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V :    Number systems and set theory 
 
 

Any reasonable framework for mathematics should include the fundamental number 
systems which arise in the subject: 
 

1. The natural numbers N (also known as the nonnegative integers). 
2. The (signed) integers Z obtained by adjoining negative numbers to N. 
3. The rational numbers Q obtained by adjoining reciprocals of nonzero 

integers to Z. 
4. The real numbers R, which should include fundamental constructions like 

nth roots of positive rational numbers for an arbitrary integer n > 1, and also 

all “ infinite decimals”  of the form  b1 ⋅⋅⋅⋅10 
–

 

1 + b2 ⋅⋅⋅⋅10 
–

 

2 + … + bk ⋅⋅⋅⋅10 
–

 

k + … 
where each bi  belongs to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. 

 

Up to this point we have tacitly assumed that such number systems are at our disposal.  
However, in both the naïve and axiomatic approaches to set theory it is eventually 
necessary to say more about them. 
 
The naïve approach.   In naïve set theory it is necessary to do two things.  First, one 
must describe the properties that the set – theoretic versions of these number systems 
should satisfy.  Second, something should be said to justify our describing such systems 
as THE natural numbers, THE integers, THE rational numbers, and THE real numbers.  
This usage suggests that we have completely unambiguous descriptions of the number 
systems in terms of their algebraic and other properties.  One way of stating this is that  
 

any system satisfying all the conditions for one of the standard 
systems N, Z, Q or R should be the same as N, Z, Q or R for all 
mathematical purposes, 

 

with some explicit means for mechanical translation from the given system to the 
appropriate standard model.   In less formal terms, it we have any systems X which 
satisfy all the fundamental properties of one of the systems N, Z, Q or R, then X is 
essentially a mathematical clone of the appropriate number system.  
 
There are good theoretical and philosophical reasons for asking such questions  about 
the  essential uniqueness  of the number systems, but these question also have some 
important practical implications for the development of mathematics.   If there would be 
two systems that satisfy the basic properties of N, Z, Q or R but differ from a standard 
model in some significant fashion, then clearly we might get different versions of 
mathematics depending upon which example is chosen.  To illustrate this, suppose we 
decided to develop a version of the real numbers in which infinite  base 10 “decimal 
expansions” are replaced by expansions with some other number base, say 16 (to 
conform with the internal arithmetic of some computer) or 60 (as in Babylonian 
mathematics).  We expect that everything should work the same regardless of the 
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numerical base we choose for expressing quantities, but at some point it is necessary to 
confirm that our expectation is fulfilled.   
 
Later in this unit we shall describe precisely the notion of a mathematical clone.  For the 
time being we note that examples of this concept have already been encountered in 
Section IV.6 when we talked about whether two partially ordered sets have the same 
order type.  Given two such partially ordered sets, the 1 – 1 order preserving 
correspondence from one to another can be viewed as a formal mathematical way of 
saying that either of the partially ordered sets is a clone of the other. 
 
Our coverage in this unit will mainly concern the first item described in the naïve 
approach; namely, the formal properties of the number systems and the mathematical 
statements of their uniqueness properties.   Later in these notes (and largely for 
reference purposes) we shall explain why the basic properties describe these number 
systems in a totally unambiguous manner. 
 
The axiomatic approach.   In axiomatic set theory it is necessary to assume the 
existence of systems with the given properties and to prove these properties describe 
them unambiguously (the latter proceeds exactly the same as in naïve set theory). 
 
One new issue in the axiomatic approach is the goal of keeping the basic assumptions 
for set theory as simple as possible.  Assuming the existence of four separate but clearly 
interrelated number systems is a convenient first step, but at some point it is natural to 
ask if we really need to make such a long list of assumptions in order to set everything 
up.  Aside from possible aesthetic considerations, there is the practical consideration 
that long lists of assumptions raise questions whether there might be some logical 
inconsistency; after all, the whole idea of a proof by contradiction is that one makes so 
many assumptions that the conclusions end up contradicting each other, and it would 
undermine everything if such contradictions could be derived from the axioms for set 
theory itself.  We shall address some of these issues in the final unit of the notes. 
 
 

Some more specific objectives 
 
Much of this unit is devoted to summarizing familiar properties of the four basic number 
systems, so we shall indicate some points that are less elementary and particularly 
important.  In Section 1 the most significant new item is the statement of the Peano 
Axioms for the natural numbers, and in Section 2 the discussion of finite induction and 
recursive definitions in the framework of set theory is one of the main topics in the unit.  
The formulas for counting the numbers of elements in various finite sets in Section 3 
start with familiar ideas, and they give systematic rules that are important both for their 
own sake and for the remaining units of the course.  Finally, the description of the real 
numbers in Section 4 is fundamentally important.  Although this description is fairly 
concise, it contains everything that is needed to justify the standard facts about real 
numbers and to develop calculus in a mathematically rigorous fashion.  The latter 
development is covered in subsequent courses.   Although the justification of the usual 
expansions for real numbers is also somewhat peripheral to the present course, for the 
sake of completeness we shall explain how our formal description of the real numbers 
yields their familiar properties which are used in everyday work, both inside and outside 
of mathematics. 
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 V  . 1 :  The natural numbers and integers 
 

 
(Halmos, §§ 11 – 13;  Lipschutz, §§ 2.1, 2.7 – 2.9) 

 

 
In many respects the positive integers form the most basic number system in all of the 
mathematical sciences.   Some reasons for this are historical or philosophical, but logical 
considerations are particularly important for the systematic development of mathematics. 
 
Clearly we would like our descriptions of number systems to summarize their basic 
algebraic properties concise but understandable.   In particular, it simplifies things 
considerably if we can say that addition, subtraction and multiplication are always 
defined.   Since the positive integers are not closed under subtraction, clearly they do 
not fulfill this condition.  Therefore we shall begin by describing the integers, and we 
shall view the positive integers as a subset of the integers with certain special properties.   
 
The important algebraic properties of the integers split naturally into three classes, two of 
which are fairly general and one of which is more focused. 
 
Basic rules for addition and multiplication.  Formally, these are the conditions 
defining an abstract type of mathematical system known as a commutative ring with 
unit. 
 
FIRST AXIOM GROUP FOR THE INTEGERS.  The integers are a set Z, and they have 

binary operations  A :  Z ×××× Z  →→→→  Z, normally expressed in the form A(u, v)  =  u  +  v, 

and M : Z ×××× Z  →→→→  Z, normally expressed in the form M(u, v)  =  u  v or u  ⋅⋅⋅⋅ v  or u ×××× v,  
which satisfy the following algebraic conditions: 
 

1. (Associative Laws). For all a, b, c in Z, (a + b) + c   =   a  +  (b + c)  
and (a b) c  =  a (b  c). 

2. (Commutative Laws). For all a, b in Z, a + b   =   b  +  a and a b  =  
b  a. 

3. (Distributive Law). For all a, b, c in Z, a (b + c)   =   a b  +  a c. 
4. (Existence of 0 and 1). There are distinct elements 0, 1 in Z such 

that for all a we have   a  +  0   =  a,  a ×××× 0  =  0  and   a ×××× 1  =  a. 
5. (Existence of negatives or additive inverses). For each a in Z 

there is an element  – a in Z such that a  +  (– a)   =   0. 
  

Notational footnote:   The notation Z for the integers has become fairly standard in 
mathematical writings, and it is apparently derived from the German word for numbers 
(Zahlen) and/or cyclic (zyklisch). 
 
We shall need the following basic consequences of the preceding algebraic conditions: 
 
Proposition 1.  If a belongs to a system satisfying the properties listed above, then we 
have (– a)  (– b)  =  a b. 
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Proof.   The following are special cases of the axioms: 
 

0   =   a 0   =   a [b + (– b)]   =  a b  +  a (– b) 
 

0   =   0 (– b)   =   [a + (– a)]  (– b)     =   a (– b)    +  (– a) (– b) 
 

The preceding results also show that a b  =  – [a (– b)]  =  (– a) (– b).� 
 
Basic rules for ordering.   When combined with the previous conditions, these yield a 
type of mathematical system known as an ordered integral domain. 
 
SECOND AXIOM GROUP FOR THE INTEGERS.  There is a linear ordering on Z such 
that the following hold: 
 

1. If a  >  0  and b  >  0, then a + b  >  0  and a b  >  0. 
2. For all a, b in Z, we have a  >  b if and only if a – b  >  0. 

 

Well – ordering of positive elements.  This is the assumption that the set N of 
nonnegative elements in Z, often called the natural numbers, is well – ordered with 
respect to the standard linear ordering. 
 
WELL - ORDERING AXIOM FOR THE POSITIVE INTEGERS.  The set N of all x in Z 

such that x  ≥≥≥≥  0  is well – ordered. 
 
