and examples involving
equations with no real solutions such as z2 + 32 4+ 22 + 1 = 0.

It is possible to prove that the above listings separate conics and quadrics into distinct congru-
ence types; in other words, there is no conic or quadric that is simultaneously congruent to objects
of types m and n where m # n. However, an efficient proof of this fact requires material beyond
the scope of this course. For the sake of completeness, a reference is given below (but the discussion
is at a relatively advanced level).

http://math.ucr.edu/ res/progeom/quadricsi.pdf
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IV.4: Normal, Gaussian and mean curvature

(Lipschutz, Chapter 9)

One approach to studying the curvature properties of surfaces is to consider the curvature
properties curves formed by the intersection of a surface with some plane containing a point on
the surface. In particular, if one wants to study the curvature properties of an oriented surface
(3, N) at some point p € X, one might consider the curves formed by intersecting ¥ with all planes
containing the normal line to p and attempt to describe their curvatures. In fact, this approach
leads directly to the basic notions of curvature for oriented surfaces in R®.

It will be convenient to review some concepts from the first unit of the course. If we are given
a regular smooth curve y in R?® such that y(0) = p, then we shall let s denote the modified arc
length parametrization such that s(0) = 0 and s’(¢) = |y’(¢)|. Then one has the unit tangent vector

function J )
T - Yy _ ¥yQ®
ds s'(t)
and the associated curvature vector function
dT T'(t)
k = R =
(s) ds s'(t)

that is perpendicular to T and whose magnitude is equal to the curvature of of y at a given
parameter value.

Definition. Let y be a smooth curve in ¥ such that y(0) = p; if X is a regular smooth
parametrization of ¥ at p then we may write y(¢) = X(u(t), v(t)) for suitable smooth functions u
and v, at least if ¢ is sufficiently close to 0. The normal curvature vector k,, for the curve is then
given by

k(s) = (k(s), N(y(s))) - N(y(s))

and the normal curvature of y with respect to X is given by
kn = (k,N).

The normal curvature vector and the normal curvature are related by the equation k,, = k,, - N.

IMPORTANT SPECIAL CASE. Suppose that we are given a curve y defined as the intersection
of ¥ with the plane through p that contains the normal line to ¥ and the tangent line through p
that is parallel to the nonzero vector v € T,(X). Then the curvature vector for y at parameter
value is perpendicular to v and lies in the plane containing this vector and N(p), and accordingly
k(0) is a scalar multiple of N(p). In this case the absolute value of the normal curvature is the
ordinary curvature of y at parameter value 0.

The following crucial result allows us to describe the normal curvature in relatively familiar
terms.

MEUSNIER’S THEOREM. The normal curvature vector k,, and the normal curvature k,, at
p only depend upon y’(0) = w, and in fact we have the formula

II(w, w)

fin = I(w, w)
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Of course, this is just the sort of expression that we considered at the end of the previous
section.

Historical footnote. Born on June 19, 1754, at Tours, France, JEAN BAPTISTE MARIE
MEUSNIER is known for his ideas on designing airships and his career as a military officer as well as
his results on the differential geometry of surfaces. He was a student of G. Monge at the Ecole Royale
du Génie in Méziéres, and he was the first person to envision an elongated airship as an alternative to a
spherical balloon. His suggestion of an elliptical-shaped airship was advanced in 1784, just weeks after
the first flights of hot air balloons by the Montgolfier brothers. Henri Giffard adopted much of Meusnier's
design in his first successful powered airship. Meusnier also played a key role in the organization of the
army of the First French Republic; he was severely wounded during a battle between the French and
Prussians at Cassel (near Mainz, Germany), and died on June 13, 1793.

Proof of Meusnier’s Theorem. We know that the unit tangent vector T to the curve is
perpendicular to the unit normal vector N to the surface because the curve lies in the surface.
Differentiating both sides of the expression 0 = T - N and applying the Leibniz Rule, we see that

aT dT
= - N+ N. =
R TN T
This leads to the following string of equations:
dT 1 dT 1 dN
. = kN = "= .N = (S N) = - (T ) =
" ds s (1) < dt > s'(t) ( dt )

_ L (dy dNY _ 1 (dy dN
s't)2 \dt dt) —  |y'@®)]? \dt dt

and by the Chain Rule the last expression is equal to

(WX, + vX,) (/N + vNy,)
lw' X, + v X,|? )

The denominator of this expression is equal to the First Fundamental Form at (w, w). Furthermore,
the numerator is equal to the inner product of w and [D N(p)](w), or equivalently the negative
of the value of the Second Fundamental Form at (w, w). It follows that x,, is the quotient of the
Second Fundamental Form by the First evaluated at (w, w).m

By the results of the preceding section, the normal curvatures attain maximum and minimum
values, these are realized at the eigenvectors of —D N(p), and the values of the ratio in Meusnier’s
Theorem are equal to the eigenvalues of —D N(p). The average of these eigenvalues is called the
mean curvature and the product is called the Gaussian curvature. Classically these quantities are
denoted by H and K respectively.

LOCAL FORMULAS. If the oriented surface (X, N) is given by a regular smooth parametriza-
tion X, then the mean and Gaussian curvatures H and K are given by the following formulas:

eG—-2fF+gFE

i = 2(EG— F?)
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K - 9=
EG - F?

Proof. These are immediate consequences of the trace and determinant formulas at the end of
the previous section.m

Once again we shall consider our standard examples and describe their mean and Gaussian
curvatures. For the plane, we know that the Second Fundamental Form is identically zero, and
therefore it follows that both the mean and Gaussian curvatures are zero everywhere. Suppose now
that we consider the sphere defined by the equation 22 + y? 4+ 22 — 2 = 0 where r > 0. In this case
the unit normal is given by (z/r, y/r, z/r), so the Second Fundamental Form is just —1/r times
the First Fundamental Form. It follows that the normal curvature of every smooth curve through
a point on the sphere is equal to —1/r, which in turn means that the mean curvature is equal to
—1/(27) at each point and the Gaussian curvature is equal to 1/r% at each point. Consider next
the cylinder defined by z? + y? = 1. We noted that the eigenvalues of the map D N in this case
were equal to 0 and 1, and therefore the mean and Gaussian curvatures in this case are equal to
% and 0 respectively. Finally, one can use our previous discussion for the hyperbolic paraboloid
to find its mean and Gaussian curvatures at each point. One important new feature is that these
quantities are no longer constants. We shall not go through all the details of this case but simply
note that the mean and Gaussian curvatures for the hyperbolic paraboloid are negative at every

point.

Note. The Gaussian curvature can in fact be defined for nonorientable surfaces. This is
based upon the following observations:

(7) Locally the surface is given by a regular parametrization.

(73) Surfaces given by a single regular parametrization are orientable, and locally they have
exactly two orientations, one of which is the negative of the other.

(747) One can use the preceding methods to compute the Gaussian curvature near a point p,
and the value is the same for both orientations near p essentially because the product of
the eigenvalues for a diagonalizable 2 x 2 matrix A is the same as the product for —A.

In particular, this means that we may define the Gaussian curvature on the Mobius strip even
though there is no globally defined smooth unit normal. These considerations also show that if
>} has an orientation, then the Gaussian curvature does not depend upon the specific choice of
orientation.

Interpreting the sign of Gaussian curvature

As a first step to understanding the meaning of curvature for surfaces, it is important to
consider the implications for the shape of the surface ¥ if the Gaussian curvature is positive,
negative or zero at a point. Since Gaussian curvature is continuous, if it is positive or negative at p
then it is also positive or negative at all points close to p, but if the Gaussian curvature is zero at
p then one does not expect to draw any conclusion at all about the nonnegativity or nonpositivity
of the Gaussian curvature near p, and in fact we shall give examples to show that the shape of a
surface near a point can vary significantly if the Gaussian curvature at p is zero.