We shall new derive some basic properties of the integers. 
 
Lemma 2.  If x is a nonzero element in a system satisfying the first two groups of 
axioms, then x2 is positive. 
 
Proof of Lemma 2.  Either x is positive or – x is positive, and in these respective cases 
it follows that  x2 is positive or (– x)2 is positive.  However, the previous proposition 
implies that x2  =  (– x)2, and thus in either case we know that the square must be 
positive.� 
 
Lemma 3.  The multiplicative identity 1 is positive, and there are no integers x for which 
we have  0  <  x  <  1. 
 
Proof of Lemma 3.  First of all, 1 is positive because 1  =  12.  Let P be the set of 
positive elements in Z  .  By well – ordering it follows that P has a least element m, which 

must satisfy m  ≤≤≤≤  1.   If strict inequality holds then we have 1 – m  >  0, and therefore 
we have m (1 – m) >  0, which translates to 0  <  m2  <  m, contradicting the minimality 
of m.  Therefore 1 must be the least element of the positive integers.� 
 
We shall need the following elementary but important property of positive integers later 
in this unit. 
 
Theorem 4. (Long Division Theorem.)  Given two nonnegative integers a and b such 
that  b   >   1, there are unique nonnegative integers q and r such that a   =   b  q  +  r, 

where 0   ≤≤≤≤   r   ≤≤≤≤   b – 1. 
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The numbers q and r are often called the integral quotient and remainder respectively. 
 
Proof.  We first prove existence.  Consider the set of all differences a – b x, such that x 
is a nonnegative integer and a – b x is nonnegative.  This set contains a, and thus it is 
nonempty, and as such it has a minimum element y.  We claim that y  <  b; if this were 
false, then y – x would be another element of the set (it is still nonnegative) and it would 
be strictly less than y.  Since y is minimal this cannot happen, and therefore we must 
have y  <  b.  This establishes existence. 
 
To prove uniqueness, suppose that we have two expressions  
 

a   =   b q  +  r   =   b q ′′′′    +  r ′′′′ , 
 

where q and q ′′′′  are nonnegative and (say) 0   ≤≤≤≤   r   ≤≤≤≤   r′′′′    ≤≤≤≤   b – 1.  These conditions 

imply that 0   ≤≤≤≤   r′′′′  –  r   ≤≤≤≤   b – 1, and since     
 

b (q′′′′  –  q)  =   r ′′′′  –  r   ≤≤≤≤   b – 1 
 

it follows that  b (q′′′′  –  q)  =  0.   Since b is positive this forces q′′′′  –  q to be equal to  0, 
so that q ′′′′   =  q.   If we substitute this back into the first displayed equation in the 
paragraph we see that we must also have r ′′′′   =  r.� 
 

 
The Peano Axioms for the natural numbers 

 
There is a very simple and important characterization of N which is due to G. Peano 
(1858 – 1932).  It depends upon two intuitively clear properties.  The first is that zero is 
the unique nonnegative integer that is smaller than every other nonnegative integer, and 
the  second is that if we are given a nonnegative integer n, then n + 1 is the unique 
minimal positive integer m such that m  >  n.   
 
Definition.  A system satisfying the Peano axioms is an ordered pair (P, σσσσ) consisting 
of a set P and a function σσσσ : P  →→→→ P with the following properties [which reflect the nature 
of σσσσ as a map taking each natural number m to its “successor” m + 1]: 
 

(1)  There is a distinguished element (the zero element 0 or 0N) that is not in the 
image of σσσσ. 

 

(2)  The map σσσσ is 1 – 1.  
 

(3)  If A is a subset of P such that  
 

(i) 0  ∈∈∈∈  A  ,   
(ii) for all k  ∈∈∈∈  P ,  k  ∈∈∈∈  A implies σσσσ(k)  ∈∈∈∈  A  ,  
 

then we must have A  =  P. 
 

The third axiom is added to guarantee that P is the minimal set satisfying the axioms and 
containing 0. 
 
The next result should come as no surprise. 
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Theorem 5.  If N denotes the natural numbers and σσσσ : N  →→→→ N is the function defined by  
σσσσ(m)  =  m + 1, then (P, σσσσ) satisfies the Peano axioms. 
 

Proof,    The first property follows because σσσσ(x)  =  0 implies x  =  – 1, and hence 0 is 
not in the range of σσσσ.   The second follows because σσσσ(x)  =  σσσσ(y) means that  x + 1  
=  y + 1, and if we subtract 1 from each side we obtain x  =  y.  To prove the third, 

suppose that A is not equal to N.  By well – ordering we know that N – A has a least 

element m.  Since 0  ∈∈∈∈  A, we know that m  >  0.  Furthermore, since m is the least 

element of N – A then it follows that m – 1  ∈∈∈∈  A.   But now if we apply property (ii) we 
conclude that m  =  σσσσ( m – 1) must also lie in A, contradicting our assumption that m 
does not belong to A.  The source of the contradiction is our assumption that A is a 
proper subset of N, and hence this must be false, so that A  =  N. � 
 

 
Uniqueness of the integers 

 
At the beginning of this unit we indicated that our descriptions of number systems should 
essentially characterize them uniquely; in other words, we would like to say that if we are 
given two systems which satisfy our axioms for the integers, then they are the same for 
all mathematical purposes.  This is analogous to the notion of order – isomorphism in 
Section IV.6, and the term isomorphism is also used to describe the sorts of 
mathematical equivalences that we shall consider here.  
    
As in the case of partially ordered sets, we shall try to motivate the appropriate concept 
of isomorphism with an example:  If we are given one system which satisfies the given 
list of properties for the integers, then it is possible to construct a second system by 
brute force as follows.  Let Z be the original set with operations and order given in the 

usual manner.  Then we can make the set Z ×××× { 0 } into a system satisfying the same 
properties by defining addition by the formula  (x, 0) + (y, 0)  =  (x + y, 0), multiplication 

by the formula (x, 0) ⋅⋅⋅⋅ (y, 0)  =  (x  y, 0), and ordering by the formula (x, 0)  <  (y, 0) if and 
only if x  <  y.  This may, and in fact should, seem somewhat artificial, for there is an 

obvious 1 – 1 correspondence h from Z to Z ×××× {  0 } such that h(x + y)  =  h(x) + h(y), 
h(x ⋅⋅⋅⋅ y)  =  h(x) ⋅⋅⋅⋅ h(y), and h(x)  <  h(y) if and only if x  <  y.  In other words, the 1 – 1 
correspondence h preserves all the basic structure.  A map of this sort is known as an 
isomorphism.  The basic uniqueness result states that any two systems satisfying the 
listed properties for the integers are related by an isomorphism.  Here is the formal 
statement.   
 
Theorem 6.  Suppose that X and Y are sets with notions of addition, multiplication and 
ordering which satisfy all the conditions for the integers.  Then there is a unique 1 – 1 
correspondence from h from X to Y that is an isomorphism in the appropriate sense:   
 

For all elements u, v  ∈∈∈∈ X we have h(u + v)  =  h(u) + h(v), h(u  ⋅⋅⋅⋅ v)  =  

h(u) ⋅⋅⋅⋅ h(v), and h(u)  <  h(v) if and only if u  <  v.  The map h sends the 

zero and unit of X to the zero and unit of Y respectively.  
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The existence of an isomorphism implies that any reasonable mathematical statement 
about the addition, multiplication and linear ordering of X is also true about Y and 
conversely.  A proof of Theorem 6 appears in Unit VI  I  I .  The proof itself is relatively 
straightforward and elementary but somewhat tedious; however, it is absolutely 
necessary to establish such a result if we want to talk about THE integers.  
 
 

 
 

 V  . 2 :  Finite induction and recursion 
 

 
(Halmos, §§ 11 – 13;  Lipschutz, §§ 1.11, 4.6, 11.1 – 11.7) 

 

 
Proofs by mathematical induction, or more precisely by finite induction, play an 
important role in the mathematical sciences.  Furthermore, as noted on page 48 of 
Halmos, 
 

induction is often used not only to prove things but also to define things, 
 

and because of this we shall describe both the proof definition processes explicitly in this 
section.  Objects defined by induction are often said to be defined recursively (or by 
finite recursion).  Examples of recursive definitions arise throughout the mathematical 
sciences, including set theory itself, and therefore we shall describe the procedure fairly 
explicitly. 
 
 

Description of the method 
 
Mathematical induction is often a very powerful technique, but it is really more of a 
method to provide a formal verification of something that is suspected to be true rather 
than a tool for making intuitive discoveries, but it is absolutely essential.   The use of 
mathematical induction dates back at least to some work of F. Maurolico (1494 – 1575).  
There are many situations in discrete mathematics where this method is absolutely 
essential.   
 
Most of the remaining material on mathematical induction is adapted from the following 
online references: 
 

http://www.cut-the-knot.org/induction.shtml 
 

http://en.wikipedia.org/wiki/Mathematical_induction 
 
IMPORTANT:  The similarity between the phrases “ mathematical induction”  and 
“ inductive reasoning”  may suggest that the first concept is a form of the second, but this 
is not the case.   Inductive reasoning is different from deductive reasoning, but 
mathematical induction is actually a form of deductive reasoning.  
 

Proofs by mathematical induction involve a sequence of statements, one for each 
nonnegative integer n (sometimes it is impractical to start with n  =  0, and one can begin 
instead with an arbitrary integer n0), and it is convenient to let P(n) denote the n th  
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statement.  In the original example from the 16th century, P(n) was the familiar formula 
for the sum of the first n odd positive integers:   
 

1 + 3 + 5 + ... + (2n – 1)   =   n2 

 

In this case the first statement P(1) is 1  =  12, the statement P(2) is 1 + 3  =  22, the 
statement P(3) is 1 + 3 + 5  =  32, and so on. 
 

The method of proof by mathematical induction has two basic steps: 
 

1. Proving that the first statement P(n0) is true. 
2. Proving that if P(k) is true for some value of k, then so is the next statement 

P(k + 1). 
 

In effect, mathematical induction allows one to prove an infinite list of statements, say 
P(1), P(2), P(3), .... , with an argument that has only finitely many steps.   It may be 
helpful to visualize this in terms of the domino effect; if you have a long row of dominoes 
standing on end, you can be sure of two things: 
 

1. The first domino can be pushed over. 
2. Whenever a domino falls, then its next neighbor will also fall. 

 

Under these conditions, we know that every one of the dominos in the picture below 
will eventually fall if the first one is nudged down in the right direction. 

 
 

Incidentally, there is there is an animated version with Apple iPods at the following online 
site: 
 

http://www.hemmy.net/2006/04/30/domino-ipod-commercial/ 
 
There are some instances where one uses a variant of the principle of mathematical 
induction stated above; namely, one replaces the assumption in the second step with a 
stronger hypothesis that P(m) is true for all  m  <  k + 1 and not just for m  =  k. 
 
Example of a proof by induction.  Here is a proof of the summation formula for the first 
n odd integers.  The statement P(1) merely asserts that 1   =   12, and hence it is 
obviously true.   Let’s assume we know that P(k) is also true for some arbitrary k, so that 
we have the equation 1 + 3 + 5 + ... + (2k – 1)   =   k2.   The next step in 
mathematical induction is to derive P(k+1) from P(k). To do this, we note that  
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1 + 3 + ... + (2k–1) + (2k+1) = [1 + 3 + ... + (2k–1)] + (2k+1) 
  = k2 + (2k+1) 
  = (k + 1)2 

 

which shows that P(k+1) is also true because 2k + 1   =   2(k + 1) – 1.  Therefore P(n) is 
true for all n and we have proven the general formula by mathematical induction. 
 
Formally, the difference between mathematical induction and inductive reasoning sis 
that the latter would check the first few statements, say P(1), P(2), P(3), P(4), and then 
conclude that P(n) holds for all n.  The inductive step “ P(k) implies P(k+1)”  is missing. 
Needless to say, inductive reasoning does not constitute a proof in the strict sense of 
deductive logic.   
 
Frequently the verification of the first statement in a proof by induction is fairly easy or 
even trivial, but it is absolutely essential to include an explicit statement about the 
truth of the initial case, and also it is important to be sure that the inductive step 
works for every statement in the sequence.  If these are not done, the final 
conclusion may be false and in some cases downright absurd. 
 
Example. (Somewhat more difficult than the others)   Consider the following defective 
“ proof”  that a nonempty finite set (purportedly!) contains as many elements as one of its 
proper subsets.  This is vacuously true for the empty set, so assume it is true for a set 
with k elements.  Let S be a set with k + 1 elements; we need to show that some proper 
subset T contains the same number of elements as S.  Let T be obtained from S by 
removing one element, and let U be obtained from T by removing one element.  By the 
induction assumption we know that #(T)  =   #(U), and since we also know #(S)  =  #(T) 
+ 1 and #(T)  =  #(U) + 1 we conclude that #(S)  =  #(T).   This is a ridiculous conclusion, 
so the point here is to ask, “ How did this happen?”   In fact, the inductive step we have 
given is valid for all values of k except for the case k  =  0.  However, when k  =  0 it 
breaks down because T must be the empty set, so it is not possible to construct the 
subset U by removing an element from T.    
  
 

Justification of the method 
 
In fact, there are two versions of proof by induction that are used frequently in the 
mathematical sciences.  We shall state and prove both of them. 
 
Theorem 1. (WEAK PRINCIPLE OF FINITE INDUCTION.)   Suppose that for each 
nonnegative integer n we are given a statement ( Sn )  such that the statements ( Sn ) 
satisfy the following conditions: 

 

(i) ( S0 )  is true.   
(ii) For all positive integers n,  if ( Sn – 1 )  is true, then ( Sn )  is true.   

 

Then each of the statements ( Sn ) is true. 
 
Proof:   Let F be the set of all n such that ( Sn ) is false.  We claim that F is empty; we 
shall assume the contrary and derive a contradiction.   
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If F is nonempty, then there is a least m such that ( Sm ) is false, and by the first 
assumption we know that m is positive, so that m – 1 is nonnegative.  By the minimality 
assumption on m we know that ( Sm – 1 ) must be true.   Therefore the second condition 
implies that ( Sm ) is true, yielding a contradiction.  The problem arises from our 
assumption that F is nonempty, and therefore the latter set must be empty, which means 
that each of the statements ( Sn ) is true.� 
 
Frequently one needs a version of finite induction with a stronger hypothesis. 
 
Thereom 2. (STRONG PRINCIPLE OF FINITE INDUCTION.)   Suppose that for each 
nonnegative integer n we are given a statement ( Sn )  such that the statements ( Sn ) 
satisfy the following conditions: 

 

(i) ( S0 )  is true.   
(ii) For all positive integers n,  if ( Sk )  is true for all  k  <  n, then ( Sn )  is true.   

 

Then each of the statements ( Sn ) is true. 
 
Proof:   Let F be the set of all n such that ( Sn ) is false.  We claim that F is empty; we 
shall assume the contrary and derive a contradiction.   
 
If F is nonempty, then there is a least m such that ( Sm ) is false, and by the first 
assumption we know that m is positive, so that the set of all k such that k  <  m is 
nonempty.  By the minimality assumption on m, we know ( Sk ) is true for all k  <  m.   
Therefore the second condition implies that ( Sm ) is true, yielding a contradiction.  The 
problem arises from our assumption that F is nonempty, and therefore the latter set must 
be empty, which means that each of the statements ( Sn ) is true.� 
 
One important example of a result whose proof requires the Strong rather than the Weak 
Principle of Finite Induction is the Fundamental Theorem of Arithmetic (see Rosen, 
Example 14, p. 250).  Another example illustrating the use of the Strong Principle of 
Finite Induction appears at the end of the next section. 
 
 

Definition by recursion 
 
The basic idea is fairly simple.  We begin to define a function by specifying f(0), assume 
we know how to define f(x) for x  <  n, and we use this partial function to find f(n).  Here 
is a formal statement of this principle: 
 
Theorem 3. (Recursive Definition Theorem.)  Suppose that B is a set, and suppose 
also that for each nonnegative integer n we have a function H : B{

 
0, … , n

 
}  →→→→ B, let N be 

the nonnegative integers, and let b0 ∈∈∈∈ B.  Then there is a unique function f  : N  →→→→ B 
such that f(0)  =  b0 and for all positive n we have 
 

f(n)  =  H( f | { 0, … , n – 1 } ). 
 
Proof.  We begin by describing the approach to proving the result.  The idea for proving 
existence is to define a sequence of functions gn :  { 0, … , n – 1 }  →→→→ B  which agree on 
the overlapping subsets; one then constructs a function f whose graph is the union of the 
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graphs of the partial functions.  The uniqueness proof will then reduce to proving 
uniqueness for the restrictions to each subset { 0, … , n – 1 }. 
 
The function g0: { 0 }  →→→→ B  is defined by g0 ( 0 )  =   b0.  Once we are given the function 
gn:  { 0, … , n – 1 }  →→→→ B. we define the function gn + 1 :  { 0, … , n  }  →→→→ B by  gn + 1 ( k  )   =    

gn ( k  ) if k  <  n and gn + 1 ( n  )   =    H(gn ).  Let Gn  ⊂⊂⊂⊂   {  0, … , n – 1 } ×××× B  be the graph of 

gn ,  and let  G  ⊂⊂⊂⊂  N ×××× B  be the union of the subsets Gn  .   
 