The first step in using Gaussian curvature to obtain a rough idea of the shape near a point p
is to consider the curves formed by intersection the surface with a plane Q containing the normal
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line M through p. Let L be the tangent line to the intersection curve at p, let v be a unit vector
parallel to L, and let Q4 be the “positive” side of L in Q consisting of all points x € Q such that

(x—p) NP > 0.

If the curve through p determined by ¥ N Q has positive normal curvature at p, this means that
the center of the osculating circle at p is a point of M that lies on Q. , and in fact it follows that
all points on the curve that are close to p, except for p itself, also lie on Q. Similarly, let Q_
denote the other side of L in Q consisting of all points for which (x — p) - N(p) is negative, and
suppose that the Gaussian curvature of the curve through p determined by XN Q is negative. Then
it follows that the center of the osculating circle at p is a point of M that lies on Q_, and in fact
it follows that all points on the curve that are close to p, except for p itself, also lie on Q_.

Suppose now that the Gaussian curvature at p is positive. This means that the maximum
and minimum values for the normal curvatures of the intersection curves are nonzero and have
the same sign. In this case it follows that all points of the intersection curves that are sufficiently
close to p lie on one of the closed sides of the tangent plane that are determined by one of the
inequalities (x — p) - N(p) > 0 or (x — p) - N(p) < 0. Furthermore, with the exception of p itself,
all of the nearby points on such curves lie on the open sides defined by replacing < and > with
strict inequalities. This corresponds to the notion of strict local convexity that was discussed in
the exercises.

Before proceeding, it will be useful to set some notation. Given a nonzero tangent vector w at
p, let B(w) be equal to w x N(p); since w and N(p) are nonzero vectors that are perpendicular
to each other, it follows that their cross product is nonzero and perpendicular to both of these
vectors. The plane containing p with normal direction corresponding to B(w) will be denoted by
Q(w), and its two open sides Q4 (w) may then be defined as in the previous paragraph.

Suppose now that the Gaussian curvature at p is negative. In this case one can choose nonzero
tangent vectors vy and vg at p such that the normal curvatures of the corresponding plane inter-
sections Q(v1) N X and Q(vg) N X are positive in the first case and negative in the second. If 3;
is the curve near p determined by the intersection Q(v;) N X, then the centers of the osculating
circles for #; and 2 lie on Q(vy);+ and Q(vs)_ respectively, and similar statements hold for all
points of B; and [y that are close to p except for p itself. A good model for this is the saddle
surface defined by the equation

z = y? — 22
near the origin. The tangent plane of this surface at the origin is the xy-plane, and the standard
upward normal for the surface at the origin is the vector (0,0, 1). Direct calculation shows that the
First Fundamental Form is

(1 + 42?)dxdr + 162%y* + (1 + 4y dydy .

Furthermore, the intersections of this surface with the yz- and xz-planes are the parabolas z = y?
and z = —x2? respectively. Away from the origin, these intersection curves lie in the open half
planes determined by the strict inequalities z > 0 and z < 0 respectively. Incidentally, one can
show directly that the saddle surface has negative Gaussian curvature at the origin using the
formulas from Section IV.2 and this section as follows: By the formulas at the end of Section IV.2
we know that the Second Fundamental form is given by

2(dydy — dzdx)
V1 + dx? 4 4y?
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and therefore the formula for the Gaussian curvature in terms of the Second Fundamental Form

shows that
—4

(1 + 422 + 4y?)?

Thus the Gaussian curvature is negative at all points of this surface.

K =

Note that the mean curvature must be nonzero if the Gaussian curvature is positive because the
latter implies that the maximum and minimum values of the sectional curvature are both positive
or both negative.

If the Gaussian curvature at p is zero, then one cannot draw many conclusions about the
shape of the surface near p. This is best seen using examples. There are two basic cases depending
on whether the Second Fundamental Form is zero or nonzero. We shall begin by considering the
second possibility. In this case the map D N(p) is not invertible but also nonzero, and therefore
it has two eigenvalues, one of which is zero and one of which is nonzero. The cylinder defined by
22 +y? = 1 is one example of this sort. A typical point of this surface is the unit vector (1,0,0), and
its tangent plane is defined by the equation = 1. In this case all the curves formed by intersecting
the surface with planes containing the normal line at (1,0, 0), which is the z-axis, lie on the sides of
the tangent plane determined by the inequality < 1, and in fact all points on these curves except
(1,0,0) itself lie in the set determined by the strict inequality = > 1. However, it is also possible to
describe other examples where D IN(p) has rank 1 but the surface has points on both sides of the
tangent plane. The graph of the function z = 22 + 3% at the origin is a specific example (look at
the intersection with the yz-plane).

If the Gaussian curvature is zero and DN(p) = 0 then the mean curvature is also zero and
the local behavior of the surface near p also cannot be determined without additional information.
A plane is the simplest example of this type. However, there are also examples for which the
surface is strictly locally convex near the point p and examples where the surface has points on
both open sides of the tangent plane near p. An example where strict local convexity holds is given
by the graph of f(z,y) = 2% + y* at the origin, where the tangent plane to the surface is merely
the zy-plane. One can use the methods employed for the saddle surface to show that the Second
Fundamental Form is zero at the origin. If one intersects this surface with a plane containing the
normal line at the origin, which is the z-axis, then the resulting curves all lie on the side of the
tangent plane defined by the inequality z > 0, and except for the origin itself all points of the curve
lie on the open side where the strict inequality z > 0 holds. On the other hand, consider the Monkey
Saddle Surface defined by the equation z = 2 — 322y at the origin. Once again the tangent
plane is the xy-plane and the Second Fundamental Form is zero. Using cylindrical coordinates and
simple trigonometric identities, one can rewrite the equation of the surface as z = 73 cos 30, and
from this one sees that the intersection of the surface with a plane containing a normal line has a
parametrization of the form (t cos 36, t sin36,, t3 ) for some fixed real number 6. These curves
are line in the xy-plane if 6y is an integral multiple of /3. On the other hand, for other choices of
0o the points on this curve corresponding to ¢ > 0 and ¢ < 0 lie on the two opposite open sides of
the tangent plane defined by z > 0 and z < 0. In some cases the points corresponding to parameter
values t > 0 lie on the side defined by z > 0, while in other cases these points lie on the side defined
by z < 0. The following online sites contain excellent (and in the second case interactive) pictures
of the Monkey Saddle:

http://astronomy.swin.edu.au/~pbourke/surfaces/monkey/
http://www.ma.umist.ac.uk/kd/geomview/monkeysad.html

http://www.ag.jku.at/digpics_en.html

107



IV.5: Special classes of surfaces

(Lipschutz, Chapters 8-9)

In these notes particular attention has been given to understanding the main concepts in the
differential geometry of surfaces for the objects encountered in analytic geometry and calculus,
including quadric surfaces, surfaces of revolution and certain examples of ruled surfaces. Needless
to say, mathematicians and scientists in related fields have also found numerous other examples
of surfaces that are curious, interesting or important for one reason or another. The purpose of
this section is to discuss a few additional examples beyond the usual ones from analytic geometry
and calculus and also to comment further on the geometric interpretation of mean and Gaussian
curvature for some standard examples that have not yet been considered. These and other examples
are particularly useful in illustrating the sorts of geometric insights one can obtain by means of
methods from ordinary and multivariable calculus.

Here are some online references that have particularly good collections of surface graphics:
http://www.uib.no/People/nfytn/mathgal.htm
http://www.uta.edu/optics/sudduth/4d/the _main_ gallery.htm
http://mathworld.wolfram.com/SurfaceofRevolution.html
http://www.math.arizona.edu/~models/Ruled_Surfaces/

Of course, there are also many very good illustrations in O’NEILL and bo CARMO, but the
impact advances in computer technology since the publication of the first editions of these books is
clear (and the previously cited book by Gray goes into the uses of such technology for differential
geometry in great detail).

Ruled surfaces

We begin with a very simple observation.

GAUSSIAN CURVATURE OF A RULED SURFACE. Ifthe surface 3 is given by a ruled
parametrization in the sense of Section 111.2, then its Gaussian curvature is nonpositive.