We claim that for each x  ∈∈∈∈  N there is a unique y  ∈∈∈∈  B such that (x, y)  ∈∈∈∈  G.  If true, 

then this will imply the existence of a function f  : N  →→→→  B whose graph is equal to G.  
Since G is the union of the graphs Gn , this is equivalent to verifying that for all n  >  x  
the elements gn ( x  ) are all equal; note that gn ( x  ) is only defined for these values of n.  
We shall prove that g  x + m ( x  )  =  g  x + 1 ( x  )  for all m  >  1 by induction  on m; by 
construction we know that g  n  ( x  )  =  g  n + 1 ( x  ) for n as above.  Therefore if m  =  2 we 
know that  g  x + 2 ( x  )  =  g  x + 1 ( x  ), yielding the first step of the inductive proof.  If we know 
the result for m, we can obtain it for m + 1 by once again applying the identity g  n ( x  )  =  
g  n + 1 ( x  ).  This proves that G satisfies the required property for the graph of a function 
from N to B. 
 
Finally, we need to prove uniqueness.  Suppose that f ′′′′ is an arbitrary function satisfying 
the given properties, and let f be constructed as in the previous paragraphs.  We shall 
prove that the restrictions of f and f ′′′′ to each subset {  0, … , n – 1 } are equal by induction 
on n.  If n  =  1 then uniqueness follows because the assumptions imply that the values 
of both f and f ′′′′ at 0 are equal to b0.  Suppose now that the restrictions of f and f ′′′′ to the 
subset {  0, … , n – 1 } are equal; to prove the inductive step, it will suffice to show that 
f(n)  =   f′′′′ (n).  But this follows from the equalities 
 

f(n)   =   H( f | {  0, … , n – 1 } )   =   H(f ′′′′ | {  0, … , n – 1 } )   =   f ′′′′ (n), 
 

where the first equation is true by construction, the second is true by the induction 
hypothesis, and the third is true by the assumption on f ′′′′ .�  
 
 

Typical recursive definitions 
 

In practice, recursive definitions are usually stated in a less formal manner than 
indicated by the existence and uniqueness result.  Probably the best way to illustrate this 
is to give simple examples as one would see it in a semi – formal mathematical 
discussion and to analyze it in terms of the formal statement of the Recursive Definition 
Theorem.  We begin with one which arises in numerous contexts. 
 
Solutions to difference equations.  Suppose that we are given a sequence of objects 
(say numbers, vectors, matrices or functions) a(n) in a set A which has a reasonable 
notion of addition.  We would like to create a new sequence b(n) such that for each n 
the difference between consecutive terms b(n + 1) – b(n) is equal to a(n).    Such an 
equation is often called a first order difference equation, and in some respects the theory 
of solutions to difference equations resembles the theory of solutions to differential 
equations.  In particular, solutions to first order equations generally exist if one properly 
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specifies an initial value b(0) for the sequence.   It should be clear that we can uniquely 
define b(n) by the conditions given here, but we would also like to explain how this fits 
into the framework of the Recursive Definition Theorem.   According to that result, for 
each n we need to define a suitable function H : A{

 
0, … , n

 
}  →→→→ A, and one simple way of 

doing so is to take H(g  )   =   g(n) + a(n).  The conditions of the Recursive Definition 
Theorem then imply that one obtains a unique function b(n) satisfying the given 
conditions.� 
 
Here is a more abstract type of example within set theory itself. 
 
Proposition 4.  Let A be an infinite subset of the nonnegative integers N.  Then there is 
a strictly order – preserving 1 – 1 mapping f from N to A. 
 

Proof. (∗∗∗)   Define the function f recursively as follows:  Take f(0) to be the least 
element of A.  Suppose that we have a 1 – 1 strictly order – preserving mapping f 
defined from the finite set {0, … , n – 1 } to A.  Since A is infinite it follows that the image 
f[ {0, … , n – 1 } ] is a proper subset of A, so that its complement is nonempty and there 
is some element of A which is greater than every element in f[  {0, … , n – 1 }  ].  Take f(n) 
to be the least such element of A  .  We claim the latter recursively defines f; this will be 
discussed further in the next paragraph.  To complete the recursive step in the 
argument, we need to show that the newly extended function on {0, … , n  } is also strictly 
order – preserving .  This follows because f is already known is strictly order – preserving 
on {0, … , n – 1 } and f(n)  >  f(j) for all j  <  n.� 
 
Finally, to end the argument we need to show that the globally defined function f is also  
strictly order – preserving; if x  <  y, then x and y belong to {0, … , y } and since the 
restriction of f to the latter is strictly order – preserving it follows that f(x)  <  f(y) as 
required.�  
 
We now need to analyze the construction of f and see how it can be formalized to fulfill 
all the conditions in the Recursive Definition Theorem.  The main thing that does not 
appear in our discussion is a complete means for defining an element of A given an 
arbitrary mapping from {0, … , n – 1 } to A.  In our recursive definition we assumed that 
the function defined on the finite piece of N was strictly increasing, and at each step we 
showed that the extended function was also strictly increasing.  Strictly speaking we 
need to define an element of A even for partial functions that are not strictly increasing, 
but  the precise nature of these definitions is unimportant because we shall never need 
the definitions for functions that are not strictly increasing.  Formally one can define the 
function for such irrelevant sequences by some simple arbitrary device.  For example, in 
our setting we can simply take the value for one of the “irrelevant” partial functions to be 
the unique least element of A.   If there are ever circumstances in which it is not clear 
how to define a value for “ irrelevant”  partial functions, one standard way is to work 
inside the slightly larger set A  ∪∪∪∪  {  A  } (recall this properly contains A) and simply define 
the value of the irrelevant functions to be the extra element A.�   
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 V  . 3 :  Finite sets 
 

 
(Halmos, §§ 11 – 13;  Lipschutz, §§ 1.8, 3.2) 

 
 

Courses in discrete structures and combinatorics study questions about finite sets 
extensively.  In this section we shall develop a few basic aspects of this topic that will be 
needed or useful later in the course. 
 
For our purposes a set X will be said to be finite if there is a positive integer n such that 
there is a 1 – 1 correspondence from X to {1, … , n  }. 
 
 

The pigeonhole principle 
 
Experience indicates that if X is a finite set, then there is no 1 – 1 correspondence 
between X and a proper subset of itself.  Our first objective is to give a rigorous proof of 
this basic fact. 
 
Theorem 1.   Suppose that A is a finite set, B is a subset of A, and f  : A →→→→ A  is a 1 – 1 
mapping with f[A]  =  B.  Then  B  =  A. 
 
Proof.  (∗∗∗∗∗∗∗∗)  We shall first consider the special case where A  =  {1, 2, … , n} and 
proceed by induction on n.  If n  =  1 then the result is trivial.  Suppose it is true for n and 
proceed to the case of n + 1.  Call this set A and let C be the set of the first n elements.  
If f[C] is contained in C then by induction f[C]   =   C and we must then have f (n + 1)   =   
n + 1.  Suppose that f[C] is not contained in C.  Since f is 1 – 1 it follows that f(n + 1) 
cannot be equal to n + 1, and it also follows that f(r)   =   n + 1 for some r   <   n + 1.  
Suppose that f(n + 1)  =  m   <   n + 1.  Define a new function g : C  →→→→ C by setting g(r)   
=   m and g(k)   =   f(k) otherwise.   
 

 



 83 

 

CLAIM:  g is a 1 – 1 mapping.  Suppose that g(i)   =   g(j) .  Since f   =  g for x  ≠≠≠≠  r it 
follows that one of i and j must be equal to r, so say j   =   r.  Then we have g(i)   =   f(i) 
and g(r)   =   m   =   f(n + 1).  Since i   <   n + 1 and f is 1 – 1 it follows that g(i)  ≠≠≠≠  g(r) 
and consequently g is 1 – 1 mapping.  By induction g is onto.   
 
We shall use the preceding paragraph to prove that f is onto.  If y   <   n + 1 then y   =   

g(z) for some z  ∈∈∈∈     C, and since g(z)   =   f(w) for some w, it follows that the image of f 
contains all of C.  Since we have shown that n + 1 =  f(r) it follows that the image of f 
contains all of A, provided that A  =  {1, 2, … , n}. 
 
To prove the general case, let A be a finite set with n elements, so that there is a 1 – 1 
onto mapping h from A to {1, 2, … , n}.  Given a 1 – 1 mapping f : A → A  let f0 be the 
conjugate mapping from {1, 2, … , n} to itself defined by f0  =  h f h  – 1. 
 