The cylinder and plane are examples of ruled surfaces for which the Gaussian curvature is
identically zero, and both the hyperboloid of one sheet and the hyperbolic paraboloid (saddle
surface) are examples of ruled surfaces for which the Gaussian curvature is always negative.

Proof. We can do this without computing the Gaussian curvature explicitly. Suppose that we

have a ruled parametrization
X(u,v) = a(u)+v-b(u)

where a’(u) is never zero and the vectors a’(u) and b(u) are always linearly independent. Then the
space of tangent vectors at X(u,v) is spanned by the linearly independent vectors a’(u) and b(u).

Consider the curve through p = X(u,v) formed by intersecting the tangent plane to p at
that point with the unique plane that contains X(u,v) and whose normal line is parallel to the
vector N(p) x b(u). This intersection is locally given by the line through p that is parallel to
b(u). Of course the curvature of this curve is equal to zero and therefore we know that there is
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one tangent direction at p for which the sectional curvature is zero. If the Gaussian curvature were
either positive or negative, then the sectional curvature would be nonzero in every direction, and
therefore the Gaussian curvature cannot be positive at p.m

Derivation of formulas for the mean and Gaussian curvature of a ruled surface are left to the
reader as an exercise.

Ruled surfaces for which the Gaussian curvature is identically zero are called developable sur-
faces, and they have many significant properties. Further information on this topic may be found
on pages 194 and 210 of DO CARMO (also see pages 145-148 of D. V. Widder, Advanced Calculus,
Second Edition, Dover, New York, 1989, ISBN: 0-486-66103-2).

Surfaces of revolution

We shall derive formulas for the Gaussian curvature of a surface of revolution obtained by
rotating a curve in the xy-plane about the x- and y-axes. In the first case we need to assume
that the z-coordinates for all points on the curve are positive, and in the second we need to make
a similar assumption regarding the y-coordinates. Our ultimate goal is to describe a surface of
revolution whose Gaussian curvature is equal to —1 at each point.

Before setting up the computations it is worthwhile to consider some examples in order to have
a rough idea about what the general formulas for Gaussian curvature can be expected to yield. If
we take h(z) = V1 — 22 and rotate it around the z-axis we obtain a portion of the unit sphere
centered at the origin. This surface has Gaussian curvature equal to +1 at each point, and the
second derivative of h is negative for —1 < x < 1. On the other hand, if we take h(z) = V1 + 22
and rotate it around the x-axis we obtain a portion of the hyperboloid of one sheet defined by the
equation y? + 22 — 22 = 1, which has negative Gaussian curvature; in this case the second derivative
of h is positive everywhere. This and further experimentation suggest that the signs of the second
derivative and the Gaussian curvature should be the opposites of each other.

Suppose now that we are given a regular smooth curve c(t) = (p(t), q(t) ) where ¢(t) > 0 for
all t. Then the regular surface formed by rotating this curve about the x-axis may be given using
the parametrization

X(u,v) = (p(u), q(u) cosv, p(u) sinv) .

In order to compute the coefficients of the fundamental forms we need to find the partial derivatives
X and X5 and the unit normal associated to the parametrization, which has the form

N = = .0

where ) = X; x X,. Here are the relevant formulas:

X1 = (9, q cosv, q sinv)
Xy = (p, —gsinv, q cosv)
Q = (qq, —p'qcosv, —p'qsinv)

Q] = ¢V ) + (¢)?
Given these formulas we see that the First Fundamental Form has coefficients E = (p’)? + (¢')?,
F =0and G = ¢
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Similarly, the second partial derivatives of X are given as follows:

X1 = (p",¢" cosv, ¢" sinv)
X2 = Xg1 = (0, —¢ sinv, —¢' cosv)
X992 = (0, —q cosv, —g sinv)

The corresponding inner products with ) are given by
QX1 = p'qd - p'ad”
2-X42 =0

QX = p¢?
and therefore the coefficients of the Second Fundamental Form are given as follows:
p// q/ o p/ q//

®)? + (¢)?

f =20

/

pq

®)? + (¢)?

These computations yield the following formula for the Gaussian curvature:

9

. eg—f* eg

K= EG-F2  EG
( p//q _ p/ q/l)p/q _ (p//q _ p/ q/l)p/
[(®)? + (¢)%*¢* ()2 + (¢)**q

SPECIAL CASES. Suppose first that p(t) = t so that the curve is simply the graph of a smooth

function. Then the formula reduces to
_ q//
1+ (¢)%2-q

and therefore the signs of K and ¢” are opposite, exactly as our examples suggested.

K =

Suppose now that we assume that |c’(¢)| = 1, so that (p’)? + (¢')? = 1. If we differentiate this
with respect to u we obtain the equation p’p” + ¢'¢” = 0, and thus we may use these equations
to rewrite the Gaussian curvature as —¢q”’/q. When c gives the standard parametrization of the
unit circle with p(t) = cost and ¢(t) = sint, this gives another proof that the Gaussian curvature

of the unit sphere is equal to 1, at least at all points except perhaps (£1,0,0).

Gaussian curvature of the torus. The preceding also allows us to compute the Gaussian
curvature of the torus given given by revolving the circle with equation

2?4+ (y—-2)?2 = 1

about the z-axis. In this case parametric equations for the circle are given by p(t) = cost and
q(t) = 2+ sint, and by the formula given above the Gaussian curvature is equal to

—q"'(t) sin ¢
q(t) 2 + sint
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This quantity is positive if ¢t € (0,7), zero if ¢ = 0, w, 27, and negative if ¢ € (7, 27). Visually,
it is positive on the piece of the surface obtained by revolving the upper semicircle about the z-
axis, negative on the piece obtained by revolving the lower semicircle about the x-axis, and zero
on the circles obtained by revolving the points (4,1, 1) about the z-axis. Note that the Second
Fundamental Form is nonzero at all points where the Gaussian Curvature is equal to zero.

The tractriz and pseudosphere

We shall now apply the preceding calculations to find a surface of revolution whose Gaussian
curvature is equal to a negative constant. The standard example of this sort is the pseudosphere,
for which the curve one revolves around the z-axis is known as the tractrix that we shall now
describe.

From a physical perspective the tractrix is given as follows: Suppose that a person is initially
standing at the origin in R? and is holding a tightly stretched leash with a dog on the other end at
(0,a) where a > 0. Now suppose that the person begins walking in the positive direction along the
x-axis and the dog’s path is such that the leash is tightly stretched at each point. If D(¢) and P(¢)
denote the positions of the dog and person at time ¢, these conditions translate into the following
mathematical conditions:

(1) The line of the leash is the tangent line of the path taken by the dog.
(2) The distance between the dog and person is always equal to a.

(3) If parametric equations for the dog’s path are given by (wu(t), v(t)), then both u(¢) and
v(t) are positive while their derivatives satisfy u’(t) > 0 > v'(¢).

Here are some online graphics, including one that is animated:
http://mathworld.wolfram.com/Tractrix.html
http://bradley.bradley.edu/~delgado/122/Tractrix.pdf
http://www.amherst.edu/~amcastro/MathMedia/galleries/Curves/Tractrix.html

With the information given above we may derive parametric equations for the tractrix as
follows: The position of the person P(¢) on the z-axis is the intersection of that line with the
tangent line, which may be parametrized as

L(s) = = D(t)+sD'(t)
with the z-axis. If s is the parameter value at which this line meets the x-axis, then the mathe-

matical conditions imply that v(t) +sv’(t) =0, |sc/(t)| = a and su/(t) = y/a? — v(t)?. Combining
these equations, we conclude that

v(t)u'(t) = —sv'(B)u'(t) = —v'(t)Va?—ov(t)?.
Dividing these by the nonzero number v(t) yields the differential equation

, Va2 -2

v
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As usual, some initial conditions are needed in order to solve such equations uniquely. In our
situation we know that
lim wu(t) = 4oo and lim o(t) = 40.
t——4o0 t——+o0
If we make the change of variables y = a sin # then standard antidifferentiation formulas from
integral calculus show that

¢ = a(lntan(/2) + cosf) + C

and since the limit of y as § — %77 is equal to a, it follows that the limit of x as 8§ — %71 is equal
to 0. If we substitue this into thre right hand side of the formula for x, we see that the constant of
integration C' must be equal to zero. This means that one can describe the tractrix analytically by

means of the parametrization
(a (Intan(6/2) + cosh), a sin9> .

Note that as 6 goes from 0 to 7/2 this traces out the curve in the reverse direction from the one
considered originally; the limiting values at # = 0 and 7/2 may be viewed as (400, 0) and (0, a)
respectively.

To find the Gaussian curvature of the pseudosphere we may now substitute the coordinates
for this parametrization into the general formulas given before:

p(0) = a(lntan(6/2) + cosh)
q(d) = asind

If one then simplifies the resulting expression using standard differentiation rules and trigonometric
identities, the conclusion is that K = —1/a? at all points of the pseudosphere. Thus the latter is
indeed the desired surface of revolution with prescribed constant negative Gaussian curvature.

Constant Gaussian curvature

Classical Euclidean and Noneuclidean geometry have a natural interpretation in differential
geometry as spaces of constant curvature. We have already seen that the plane and the sphere
are spaces that have constant curvature, with the constant value equal to zero in the planar case
and a positive number in the spherical case. In classical geometry it is either implicitly or ex-
plicitly assumed that the spaces have translational symmetry — given two points one can find a
rigid motion sending one point to the other. From the perspective of differential geometry, this
corresponds to an assumption that the Gaussian curvatures at every pair of points are the same,
or equivalently that the Gaussian curvature is constant. The structure of surfaces with constant
Gaussian curvature has been a central topic in differential geometry throughout its history, and
there are important results which imply that all surfaces with constant curvature are very closely
related to the fundamental examples; namely, the plane in the case of zero curvature, the sphere in
the case of positive curvature, and the Noneuclidean or Hyperbolic plane discussed at the end of
Section II1.4. A fundamental theorem of D. Hilbert shows that one does not have a nice realization
of the latter as a surface in R® (the details, which are beyond the scope of this course, are given in
Section 5-11 of DO CARMO), but the pseudosphere provides a good model in R? for a small portion
of this object (more precisely, if one removes the copy of the tractrix corresponding to v = 7, then
the remaining portion of the pseudosphere is metrically equivalent to a region in the Hyperbolic
Noneuclidean plane).
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Minimal surfaces

A surface is said to be a minimal surface if its mean curvature is identically zero. This condition
is simple and analogous to the conditions for constant Gaussian curvature, but none of this explains
the reason for the name. From the viewpoint of local differential geometry, a minimal surface is is
one that is equally bent in all directions so as to have zero average curvature just like a plane or
the surface z = 22 — y? at the origin, but in contrast to the latter one wants this property at every
point of the surface. Aside from the plane, two basic examples of such surfaces are the catenoid
and helicoid that are discussed respectively on pages 244-245 and 219-220 of O’NEILL (see also
pages 202-205 of DO CARMO).

Although the sign of the mean curvature of a surface depends upon the choice of unit normals,
one can extend the concept of minimal surface to nonorientable surfaces because orientations exist
locally and the vanishing property for the mean curvature is the same whether one starts with a
given system of unit normals or their negatives.

Minimal surfaces are so named because of their connection to the following natural question:
Given a closed curve I', find the surface of least area that is bounded by I'. This question is known
as Plateau’s Problem and it is named after the physicist who noted that such surfaces may be
realized physically by soap films that are bounded by the given curve.

As noted on page 197-199 of D0 CARMO, surfaces of least area must have mean curvatures
that are identically zero, and the discussion on those pages provides strong evidence for this, at
least in some relatively elementary situations. A more detailed treatment appears in the following
online document:

http://ocw.mit.edu/NR/rdonlyres/Mathematics/ (continue with next line)
18-994Fall-2004/179B4DC0O-3C84-425A-93E1-9E9D06C83BOD/0/chapterll . pdf

Despite the intuitive nature of the least area problem, a precise mathematical formulation of it in a
reasonably general context turns out to be extremely nontrivial and requires methods beyond the
scope of this course. However, there is a fairly accessible description of the key ideas in Chapter 18
of THORPE (see pages 156-160).

Minimal surfaces have important relations to the theory of functions of a complex variable and
partial differential equations; the most basic aspects of this are described on pages 201-202 of DO
CARMO. The study of minimal surfaces has had a strong impact on both geometry and analysis,
in may cases leading to results on questions that at first doe not seem to have any relation to the
least area problem.

Numerous examples of minimal surfaces have been discovered or constructed over the past
two hundred years, and advances in computer technology during the past quarter century have
led to striking new insights, yielding unexpected new types of such surfaces whose existence was
first suggested by computer graphics and later confirmed by rigorous mathematical proofs (but
not all potential examples arising from computer graphics turned out to be minimal surfaces!). A
substantial amount of this work was motivated by potential applications of minimal surfaces to the
other sciences and engineering. Here are some online references that discuss minimal surfaces, with
many illustrations and more information on advances that have taken place during the past three
decades:

http://ctouron.freeshell.net/personal/costa/background.html

http://mathworld.wolfram.com/CostaMinimalSurface.html
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http://mathworld.wolfram.com/MinimalSurface.html
http://www.indiana.edu/ minimal/toc.html
http://www.zib.de/polthier/booklet/intro.html
http://www.csuohio.edu/math/oprea/soap/soap.html
http://www.math.unifi.it/ paolini/diletto/minime/index.en.html
http://www.miqel.com/pure-math-patterns/visual-math-minimal-surfaces.html

The text by J. Oprea, Differential Geometry and Its Applications, Second Edition (Prentice-
Hall, 2003, ISBN: 0-13-065246-6), contains a detailed and current account of minimal surfaces at
the undergraduate textbook level.
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V. Further Topics

This continuation of the course lecture notes discusses two fundamental topics in the classical
theory of surfaces. The first is a basic result of Gauss which states that the Gaussian curvature
of a surface depends only on the First Fundamental Form of the surface. This fact allows one to
define curvature for a much broader range of geometric objects, an idea that has been basic to
differential geometry for nearly two centuries. The second topic is an analog of the basic existence
and uniqueness results for curves based upon the Frenet-Serret formulas. Just as curvature and
torsion determine curves in 3-space, the First and Second Fundamental Forms provide a similarly
complete characterization of surfaces.

V.1: Compatibility equations, Theorema Egregium

(Lipschutz, Chapters 10-11)

One of the most far-reaching results on the differential geometry of surfaces is that the Gaussian
curvature of a surface can be expressed entirely in terms of the First Fundamental Form:

GAUSS’ THEOREMA EGREGIUM. If X is a1 — 1 regular parametrization such that the
First Fundamental Form is given by

E(u,v)dudu + 2F(u,v)dudv + G(u,v)dvdv

and K (u,v) is the Gaussian curvature function, then the Gaussian curvature depends only upon
the coefficients of the First Fundamental Form of the surface and their partial derivatives.

In contrast, the plane and cylinder have the same First Fundamental Form but different mean
curvatures.

At the end of Section I11.4 in the course lecture notes, we discussed generalizations of the First
Fundamental Form known as Riemannian metrics. One can use the formula above to define Gaus-
sian curvature with respect to an arbitrary Riemannian metric regardless of whether it comes from
a First Fundamental Form. This is an important step in formulating general notion of curvature
in differential geometry that can be used in many different contexts and have a dramatically wide
range of applications in mathematics and physics.