 
 

We claim that f0 is a 1 – 1 mapping.  Suppose that f0 (x)  =  f0 (y); by definition of f0 we 
have h  f  h  – 1(x)   =   h  f  h  – 1(y).  Since the mappings h, f and h  – 1 are all 1 – 1 we can 
successively use the injectivity of h to conclude that that f h  – 1(x)  =  f h  – 1(y),   the 
injectivity of f to conclude that that h  – 1(x)   =   h  – 1(y),  and the injectivity of h  – 1 to 
conclude that that  x   =   y.  Therefore f0 is 1 – 1, and therefore the preceding argument 
shows that f0 is also onto.  
 

To prove that f is onto, suppose that z  ∈∈∈∈     A, and let w  =  h(z).   By the special case 
established above, it follows that w  =  f0 (v) for some v, so that  
 

z  =   h  – 1(w)   =   h  – 1 ( f0 (v) )   =    h  – 1 [ h f h  – 1(v) ]   =   f h  – 1 (v) 
 

which implies that f must be onto.� 
 
 

Counting elements of finite sets 
 
If X is a finite set, there is a unique natural number n such that there is a 1 – 1 
correspondence between X and {  1, … , n  }; uniqueness follows from the previous 
discussion in this section.  Following standard practice we say that X has n elements if 
this is the case, and we write |X|  =  n.  
 
Our first result looks obvious, but we still need to prove it. 
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Proposition 2.  If B is a subset of A, then |B|  ≤≤≤≤  |A|.   
 
Proof.  We proceed by induction on n  =  |A|.  If n  =  0 then the result is trivial because 

A is empty and hence B is also empty, so we have |B|  =  0  ≤≤≤≤  0  = |A|.   Suppose the 
result is known for |A|  =  k, and consider the case where |A|  =  k + 1.   
 
Let f : {1, … , k + 1 }  →→→→  A be a 1 – 1 correspondence, and let B be a subset of A.  Let 
C be the subset of A obtained by removing f(k + 1), and let D denote the intersection of 
B and C.  By construction |C|  =  k and D is a subset of C, and therefore by the induction 

hypotheses we have |D|  ≤≤≤≤  k.    There are now two cases depending upon whether or 

not f(k + 1) belongs to B.  If so, then D  =  B  and hence |B|  =  |D|  ≤≤≤≤  k  <  |A|.   If not, 

then B  =  D  ∪∪∪∪  { f(k + 1) } and hence |B|  =  |D|  +  1  ≤≤≤≤  k + 1  =  |A|.    This completes 
the proof of the inductive step.� 
 
Corollary 3.  If B is a proper subset of A, then |B|  <  |A|.   
 
This follows immediately by combining the previous two results.� 
 

The following basic formulas for counting elements of finite sets have important 
counterparts for infinite sets that will be discussed in Unit V. 
 

Theorem 4.  Let A and B be sets with n and m elements respectively. 
 

1. If A and B are disjoint, then |A  ∪∪∪∪  B|   =   n  +  m.   

2. For arbitrary finite sets A and B we have  |A  ××××  B|   =   n  ⋅⋅⋅⋅ m.  
3. If A and B are arbitrary finite sets and B  A is the set of functions 

from A to B, then we have  |B  
A|   =   m  n. 

 

Proof.  All of the proofs proceed by induction on n  =  |A|.   
 
Verification of (1):   If n  =  0 then  A  ∪∪∪∪  B  =  B and therefore  m  =  |B|  =  |A  ∪∪∪∪  B|   =   
0 + m.  Suppose the result is true for n  =  k, suppose also that |A|  =  k + 1, suppose 
we have a 1 – 1 correspondence between  A and {1, … , k + 1 }, let C   ⊂⊂⊂⊂   A 
correspond to {1, … , k }, and let z be the unique element of A such that A  =  C  ∪∪∪∪ { z }.   

By the induction hypothesis there is a 1 – 1 correspondence g : {1, … , k + m }  →→→→  C  
∪∪∪∪  B.   Define a function f : {1, … , k + m + 1 }    →→→→  A  ∪∪∪∪  B  such that f  =  g on the 
subset {1, … , k + m } and f(k ++ m + 1)  =  z.   
 
We claim that f is 1 – 1 and onto.  Suppose that f(x)  =  f(y).  If neither  x nor y is equal 
to k + m + 1, then g(x)  =  f(x) and g(y)  =  f(y), and since g is 1 – 1 it follows that x  =  
y.  Suppose now that, say, x  =  k + m + 1.  Then f(x)  =  z.  On the other hand, if f(y)  =  
z then the only possibility is  k + m + 1, and hence x  =  y in this case too.  Therefore f is 
a 1 – 1 mapping.    Suppose now that w belongs to A  ∪∪∪∪  B; we need to show that w lies 
in the image of f.  If w is not equal to z then we have w  =  g(j)  for some j <  k + m + 1, 
and thus we also have w  =  f(j) for the same choice of j.  On the other hand, if w  =  z 
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then we have z  =  f(k + m + 1).    Therefore f is 1 – 1 and onto, so this completes the 
proof of the inductive step.   
 
Verification of (2):   If n  =  0 then  A  ××××  B  =  Ø and therefore  0  =  | Ø |  =  | Ø  ××××  B|   
=   0 ⋅⋅⋅⋅ m.  Suppose once again the result is known to be true for n  =  k, suppose also 
that |A|  =  k + 1, suppose we have a 1 – 1 correspondence between  A and {1, … , k + 
1 }, let C   ⊂⊂⊂⊂   A correspond to {1, … , k  }, and let z be the unique element of A such that 
A  =  C   ∪∪∪∪  { z }.   By the induction hypothesis we know there is a 1 – 1 correspondence 

g : {1, … , k⋅⋅⋅⋅ m  }    →→→→  C  ××××  B.  Let h:  {1, … , m  }    →→→→  B  be a 1 – 1 correspondence;  

Define f  : {1, … , k⋅⋅⋅⋅ (m + 1) }    →→→→  A ×××× B  such that f  =  g on {1, … , k⋅⋅⋅⋅ m } and  
 

f(k⋅⋅⋅⋅ m + j)  =  (z, h(j) ) 
 
for j  =  1, … , m.   
 

We claim that f is 1 – 1 and onto. If neither x nor y greater than k⋅⋅⋅⋅ m, then g(x)  =  f(x) 
and g(y)  =  f(y), and since g is 1 – 1 it follows that x  =  y.  Suppose now that, say, we 

have x  >  k⋅⋅⋅⋅ m.  Then f(x)  =  (z, b) for some b in B, and hence f(y)  =  (z, b).  By 

construction, the only way this can happen is if y is also greater than k  ⋅⋅⋅⋅ m.  Therefore we 

may write x  =  k  ⋅⋅⋅⋅ m + i  and  y  =  k  ⋅⋅⋅⋅ m + j  for some integers i and j between 1 and m.  
Since f(x)  =  f(y), it follows from the construction that h(i)  =  h(j)  =  b, and the latter in 
turn implies that i  =  j.  Therefore we have x  =  y  and hence f is 1 – 1.  Suppose now 
that w belongs to A ×××× B; we need to show that w lies in the image of f.  If the first 
coordinate of w is not equal to z then in fact we have w  =  g(j)  for some j  ≤≤≤≤  k ⋅⋅⋅⋅ m, and 
thus we also have w  =  f(j) for the same choice of j.   On the other hand, if the first 
coordinate of w is equal to z, then write w  =  (z, b).  By construction b   =   h(j) for some 

j, and it then follows that w  =  (z, b)  =  f(k  ⋅⋅⋅⋅ m + j).  Therefore f is 1 – 1 and onto, so this 
completes the proof of the inductive step.   
 
Verification of (3): (∗∗∗∗∗∗∗∗∗∗∗∗)   If n  =  0 then there is a unique function from A  =  Ø  to B; 
namely, the function whose graph is the empty set.  Therefore we have |B  

A|   =   |B  
Ø |   

=   1  =  m  0.  Suppose again the result is known to be true for n  =  k, suppose also  |A|  
=  k + 1, assume we have a 1 – 1 correspondence between  A and {1, … , k + 1 }, let C   
⊂⊂⊂⊂   A correspond to {1, … , k  }, and let z be the element of A such that A  =  C   ∪∪∪∪  { z }.   
By the induction hypothesis we know there is a 1 – 1 correspondence g  : {1, … , m  k }    
→→→→  B  

C. 
 
By the result in the preceding part of the theorem, it will suffice to construct a 1 – 1 
correspondence between B  

A and B  
 C ×××× A, for then one obtains the equations 

 

|B  
A|   =   |B  

C
  ××××  A|   =   m  

k
 ⋅⋅⋅⋅ m   =   m  

k + 1
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which is what we need to prove in order to verify the inductive step.  Suppose now that 
we are given a function u : A  →→→→  B.  Consider the mapping  ΩΩΩΩ: B  

A  →→→→  B  
C ×××× A defined 

by ΩΩΩΩ (u)  =  (u|C, u(z) ); we claim that ΩΩΩΩ is 1 – 1 and onto.  
 