Intrinsic geometry of surfaces

One way of interpreting Gauss’ Theorema Egregium is to say that the Gaussian curvature is
an intrinsic property of a surface; to quote from the Preface to O’Neill, such properties concern

the geometry of a surface, as seen by its inhabitants, with no assumptions that the
surface can be found in ordinary 3-dimensional space [or the manners in which it
might be realized in ordinary 3-dimensional space].
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Discussion of the proof

The results of this section and the next are based upon an analysis of the second partial
derivatives of a regular parametrization X. In some sense this is analogous to the idea behind the
Frenet-Serret Formulas for curves; one writes out the various derivatives as linear combinations of
simpler objects and looks for useful interrelationships. In the case of curves, the Frenet Trihedron
provided a useful basis for R? at each point of the curve. For surfaces given by regular parametriza-
tions, the corresponding useful basis is given by the partial derivatives X; and Xy together with
the unit normal vector N, which may be viewed as X; x X5 normalized to have unit length. One
major difference with the theory for curves is that these bases are usually not orthonormal, but
this turns out to be a relatively minor issue that can be addressed directly using linear algebra as
in the final portion of Section IV.3 of the course lecture notes.

If one writes out the partial derivatives of X;, X5 and N with respect to the w (first) and v
(second) variables and uses the earlier computations involving the First and Second Fundamental
Forms, one obtains the following sorts of formulas in which the quantities F; ;. are smooth functions
of u and v and are called Christoffel symbols of the second kind; the terminology is chosen to be
consistent with concepts in tensor analysis (see the bottom of page 213 in the Schaum’s Outline
Series book on differential geometry for further information).

Xy = T Xy + I, Xo + eN

Xy = F}72X1 + Fizxg + fN

Xpo = T3,X; + I5,Xs + gN
N; = BiXi + 37 Xo
Ny = B3X; + 55X,

It is convenient to define I'y ; =T , for 4 = 1, 2 so that F;k is defined for 1 <4, 5, k <2 and
satisfies }” = sz

Using the methods described in the last part of Section IV.3 in the course lecture notes, one
can solve for 3 in terms of the coefficients of the First and Second Fundamental Forms:

fF — eG

51,1 = EG — F2
el — fFE

52,1 = EG — F2
_ fF - fG
T
fE - gFE

N T =

If one substitutes these into the equations for N; and Ny one obtains the Weingarten equations.
Computing the Christoffel symbols is more difficult. The following formulas are derived in Problem
10.3 on page 216 of the Schaum’s Outline Series review of differential geometry that was cited
previously:

GE, — 2FF + FE,

ri, =
1.1 2(EG — F?)
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) GE, — FG,

T —
1,2 2(EG — F?)

rl 2GF, — GG, + FGy
%2 2(EG — F?)

o _ 2EFR - EB, + FE
11 2(EG — F?)
s _ EG — FBE,
L2 2(EG — F?)

2 _ EG —2FF + FG
S 2(EG — F?)

It is important to note that the Christoffel symbols depend only upon the coefficients of the First
Fundamental Form and their first partial derivatives.

The most direct approach to proving Gauss’ theorem about the Gaussian curvature is to
continue by proving that

K(EG - F2)2 = [Xl,la X17 XQ] . [X2,27 X17 XQ] - [X1,27 Xla X2]2 .

This compuation is carried out in Problem 10.4 on page 217 of the Schaum’s Outline Series on dif-
ferential geometry, and equivalent statements involving differential forms are established in Chapter
6 of O’NEILL (see pages 280-281 in particular). Further computations using the same methods
then yield the identity

K(EG - F*? = (Fia — 3B — 1Gi11) (EG — F?) +
0 B-1G %G, 0 1B, i3
5 B E F | - %EQ E F
F—1E, F G ;G F G

which implies that K depends only upon the coefficients of the First Fundamental Form and their
partial derivatives. It is an elementary exercise in partial differentiation to show that this equation
is equivalent to the one in the statement of Gauss’ theorem that is given above.m

Another approach to deriving Gauss’ theorem is given on pages 231-235 in Section 4-3 of DO
CARMO and (using differential forms) in Chapter 6 of O’Neill. This alternate approach also has
other implications, and it will be discussed in the next section.

Curvature and the First Fundamental Form

We have discussed the geometric significance of Gaussian curvature for a surface in R® in
terms of its First and Second Fundamental Forms. The Theorema Egregium provides a way of
defining the Gaussian curvature entirely in terms of the First Fundamental Form, and consequently
for riemannian metrics that are not necessarily realizable by surfaces in R3. One is therefore led to
natural questions about interpreting the Gaussian curvature entirely in terms of metrical properties
directly given the First Fundamental Form without using auxiliary objects such as normal lines or
osculating circles. We shall describe one interpretation of positive and negative Gaussian curvature
at a point entirely in metric terms; if the Gaussian curvature is equal to zero the situation is
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more complicated, but if the Gaussian curvature is identically zero then we shall give a similar
interpretation.

Given a Riemannian metric
E(u,v)dudu + 2F(u,v)dudv + G(u,v)dvdv

and a parametrized regular, piecewise smooth curve in a connected domain U ¢ R? on which the
metric is defined, one can define the length of the curve by the formula

b
/ Vv E(u,v)u/ ()2 + 2F(u,v)u (t)v'(t) + G(u,v)v(t)? dt

where the curve is defined on the interval [a,b]. The positivity condition on the coefficients E, F
and G for a Riemannian metric imply that the expression inside the square root sign is always
positive for regular smooth curves. One would like to define the distance between two points with
respect to this metric as the greatest lower bound of the lengths of all regular piecewise smooth
curves joining the points.

Two questions immediately arise. First of all, one needs to show that the lengths of curves
joining two distinct points are bounded from below by a positive constant; in other words, if p
and q are distinct points of a surface then it is not possible to find a sequence of piecewise smooth
regular curves y,, joining them such that the length of y,, is less than 1/n. Second, one would like
to know if there is some curve for which the greatest lower bound is actually realized. Such a curve
is called a minimal geodesic.

It is fairly easy to construct a somewhat artificial example where there is no curve of minimum
length joining two points. Specifically, consider the surface given by removing the origin from the
xy-plane. Then the greatest lower bound of the lengths of all piecewise smooth curves joining
(1,0,0) and (—1,0,0) is equal to 2, which is the ordinary Euclidean distance, but there is no curve
of length 2 joining these points that misses the origin. To see this, let y be a regular piecewise
smooth curve joining the two points in question that is defined on [a,b]. Then there is some point
¢ € (a,b) such that the second coordinate of y(&) is equal to zero; it follows the first coordinate
of y(£) must be equal to some nonzero value, say c. This in turn implies that the arc length of y
must be greater than or equal to the length of the broken line curve which first joins (1,0,0) to
(0, ¢,0) linearly and then joings (0,¢,0) to (—1,0,0) linearly. The length of this broken line curve
is 241 + ¢2, which is strictly greater than 2. Therefore there is no curve of shortest length joining
the two points that lies completely inside the surface. One obvious feature of this example is that
one can extend the given surface to a larger one (namely, the whole plane) in which there is a
curve of minimum length joining the two points in question. In fact, one can construct examples
for which one cannot add extra points to ensure that minimizing geodesics always exist, but such a
construction would require a great deal of additional work. A natural candidate for a bad example
is the graph of the function
_ ry
fley) = PER

which is defined for (z,y) # (0,0) and cannot be extended to a function that is continuous at (0, 0).

In contrast to the preceding paragraph, it turns out that one can always find curves of minimum
length joining a given point p to another point q provided q is sufficiently close to p, and this fact
has important implications to showing the the lengths of curves joining two distinct points are
bounded from below by a positive constant.
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EXISTENCE OF SHORT GEODESICS. Suppose we are given a riemannian metric M on
a connected domain in R?, and let p € U. Then there is an r > 0 such that |q — p| < r implies
that p and q can be joined by a regular piecewise smooth curve of least length, and this curve is
in fact a regular smooth curve that lies entirely in the open disk with center p and radius r.

Furthermore, given any nonzero vector v € R? there is a unique regular smooth curve curve
I defined on an open interval (—h,h) containing 0 such that T'(0) = p, I'/(0) = v and " defines a
curve of minimum length joining p to I'(t) for all t in the given interval (—h,h).

Finally, if 6 € (0,r) and L(q) denotes the length of the shortest curve joining p to q, then the
minimum value m(9) of L(q) over the circle defined by |q| = 0 is positive.m

The curves of least length in this result are called minimizing geodesics. It turns out
that such curves are defined by second order differential equations, and this is the reason for the
conclusion in the second paragraph. At the end of this section we shall include a few remarks on
geodesics for oriented surfaces in R?.

COROLLARY. If} is a surface and p and q are two points on ¢ that can be joined by a regular
piecewise smooth curve on X, then the set of lengths for all such curves is bounded from below by
a positive constant.

Proof.  To simplify the discussion we shall choose parametrizations for our regular piecewise
smooth curves over some interval of the form [0, a] such that I'(0) = p and I'(a) = q. We need to
find a positive lower bound for the length that does not depend upon the particular curve I'.

Let X be a regular smooth parametrization for ¥ at p that is 1-1, let X(po) = p, and let
r > 0 be as in the existence theorem stated above. There are two cases, depending upon whether
the point q € 3 has the form X(qq) for some qq satisfying |qo — po| < .

FirsT CASE. Suppose that q satisfies the condition in the preceding sentence, and let
s = |qo — po|- If y is an arbitrary point of ¥ having the form X(yo) for some yq satisfying
|yo — po| < 7, then we shall define go(y) to be equal to |y — pol; the right hand side is well defined
because the parametrization X is 1-1. This turns out to be a continuous function of y. Likewise, if
we define a real valued function g by setting ¢g(t) = min{s, go(I'(¢)) } if I'(¢) has the given special
form, and g(t) = s if I'(¢) does not have this form, then ¢ is continuous on the interval [a, b] over
which I' is defined.

Since g(a) = 0 and ¢(b) = s, there must be a first parameter value t( such that g(tg) = s. We
claim that the image of the restricted curve I'|[0,¢o) lies in the image W of the disk of radius s
centered at pp under X (in fact a stronger statement is true but we shall not need this). This is
true because if I'(t) does not lie in the image then g(t) > s and we know that g(t) < s if t € [0,%¢).

By the Intermediate Value Theorem there is a ¢1 € (0,%) such that g(t;) = 3s; we know that
the image of T restricted to [0,¢1] lies in the set W described above, and therefore this restriction
may be written as a composite X °I'; for some regular piecewise smooth curve I'y which takes values
in the disk of radius r centered at pg. We then have

Length (T'[[0,¢1]) = Lengthy (1) >m(3s) > 0

on one hand and
Length (I'|[0,£1]) < Length(I")

on the other, which implies that the right had side is greater than or equal to the positive quantity
m(%s) This gives us our desired positive lower bound on the length of I' which is independent of
the curve I itself.
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SECOND CASE. The argument is similar but not quite identical. We may define the function
g exactly in the first case for an arbitrary s such that 0 < s < r. In this case we know that
g(t) = s for some parameter value t because there is some value ¢ such that I'(t) does NOT have
the form X(y() for some yq satisfying |yo — po| < 7. We can now proceed as before to find the
least parameter value to such that g(tg) = s, and from this point on the argument is identical to
the proof in the first case.m

FUNDAMENTAL PROPERTIES OF DISTANCE FUNCTIONS. Suppose that we have
either a Riemannian metric M defined on a connected domain U in R™ or a geometric surface ¥
in R? such that each pair of points in ¥ can be joined by a regular piecewise smooth curve in X,
and let dyi(x, y) or ds(x, y) denote the greatest lower bound of the lengths of piecewise smooth
curves joining x and y in U or . Then this distance function d has the following basic properties:

[1] The distance d(x, y) is nonnegative, and it is equal to zero if and only if x =y.
[2] For all x and y we have d(x, y) = d(y, x). and it is equal to zero if and only if x =y.
[3] (TRIANGLE INEQUALITY) For all x, y and z we have

dix,z) < d(x,y) + d(y, z)

Sketch of proofs. The first statement follows from the immediately preceding discussion. To
prove the second, not that if I" is a regular piecewise smooth curve defined on [a,b] joining x to
y then I'*(t) = I'(b — t) defines a similar curve on [a — b,0] joining y to x. This implies that
d(y, x) < d(x,y). Reversing the roles of x and y yields the reverse inequality d(y, x) > d(x, y),
and therefore the two quantities must be equal. Finally, to prove the third statement, let ¢ > 0
and choose suitable curves I'; and 'y such that T'; is defined on [0, a;], with I'; joining x to y and
I’ joining y to z, and the lengths of these curves satisfying

Length('h) < d(x,y) + 3

Length(Ts) < d(y,2) + .

Consider the curve formed by concatenating I'; and I'g; specifically, let I be the curve defined on
the interval [0, a; +as] such that I'(¢) =T’y (¢) for t € [0,a;] and T'(t) = T'(t —ay) for t € [ay, a1 +as).
These piece together to form a regular piecewise smooth curve because the two formulas yield the
same point at parameter value a;. The length of this curve then given by

Length(I'y) + Length(I's)
and hence we have the inequality
d((x,z) = Length(I') = Length(I'y) + Length(I's) < d(x,y) + d(y,z) + ¢

for every € > 0. In particular this implies that the expression on the left hand side cannot be
greater than d(x, y) + d(y, z), and this is precisely the assertion in [3].m

A METRIC INTERPRETATION OF CURVATURE. Suppose that we are given three points a,
b, ¢ in R? that form the vertices of an isosceles triangle with vertex at a; i.e., we have b —al =
|c —a] = ¢ > 0. If 6 is the angle between b — a and ¢ — a then it is an elementary exercise in
trigonometry to prove that |c — b| = 2 sin %9. Roughly speaking, Gaussian curvature measures
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the extent to which this fails for riemannian metrics. The proof of this fact requires a considerable
amount of machinery from Riemannian geometry, so we shall simply state the results here.

Since we are only concerned with metric behavior near a point, it will suffice to look at
Riemannian metrics defined on an open disk centered at some point p in a connected domain
U C R?. Let M be a Riemannian metric, and let 7 > 0 be so small that every point in the open
disk of radius r centered at p can be joined to the later by a smooth curve of minimum length lying
entirely inside this disk. Given two linearly independent vectors v and w in R?, let Oy (p) be the
angle between them computed with respect to the Riemannian metric:

Mp(v, w)
(Mp(v, v))"? (Mp(w, w))"/?

cos (fm(p)) =

Consider now the smooth geodesics which pass through p and have tangent vectors v and w at
p.- We can find points on these geodesics that are some positive distances away from p; if dg is
the minimum of the two distances, then for every ¢ € (0,d¢] we can find points x and y on the
respective geodesics such that the distances from x and y to p are both equal to ¢ (suppose that
we have geodesics with the given tangent vectors defined on intervals [0, a] and [0, b] respectively;
then by the Intermediate Value Theorem one can find points sg and ty in these intervals so that
the lengths of the restrictions of the geodesics up to parameter values sg and ty are equal to /).
We then have the following relationships between the Gaussian curvature at p and the distance
between x and y with respect to M.

DISTANCE COMPARISON. Suppose we are given everything as in the preceding discussion,
and let K be the Gaussian curvature at p.

(1) If K > 0 then there is a §; > 0 such that if { < 6; we have

dv(x,y) < 20sinfy(p) -

(1) If K < 0 then there is a §; > 0 such that if £ < §; we have

dv(x,y) > 2/¢sinfu(p) .

(i) If the Gaussian curvature is identically zero, then there is a §; > 0 such that if £ < &; we
have

dm(x,y) = 2{¢sinfy(p) =

These may be viewed as generalizations of standard trigonometric formulas from spherical
geometry, Noneuclidean geometry in the sense of Bdlyai and Lobachevsky, and classical Euclidean
geometry respectively. Note that if we only know the Gaussian curvature is zero at p but we know
nothing else about its behavior near p, then these comparison results yield no information.

FEquations defining geodesics

If we are given a surface in R®, then there is a very simple characterization of minimizing
geodesics.