Suppose first that ΩΩΩΩ (u)  =  ΩΩΩΩ (v).  Then by construction we have u|C  =  v|C  and u(z)  

=  v(z).  Combining these with A  =  C   ∪∪∪∪  {  z }, we see that u(t)  =  v(t) for all t ∈∈∈∈ A, 
and therefore we must have u  =  v.  Therefore ΩΩΩΩ is 1 – 1.  Suppose now that we are 

given an arbitrary pair (g, b).  Then there is a function f such that f(t)  =  g(t)  for all t ∈∈∈∈ 
C and f(z) = b; therefore ΩΩΩΩ is onto as required.� 
 
The result in the third part of the theorem illustrates one important reason for using B  

A to 
denote the set of all functions from A to B. 
 
 

Boolean algebras of subsets 
 
We shall prove a result relating the properties of finite sets to the Strong Principle of 
Finite Induction that was formulated in the preceding section. 
 
Definition.  Given a set A, let P(A) be the set of all subsets with the algebraic operations 
of union, intersection, and relative complementation.  A Boolean subalgebra of P(A) is 
a subset S  ⊂⊂⊂⊂  P(A) such that S is contained in P(A), it contains A and the empty set, it 
is closed under taking finite unions and intersections, and it is also closed under taking 
relative complements.  
 
The simplest examples of Boolean subalgebras are given by equivalence relations.  
Specifically, if R is an equivalence relation on A and S is the family of all subsets that are 
unions of R – equivalence classes, then it is a routine exercise to verify that S is a 
Boolean subalgebra of P(A).   The result below shows that all Boolean subalgebras have 
this form if A is a finite set.  
 
Proposition 5.  Let A be a set, and let S be a Boolean subalgebra of P(A).  Then there 
is an equivalence relation such that the subsets of S are the unions of R – equivalence 
classes. 
 

Proof. (∗∗∗∗∗∗∗∗)   A subset Y  ∈∈∈∈  S is said to be atomic for S if it is nonempty and there are no 

nonempty subsets X  ∈∈∈∈  S that are properly contained in Y.  We shall prove the 
proposition by verifying the following two assertions: 
 

1. Every subset of S is a union of atomic subsets. 
2. Two atomic subsets of S are either disjoint or identical. 

 
By previous results, it will follow that the atomic subsets are the equivalence classes for 
some equivalence relation on A.  
 
We shall prove the first statement by induction on |A|.    If A has 0 or 1 element, then S 
must be equal to P(A), and for any finite set A a subset is atomic for P(A) if and only if it 
contains exactly one element.  Suppose now that the result is true for all sets B such 
that |B|  <  |A|.   There are two cases depending upon whether S contains a nonempty 
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proper subset.  If it does not, then S only consists of A and the empty set, and therefore 
A must be atomic.  On the other hand, if S contains a nonempty proper subset C, then it 
also contains A – C  =  D, and D is also a nonempty proper subset.  It follows that both 
|C| and |D| are strictly less than |A|. 
 
Let S|C and S|D denote the set of all subsets in S that are contained in C and D 
respectively.  We claim that these are Boolean subalgebras of P(C) and P(D) 
respectively; by our hypotheses we know that the empty set lies in both, that C and D 
are contained in S|C and S|D respectively, and that both of the latter are closed under 
finite unions or intersections (because the same is true for S).  To show these families 
are closed under relative complementation, note that if X lies in S|C or then  
 

C – X    =    C  ∩∩∩∩  A – X 
 

shows that  C – X also belongs to S|C, and similar considerations show that if X lies in 

S|D then D – X also lies in S|D.  By the induction hypothesis it follows C and D are 
unions of atomic subsets, and therefore the same is true for A  =  C ∪∪∪∪ D. 
 
To complete the proof, we need to prove the second assertion given above; specifically, 
we need to prove that two atomic subsets are either disjoint or identical.  But if X and Y 
are atomic subsets of S, then the Boolean subalgebra condition implies that X ∩∩∩∩ Y also 
belongs to S.  Since it is contained in the minimal nonempty subsets X and Y, either the 
intersection is empty or else if it is nonempty then it must be equal to both X and Y.�  
 
An abstract Boolean algebra is an algebraic system consisting of a set A together with 

three operations; namely, two binary operations ∪∪∪∪ , ∩∩∩∩ and one unary operation (sending 
an element x to x′′′′) which have the formal properties of unions, intersections, and 
complements.  Chapter 11 of Lipschutz contains further material on such structures, with 
emphasis on computational techniques.  An entirely different perspective on Boolean 
algebras, which reflects their role in modern pure mathematics, is contained in the 
following reference (which is written at the graduate level): 
 

P. R. Halmos, Lectures on Boolean algebras (Originally published as 
Van Nostrand Math. Studies, No. 1).  Springer – Verlag, New York, 1974.  
ISBN: 0 – 387 – 90094 – 2.  

 
 



 88 

 
 V  . 4 :  The real numbers 

 
 

(Lipschutz, §§ 2.2 – 2.6, 7.7) 
 

 
Following the approach of Section 1, we shall give an axiomatic description of the real 
numbers in terms of their basic properties.   Many of these properties are also properties 
of the integers, but there are also some important new ones. 
 
Basic rules for addition and multiplication.  Formally, these are the conditions 
defining an abstract type of mathematical system known as a field.  The first five of 
these are the previously introduced properties for a commutative ring with unit, and the 
final one reflects an important difference between the integers in the real numbers; in the 
latter one can divide by nonzero numbers, but usually this is not possible within the 
integers. 
 
FIRST AXIOM GROUP FOR THE REAL NUMBERS.  The real numbers are a set R, 
and they have binary operations  A :  R ×××× R  →→→→  R, which is normally expressed in the 

form A(u, v)  =  u  +  v, and M : R ×××× R  →→→→  R, which is normally expressed in the form 

M(u, v)  =  u v or u  ⋅⋅⋅⋅ v  or u ×××× v,  such that the following algebraic conditions are 
satisfied:    
 

1. (Associative Laws). For all a, b, c  in R, (a + b) + c   =   a  +  (b + c)  
and (a  b) c = a  (b   c). 

2. (Commutative Laws). For all a, b in R, a + b   =   b  +  a and a b  =  
b a. 

3. (Distributive Law). For all a, b, c in R, a  (b + c)   =   a  b  +  a  c. 
4. (Existence of 0 and 1). There are distinct elements 0, 1 in R such 

that for all a we have   a  +  0   =  a,  a  ⋅⋅⋅⋅  0  =  0  and   a  ⋅⋅⋅⋅ 1  =  a. 
5. (Existence of negatives or additive inverses). For each a in R 

there is an element – a in R such that a  +  (– a)   =   0. 
6. (Existence of reciprocals or multiplicative inverses). For each a in 

R there is an element  a 
– 1  in R such that a ⋅⋅⋅⋅ a 

– 1   =   1. 
 
Basic rules for ordering.   These are the same as the ordering properties for the 
integers.  When combined with the previous conditions, these yield a type of 
mathematical system known as an ordered field. 
 
SECOND AXIOM GROUP FOR THE REAL NUMBERS.  There is a linear ordering on R 
such that the following hold: 
 

1. If a  >  0  and b  >  0, then a + b  >  0  and a b  >  0. 
2. For all a, b in R, we have a  >  b if and only if a – b  >  0. 

 
Basic rules for completeness of the ordering.   The ordering on the real numbers 
satisfies an additional fundamental condition called the Dedekind completeness axiom 
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after R. Dedekind (1831 – 1916), who formulated this property.  In order to state this 
axiom it is necessary to introduce some additional standard definitions. 
 

Definitions.    Let (L,  ≤≤≤≤ ) be a linearly ordered set, and let A be a subset of L.  An 

element x ∈∈∈∈ L is said to be an upper bound for A in L if for each a  ∈∈∈∈ A we have a  ≤≤≤≤  x; 
note that the definition contains no information on whether x belongs to L.  An upper 
bound x is said to be a least upper bound (for A in L) if for every upper bound y for A 

we have x  ≤≤≤≤  y. 
 
Proposition 1.   If x and z are least upper bounds for a subset A as above, then x  =  z. 
 

Proof.    Since x is a least upper bound and z is an upper bound, we have x  ≤≤≤≤  z.  

Similarly, since x is a least upper bound and z is an upper bound, we have z  ≤≤≤≤  x.    
Combining these, we conclude that x  =  z.� 
 
If a set A has a least upper bound x, then we often write x  =  L. U. B. (A) or x  =  sup(A).  
The symbolism sup is an abbreviation for the quasi – Latin term for the least upper 
bound; namely, the supremum. 
 