PROPOSITION. Let S be an oriented surface in R® with normal vector field N. Then the
following hold:
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(7) If v(s) is a minimizing geodesic in S such that |y'(s)| = 1 for all s, then ~"(s) is a
scalar multiple of N(~(s)) for all parameter values s, and hence v"(s) is perpendicular to the
2-dimensional subspace of tangent vectors to S at y(s).

(ii) Conversely, if v(s) is a curve in S such that |v'(s)| = 1 for all s and 7" (s) is a scalar
multiple ofN(’y(s) ) for all parameter values s, then for each value sq there is a § > 0 such that if
0 < h < ¢ then the restriction of 7y to [sg — h, sg + h| Is a minimizing geodesic.m

More generally, a smooth curve v as a above in an oriented surface S (with normal vector field
N) is said to be a geodesic if |7/(s)| = 1 for all s, then 7”(s) is a scalar multiple of N ((s)) for
all parameter values s. Further information about such curves and proofs of the assertions above
can be found on pages 232-238 of Schaum’s Outline Series on Differential Geometry.

It is not difficult to check that the given condition holds for the two most important examples
of minimizing geodesics. In particular, if S is a plane, then the condition reduces to saying that "
is always perpendicular to the plane; on the other hand, we can also check that v" must lie in the
unique 2-dimensional subspace V' which is equal or parallel to S, and hence the condition in the
proposition reduces to 4" = 0, which is the differential equation of a linear curve in R®. Similarly,
if S is a sphere and we take a great circle arc, then " is a scalar multiple of 7, and since the
tangent plane’s normal line is given by the radial line, it follows that v” is perpendicular to the
2-dimensional vector subspace of tangent vectors at a given point.

The spherical examples also show that not every geodesic in the general sense is a minimizing
geodesic. By the preceding discussion we know that every great circle arc is a geodesic (use the
condition on "), but if we are given two points p and q on the sphere that are not opposite
each other (in other words, the line joining them does not pass through the center of the sphere),
then the great circle splits into a major and minor arc, and the major arc cannot be a minimizing
geodesic because it is longer than the minor arc.

V.2: Fundamental Theorem of Local Surface Theory

(Lipschutz, Appendix IT)

The Frenet-Serret Formulas imply that curvature and torsion completely determine a curve
locally provided on gives the initial position and unit tangent vector for the curve. There is a
corresponding theorem for surfaces involving the coefficients E, F, G and e, f, g of the First and
Second Fundamental Forms. However, these coefficient functions must satisfy some nontrivial
restrictions. We have already noted that the matrix for the First Fundamental Form

(E(u, v)  F(u,v) >

must have positive eigenvalues, or equivalently that F and G as well as the determinant £ G — F2
must be positive. However, there are also other conditions that arise naturally from our basic
assumptions that a local parametrization X have “sufficiently many” continuous partial derivatives.
In particular, if we want X to have continuous third partial derivatives then we have equations of
the form X 12 = X 2,1 = X2,1,1 and then we have equations of the form X521 = X312 = Xy 2,2
If we combine these equations with the expansions of the second partial derivatives X; ; in terms of
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Christoffel symbols and the Second Fundamental Form coefficients, we obtain the following three
equations:

ex—f1 = efiz + f (Fiz - P%,l) - QF%,l
fo—g1 = eré,z + f (Fg,z - P%,2) - gfig
€g — f2 = I [(Fg,z)l - (Fiz)2 + F%,QP%J - F%,QF%,I] +
E- [(F%z)l - (F%,Q)Q + F%,2F%,1 + Fasz - F%,QF%,Q - F%zré,z]

The first two of these are known as the Codazzi-Mainardi Equations. We note in passing
that the third equation provides another demonstration of Gauss’ Theorema Egregium; in fact,
one important advantage of this proof is that it reflects the standard approach to curvature in the
study of differential geometry for objects whose dimensions are greater than two.

The verifications of these formulas from the classical viewpoint are carried out on pages 235-236
of DO CARMO and in Problem 10.28 on page 224 of the Schaum’s Outline Series book on differential
geometry. Derivation of the corresponding formulas involving differential forms are given on pages
257, 260 and 281 of O’NEILL (see Theorem 1.7, Corollary 2.3 and Theorem 5.4 respectively).m

The Gauss and Codazzi-Mainardi equations play an important role in establishing the main
result of this section.

FUNDAMENTAL THEOREM OF LOCAL SURFACE THEORY. Let U be a connected
domain in R?, and let E, F, G and e, f, g be smooth functions with sufficiently many continuous
partial derivatives on U such that E, F and G satisfy the positive definiteness conditions given
above and e, f and g satisfy the three compatibility conditions displayed above. Then for each
po € U, p € R® and plane II containing p, there is a regular surface parametrization X defined
on some open disk N about pg such that the First and Second Fundamental Forms of X have
coefficients equal to E, F, G and e, f, g respectively. This parametrization is locally unique up to
a rigid motion of R3.

The uniqueness proof is essentially a relatively lengthy argument involving the uniqueness of
solutions of certain ordinary differential equations (see pages 236 and 311-314 of bo CARMO or
the argument following the statement of Theorem 10.4 on pages 203-204 of the Schaum’s Outline
Series book on differential geometry). On the other hand, the existence proof requires the solution
of a system of partial differential equations.

In order to prove the existence of a regular smooth surface parametrization it is necessary to
solve partial differential equations of the form Dy = A(z,y) where x and y are vectors and A
is a smooth matrix valued function of x and y. In contrast to the situation for ordinary differen-
tial equations, the partial differential equation given above does not necessarily have a solution;
specifically, the standard mixed partial derivative identities

02 02
axi axj N axj 81‘1

imply that the entries of A(x,y) and their partial derivatives must satisfy certain equations. How-
ever, the following result of F. G. Frobenius ensures that solutions always exist provided these
conditions are satisfied:

FROBENIUS INTEGRABILITY THEOREM. Let n = k+d, identify R™ with RF x R?, let

U be a connected domain in R™ and Let A be a smooth function defined on U and taking values
in the space of d x k matrices, and let (a.b) € U. Denote the entries of A by A; ;.
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Assume in addition that these functions satisfy the compatibility conditions

94,

Ag i .
0x 7

d
Ty e - T

Lr s=1 Ls xj s=1
Then there exists a unique function ® defined on an open disk V' containing a and taking values
in R% such that the following conditions hold:

[1] ®(a) =Db

2] (x, ®(x)) €U forallx € V.

B8] D®(x) = A(x, ®(x))

Conversely, if such a function exists then the compatibility condition is satisfied.

Biographical information on Frobenius, and also many other mathematicians, may be found
at the following online site:

http://www-gap.cds.st-and.ac.uk/~history/BiogIndex.html

The proof of the existence portion of the Fundamental Theorem of Local Surface Theory is
discussed on pages 311-314 of DO CARMO as well as in Appendix 2 on pages 264265 of the Schaum’s
Outline Series book on differential geometry.m

Final remarks

1. A discussion of the Fundamental Theorem of Local Surface Theory from the viewpoint
in Chapter 6 of O’NEILL appears in Section 6.9 of the latter, with the main result appearing as
Theorem 9.2 on pages 306-307. As noted at the end of this discussion, the result is completely
analogous to the congruence theorem for curves discussed in Section I1.4 of the course lecture notes.

2. A generalization of the Fundamental Theorem of Local Surface Theory to hypersurfaces of
dimension (n—1) in R"™ is established in Section 9.2 of HICKS; the argument is a direct generalization
of the proof for surfaces.m

V.3: Riemannian metrics and hyperbolic geometry

(Lipschutz, Chapter 11)

In Section III.4 of the lecture notes we mentioned that the non-Euclidean plane discovered
independently by L. Bélyai, N. I. Lobachevsky and C. F. Gauss in the 19" century has a natural
interpretation in terms of riemannian metrics. Specifically, one takes the underlying space U to
be the open unit disk about the origin in R?, and the riemannian metric given to the so-called

Poincaré disk metric:
drdx + dydy

(1 — 2 y2)2

In the notes we described the curves of shortest length (with respect to this metric) that join pairs of
points in U. The purpose here is to explain the connection between this object and non-Euclidean
geometry in terms of congruence.
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General considerations
The classical geometric notion of congruence has two basic properties:

(1) Given points x and y in U, there is a rigid motion (which must be an isometry) taking x
toy.

(2) Given a point p in U and two unit tangent vectors x and v at p there is an isometry T
which sends p to itself and sends the curve v(t) = p + tx to the curve T °v such that

(T>7)(0) =y,

The notions of isometry and unit vector should be interpreted within the framework of rieman-
nian metrics, and in this connection we use the following characterization of (smooth) riemannian
isometries:

PROPOSITION. Suppose that we are given a riemannian metric g over a connected domain
in R?; by construction, if u € U then this yields an inner product g, on R? such that the Gram
matrix coefficients

gij(u) = gules, €;)

are smooth functions of u (continuous first partial derivatives at least). Suppose that f : U — U
is a smooth 1 — 1 onto map with a smooth inverse such that for all (u,x,y) € R"™ we have the
following identity:

gu(X,y) = 9f(u) (Df(u)x, Df(u)y)

Then for each smooth curve v from the closed interval [a,b] to U, the lengths of v and f °~y are
equal. In particular, if p and q are in U and « is a smooth curve of shortest length joining p and
q, then fe~ is a smooth curve of shortest length joining f(p) and f(q).

The equality of length follows directly from the isometry identity, and the statement about
curves of shortest length follows because f preserves lengths of curves.m

Definition. A map f satisfying the condition in the proposition will be called a riemannian isom-
etry. If we are working with riemannian isometries, then the second condition involving congruence
can be reformulated as follows:

(2') Given a point p in U and two unit tangent vectors x and y at p there is a riemannian
isometry f which sends p to itself and satisfies Df(p)x =y.

It will also be helpful to have the following general facts about riemannian isometries.
THEOREM. Suppose that U is as above.

(1) If f and g are riemannian isometries of U, then so is their composite g° f, and the inverses
of f and g are also riemannian isometries.

(i) Suppose that p € U and f is a riemannian isometry of U. Suppose that condition (2)
above Is satisfied at p, let q be some other point of U, and suppose there is a riemannian isometry
h of U such that h(p) = q. Then condition (2") above is satisfied at q.

Sketch of proofs. The first part is a routine computation and is left to the reader as an exercise.

To prove the second part, let u and v be unit tangent vectors at q. Then x = Df ~!(q)u
and y = Df~!(q)v are unit tangent vectors at p, so by the hypothesis there is some riemannian
isometry h of U which maps p to itself and satisfies Dh(p)x = y. If we take g = fehef~!, then
direct computation shows that g will take q to itself and satisfy Dg(q)u = v.m
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Application to the Poincaré metric

To complete the linkage of the Poincaré metric with non-Euclidean geometry, we need to check
that it satisfies property (1) above and that it also satisfies property (2’) at some point of the open
unit disk. By the previous theorem, these will imply that the metric also satisfies property (2') at
every point of the open unit disk.

Verification of property (2") at the origin 0. This turns out to be remarkably simple.
Given a 2 x 2 orthogonal matrix A, we know that it maps the open unit disk to itself, so let f4
be this 1-1 onto mapping. It clearly has an inverse whose coordinate functions have continuous
partials. Furthermore, direct calculation shows that f4 is a riemannian isometry with respect to
the Poincaré metric.

Now unit vectors for the Poincaré metric at the origin are just unit vectors with respect to the
standard inner product on R?. Given two such unit vectors, there is an orthogonal matrix taking
one to the other, and since Df4(0) = A it follows that property (2’) is satisfied at 0.

Verification of property (1). This is more difficult, so we shall first chip away at it with
a sequence of reductions.

(a) It suffices to verify the property when one of the points is the origin. Suppose we know
the property holds in this case, and let p and q be arbitrary points in the open disk. Since we
are assuming the condition in the reduction, there are riemannian isometries f and g such that
f(0) = p and g(0) = q; the composite h = g° f~! then maps p to q.

(b) It suffices to verify the property when one of the points is the origin and the other is on
the positive x-axis. Suppose we know the property holds in such cases, and suppose that we have
a nonzero point q on the unit disk. We may then write q = tv, where v is a unit vector and
0 <t < 1. Since we are assuming the condition in the reduction, we have a riemannian isometry h
which maps 0 to te;. However, we also have an orthogonal matrix A which sends e; to v, and if
fa is the associated riemannian isometry then it will follow that f4°h will send 0 to v.

(¢) Finding a riemannian isometry which sends the origin to te,, where t is an arbitrary number
strictly between 0 and 1. This is by far the least obvious step in the whole process, and it is best
done using complex numbers. Consider the following so-called Mébius function, which is a quotient
of two linear functions defined for all complex numbers x:

1
flz) = az +0 where a = — and b = !

bz+a V1 —t2 V1—t2

This complex valued function is defined for all values of z except —1/t, and since 0 < ¢t < 1 it is
defined on the open unit disk U. By construction we have f(0) =t and a? — b* = 1.

It is probably not obvious that f sends the open unit disk U into itself. The reasons for this
involve depend upon the fact that a? —b? = 1, and they are described in the section of the following
online document titled Disk model actions:

http://en.wikipedia.org/wiki/Hyperbolic_motion

Verifying that f is a riemannian isometry requires a direct calculation of D f, which is elemen-
tary but messy. We shall omit the details.m
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The preceding discussion shows that the Poincaré metric has an extensive collection of rie-
mannian isometries, and from the viewpoint of differential geometry this is one of the key ties to
non-Euclidean geometry.

The online sites listed below contain more information on the interpretation of non-Euclidean
geometry using differential geometry.

http://en.wikipedia.org/wiki/Hyperbolic_geometry
http://en.wikipedia.org/wiki/Upper_half_plane

http://mathworld.wolfram.com/PoincareHyperbolicDisk.html

Gaussian curvature in the hyperbolic plane

Gauss’ Theorema Egregium yields a very simple but fundamental property of the non-Euclidean
plane we considered in Section III1.4 of the lecture notes and the document hyperbolicl.pdf. The
starting point is the fact that one can define the Gaussian curvature of a surface entirely in terms
of its fundamental form and hence one can define Gaussian curvature for an arbitrary riemannian
metric on a connected domain in R?. The following observation is an immediate consequence of
the definition of Gaussian curvature entirely in terms of the First Fundamental Form:

PROPOSITION. Let U be a connected domain in R?, and let g be a riemannian metric on U.
Suppose that f : U — U is a riemannian isometry and p € U. Then the Gaussian curvature at p
is equal to the Gaussian curvature at f(p).m

This has an immediate implication for the Poincaré metric.
COROLLARY. The Poincaré metric has constant Gaussian curvature.

Proof. This is true because for each pair of points p and g there is a riemannian isometry taking
p to q. Therefore the Gaussian curvatures at these two points are equal, and since these points are
arbitrary it follows that the Gaussian curvature is the same at every point.m

It turns out that the Gaussian curvature for the Poincaré metric we have defined on the open
unit disk is equal to —4; this follows from the methods used in Corollary 2.3 and Example 2.6 on
pages 319 and 320 of O’NEILL. Thus the open unit disk with the Poincaré metric may be viewed
as an analog of the standard metrics on the Euclidean plane and sphere of radius r, which have
Gaussian curvatures 0 and 1/7? respectively. If we multiply the Poincaré metric by a positive
constant ¢, then it will follow that the Gaussian curvature of the new metric is equal to —4/c? (this
also follows from the references to O’NEILL given above), so it the Poincaré metric and its positive
multiples can have negative Gaussian curvature equal to an arbitrary negative real number.

Surfaces with constant Gaussian curvature, and their higher dimensional generalizations, play
a fundamental role in differential geometry. Additional discussion of this topic appears in Section
8.6 of O’NEILL.
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