There are dual notions for the reverse ordering on a linearly ordered set.  Specifically, if 

B is a subset of L then a lower bound is a number y such that y  ≤≤≤≤  b for all b  ∈∈∈∈  B; 
note that the definition contains no information on whether x belongs to L.  A greatest 

lower bound is a lower bound y such that x  ≤≤≤≤  y for every lower bound x.  It follows as 
above that if a greatest lower bound exist then it is unique.   If a set B has a greatest 
lower bound y, then we often write y  =  G. L. B. (B) or x  =  inf(B).  The symbolism inf is 
an abbreviation for the quasi – Latin term for the greatest lower bound; namely, the 
infimum. 
 
Notice that the least upper bound is a lower bound for the set of upper bounds and a 
greatest lower bound is an upper bound for the set of lower bounds. 
 
DEDEKIND COMPLETENESS AXIOM FOR THE REAL NUMBERS.  If A is a nonempty 
subset of R which has an upper bound, then A has a least upper bound. 
 
Corollary 2.  If B is a nonempty subset of R which has a lower bound, then B has a 
greatest lower bound. 
 
The proof of this corollary depends upon the following elementary observation. 
 
Lemma 3.  If x and y are distinct real numbers and x  <  y, then – y  <  – x.   
 
Proof of Lemma 3.   By the axioms we know that y – x  >  0.  However, the left hand 
side is equal to   – (x – y), and therefore we have  – y  <  – x as required.    
 
Proof of Corollary 2.   Let A be the set of all negatives of elements of B.  Then the 
assumption that B has a lower bound implies that A has an upper bound, and hence by 
the Dedekind Completeness Axiom the set A has a least upper bound, say u.  We claim 
that – u is a greatest lower bound for B.  First of all, the lemma implies that since u is an 
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upper bound for A the element – u is a lower bound for B.  Suppose now that v is an 
arbitrary lower bound for B.  Then the lemma implies that – v is an upper bound for A, 
and therefore since u is a least upper bound it follows that u   ≤≤≤≤  – v.   Therefore the 
lemma implies that  v   ≤≤≤≤  – u, so that – u is a greatest lower bound for B.     
 
Remarks.  (1)  If a set A does not have an upper bound, then this is often expressed 
symbolically as sup(A)   =   + ∞∞∞∞.  Notice that in this context the symbol “ ∞∞∞∞”  is not a 
number, but rather It is a short way to say that there is no number which is an upper 
bound for A.   Similarly, if B has no lower bound, then inf(B)   =   – ∞∞∞∞. 
 
(2)  Two curious implications of the preceding notation are the “paradoxical” identities 
sup( Ø )  =  – ∞∞∞∞ and inf( Ø )���� =  + ∞∞∞∞. To see the first of these, notice that every M ∈∈∈∈ R is 
an upper bound for the empty set.  This is because, given M, there is no x ∈∈∈∈ Ø such that 
x   ≥≥≥≥   M.   Thus, the set of upper bounds for Ø has no lower bound.  To see the second, 
notice that every M ∈∈∈∈ R is a lower bound for the empty set.  This is because, given M, 
there is no x  ∈∈∈∈  Ø such that x   ≤≤≤≤   M.   Thus, the set of lower bounds for Ø has no upper 
bound.  —  In contrast to this result, if A is a nonempty subset of L then we always have 
inf( A )  ≤≤≤≤  sup( A )����if we agree that  – ∞∞∞∞  is less than every real number and + ∞∞∞∞ is 
greater than every real number (and of course  – ∞∞∞∞  <  + ∞∞∞∞ ).  In fact, if x is an arbitrary 
element of A then we have  inf( A )  ≤≤≤≤  x  ≤≤≤≤  sup( A ). 
 
Clearly we want the real number system to contain the integers or a system equivalent 
to the integers.  Here is one way of formulating this: 
 
INTEGRAL COMPATIBILITY AXIOM.   There Is a 1 – 1 mapping J from the integers Z 
to the real numbers R with the following properties: 
 

1. J maps the zero element of Z to the zero element of R. 
2. J maps the multiplicative unit of Z to the multiplicative unit of R. 
3. For all integers x and y, we have J(x + y)  =  J(x) + J(y) . 
4. For all integers x and y, we have J(x  y)  =  J(x) J(y) . 
5. For all integers x and y, we have J(x )  <  J(y)  if and only if x  <  y. 

  

Of course, the real numbers are also supposed to contain the rational numbers, which 
are all numbers expressible as quotients of integers a/b where b is nonzero.   Usually 
the rational numbers are denoted by Q (presumably for quotients).  Note that the rational 
numbers clear satisfy all the properties of the real numbers aside from the Dedekind 
Completeness Property.   Strictly speaking we cannot say formally that this property fails 
for the rational numbers, but if we grant that there should be a real number that is the 
square root of 2, then an argument going back to the ancient Greeks (possibly even to 
the Pythagoreans in the 6th century B. C. E.)  implies that some real numbers, including 
the square root of 2, are not rational.  Incidentally, the classical number ππππ, denoting the 
ration of a circle’s circumference to its diameter, is also irrational, but this was first 
established in relatively modern times by J. H. Lambert (1728 – 1777); it should be noted 
that the first use of the symbol ππππ for the number was due to W. Jones (1675 – 1749) in 
1706.   As noted at the beginning of these notes, one of the important features of set 
theory is that it provided a mathematically sound way of describing such irrational 
numbers as well as their relation to the rationals, thus completing the answer to a 
question that first arose in ancient Greek mathematics. 
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Uniqueness of the real numbers 
 
We have given a list of properties that the real number system is assumed to satisfy.  In 
the next section we shall prove that any system satisfying these properties also has 
many other familiar properties we expect from real numbers.  However, as in Section 1 
(and the discussion at the beginning of this unit), we would like to say that if we are 
given two systems which satisfy our axioms for the real numbers, then they are the 
same for all mathematical purposes; in the terminology of Section 1, the mathematical 
way of saying this is that there is an isomorphism between the two systems.  Here is 
the formal statement.   
 
Theorem 4.  Suppose that X and Y are sets with notions of addition, multiplication, 
ordering and “integers” which satisfy all the conditions for the real number system.  Then 
there exists a unique 1 – 1 correspondence from h from X to Y that is an isomorphism 

in the sense of Section 1:  For all elements u, v  ∈∈∈∈ X we have h(u + v)  =  h(u) + h(v), 

h(u  ⋅⋅⋅⋅ v)  =  h(u) ⋅⋅⋅⋅ h(v), and h(u)  <  h(v) if and only if u  <  v.  Furthermore, the map h 
sends the zero and unit of X to the zero and unit of Y, and accordingly it also sends the 
“integers” in X to the “integers” in Y (and similarly for the “rationals” in the appropriate 
systems). 
  
By the “integers” in X and Y we mean the subsets described in the integral compatibility 
axiom, and the “rationals” denote the smallest subsets that are closed under addition, 
subtraction and multiplication and contain both the integers and the reciprocals of 
nonzero integers. 
 
As before, the existence of an isomorphism has the following implication: 
 

Every true reasonable mathematical statement about the addition, 
multiplication and linear ordering of X is also true about Y and conversely.   

 
A proof of Theorem 4 appears in Unit VII I .  The proof itself is relatively straightforward 
and elementary but somewhat tedious; however, it is absolutely necessary to establish 
such a result if we want to talk about THE real number system.  
 

 
 

 V  . 5 :  Familiar properties of the real numbers 
 

 
(Lipschutz, §§ 2.2, 4.5) 

 
 
The crucial justification for the Dedekind approach to the real number system is that it 
yields all the known properties of the real numbers.  In this section we shall consider a 
few important examples: 
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Density of the rationals.  If x and y are rational numbers such that x  <  y, then there is 
a rational number q such that x  <  q  <  y. 
 
Existence of positive nth roots.  If x is a positive real number and n is a positive 

integer, then there is a unique positive real number y such that y  n  =  x. 
 
Base 10 and decimal expansions.  The axioms for real numbers developed above are 
adequate to prove all the familiar facts about base 10 and infinite decimal expansions. 
 
Any reasonable mathematical theory of the real numbers should yield all of these facts in 
a fairly straightforward fashion. 
 
As we have already noted, it is possible to go much further and develop everything done 
in calculus courses (and beyond!) using the given axioms for the real number system.  
Deriving all these fundamental results in calculus from our axioms is beyond the scope 
of these notes and this course (it properly belongs to courses on functions of a real 
variable); one standard reference which contains all the details is the following classic 
text: 
 

W. Rudin, Principles of Mathematical Analysis (3rd Ed.), International 
Series in Pure and Applied Mathematics). McGraw-Hill, New York, 1976.  
ISBN: 0 – 07 – 054235 – X.  

 

We shall refer to Rudin at various points in this section as needed. 
 
 
 

Density of the rational numbers 
 
 
Even though numbers like the square root of 2 are irrational, it is still possible to 
approximate them to any desired degree of accuracy by rational numbers.  This fact was 
understood intuitively in most if not all ancient civilizations, and it was formalized and 
generalized by Eudoxus of Cnidus in the 4th century B. C. E.  Subsequently, Euclid’s 
Elements used one formulation of this principle as the basis for its theory of geometric 
proportions.  The first step in proving this rigorously for our formulation of the real 
numbers is named after Archimedes, who used it extensively in his writings during the 
3rd century B. C. E., but it had also been known to Eudoxus and other earlier Greek 
mathematicians. 
 
Theorem 1. (Archimedean Law)  If a and b are positive real numbers, then there is a 
positive integer n such that n  a   >   b. 
 
By the well – ordering of the positive integers, there will be a (unique) minimal value of 
n for which this holds. 
 
Proof.   Assume the conclusion is false, so that for every positive integer n we have the 

inequality n  a  ≤≤≤≤   b.  If A denotes the set of all products n  a,  where n is a positive 
integer, it follows that b is an upper bound for A, and by the Dedekind Completeness 
Property the set A must have a least upper bound, which we shall call c.  Since we have 
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m  a   ≤≤≤≤   c for every positive integer m, if we set m  =  n + 1 we see that (n + 1) a   ≤≤≤≤   c  

for every positive integer n.  If we subtract a from both sides, we see that n  a   ≤≤≤≤   c – a 
for every positive integer n.  But this implies that c – a is also an upper bound for A, and 
we had chosen c to be the least upper bound, so we have obtained a contradiction.  The 
latter arises from our assumption that b was an upper bound for A, and therefore this 
must be false, which means that the conclusion of the theorem must be true.�  
 
With this result at our disposal, we can prove the density of the rationals. 
 
Theorem 2.  If a and b are positive real numbers such that a  <  b, then there is a 
rational number q such that a  <  q  <  b. 
 
One can easily obtain the same result when a and b are not both positive from the 
theorem as follows.  If a is negative and b is positive, then we may simply take q  =  0.  
On the other hand if a  <  b  <  0 then we have  – a  >  – b  > 0, and therefore by the 
theorem there is a rational number s such that  – b  <  s  <  – a.  If we take q  =  – s, 
then it will follow that  a  <  q  <  b. 
 
The proof of the theorem requires the following elementary facts. 
 
Proposition 3.  If x is a positive real number, then its reciprocal x – 1 is also positive.  
 
Proposition 4.  If x and y are positive real numbers such that x  <  y, then their 
reciprocals satisfy the reverse inequalities  x   

– 1  >  y – 1.  
 
Proof of Proposition 3.   Suppose this is false, so that x – 1 is negative. Then  
 

– x – 1    =    ( –1) x  
– 1 

 

Is positive, and therefore so is  
 

– 1    =    x ( – x  
– 1 ). 

 

Since the number –1 is not positive we have a contradiction, which arises from our 
assumption that the reciprocal of x was negative, and therefore it follows that the 
reciprocal of x must be positive as claimed.� 
 
Proof of Proposition 4.   Suppose this is false, so that we have either x – 1  =  y – 1 or 
else x  

– 1  <  y – 1.  The first of these implies that  
 

y  =  x  x – 1
 y  =  x  y – 1

 y  =  x 
 

which contradicts our assumption that x  <  y.   To prove that x – 1  <  y – 1  is impossible, 
note first that if positive real numbers satisfy a  <  b  and c  <  d then  
 

b  d – a c  =  (b  d – a d)  + (a d – a c)  =  (b – a) d  +  a (d – c)   >  0 
 

and hence b  d  > a c.  Therefore x  <  y and x  
– 1  <  y  

– 1 combine to imply that  x  x – 1 is 
strictly less than y  y  

– 1.  However, each of the preceding two products is equal to 1 and 
thus we have a contradiction.  Thus x  

– 1  <  y  
– 1  is impossible, and the only remaining 

possibility is the one stated in the conclusion of the result.� 
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Proof of Theorem 2.   By Proposition 3, if a is positive then so is its reciprocal, and thus 
the Archimedean law implies there is some positive integer p such that p  =  p 1  >  a – 1.   
Taking reciprocals, we find that 0  <  1/p  <  a.   The Archimedean Law similarly implies 
the existence of some positive integer r such that 0  <  1/r  <  b – a.   If we take m to be 
the larger of p and r, then it will follow that both 0  <  1/m  <  a   and   0  <  1/m  <  b – a.  
Applying the Archimedean Law one more time, we can find a first positive integer n 
such that a  <  n  / m.  If we also have n  / m  <  b, then we may take q  =  n / m and the 
proof will be complete.  To see that n  / m  <  b, proceed as follows.  Since n is the first 

positive integer such that a  <  n  / m, it follows that (n – 1) / m  ≤≤≤≤  a, and therefore we also 
have 
 

n/m  =  ( (n – 1)/m )  +  (1/m)   <  a  + (b – a)  =  b 
 

which is exactly what we needed.� 
 
A statement and proof of the Condition of Eudoxus are given in the online document 
 

http://math.ucr.edu/~res/math153/history03a.pdf 
 

and the application of the condition to proportionality questions as in Euclid’s Elements 
appears in the following related document: 
 

http://math.ucr.edu/~res/math153/history03b.pdf 
 
 

Existence of positive n th roots 
 
 
The main result is exactly what we would expect: 
 
Theorem 5.   If r is a positive real number and n  >  1 is an integer, then there is a 
unique positive real number y such that y  

n  =  r. 
 
The idea of the proof is simple.  Given r and n, consider the set A of all positive real 
numbers y such that y  

n  <   r.  In order to prove the theorem, it will suffice to establish 
the following two points. 
 

1. The set A has an upper bound (hence a least upper bound). 
2. If z is the least upper bound of A, then z 

n  =  r. 
 

Proof of the first step.   There are two separate cases, depending upon whether r  ≤≤≤≤  1 
or r  >  1.  In the first case, if z belongs to A then we also have y  ≤≤≤≤  1, for y  >  1 implies 
that z 

n  >  1.    Suppose now that r  >  1, and let n be an integer such that n  >  r.  We 
claim that n is an upper bound for A; as before, it will suffice to show that if y  >  n then y 
does not belong to A.  This follows because z  >  n and n  >  1 imply that z 

n  >  n  
n  >  n.   

 
The proof of the second step of Theorem 5 will rely on the following standard algebraic 
fact. 

Theorem 6. (Binomial Theorem).  Let x and y be real numbers, and let n be a positive 
integer.  Then we have  
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where the numbers 

 

are the usual binomial coefficients and n! denotes the factorial of n, which is formally 
defined by 0 !  =  1 and the usual description for n  >  0: 

 

The proof of this result proceeds by induction on n and is based upon the standard 
triangular identities named after B. Pascal (1623 – 1662), which state that 

 

for non-negative integers n and k where n   ≥≥≥≥   k and with the initial condition 

 
 

In principle (at least), mathematicians in China and India had discovered the preceding 
identities centuries earlier, but we shall not elaborate on this point.  Note that if we take x  
=  y  = 1, then the formula states that the corresponding sum of  binomial coefficients is 
equal to 2n.  We shall use this fact at a few steps in the proof of Theorem 5.  Some of 
these steps will be stated separately before we proof the second part of Theorem 5. 
 
Proofs of the Binomial Theorem appear in many precalculus and discrete structures 
textbooks (e.g., see pages 327 – 328 of Rosen for an argument that is somewhat 
different from the inductive proof mentioned above), and therefore we shall not give a 
proof here.  
 
Lemma 7.  If 1   >   t   >   0 then (1 – t) n  >  1 – 2 

n t.  
 
Lemma 8.  If 1  >  y   >   0 and z  >  1 then (z + y) n  <  z 

n  + 2 
n

 z 
n

 y, and if 1  >  y   >   0 
and z  <  1 then (z + y) n  <  z 

n  + 2 
n

 y.  
 
Proof of Lemma 7.   In the Binomial Theorem take x  =  1 and y  =  – t .  Let C(n, k) 
denote the (n, k) binomial coefficient to avoid typesetting problems.  For each k  >  0, a 
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lower estimate for the k th term of the expansion for (1 – t) n  is given by – C(n, k) t .  If we 
add these terms over all nonnegative values of k and use the fact that the sum of all the 
coefficients C(n, k) is 2 

n, we obtain the lower estimate in the statement of the lemma.� 
 
Proof of Lemma 8.   In this case we take z  =  x.  Once again let k  >  0.  Then an upper 
estimate for the k th term of the expansion is given by C(n, k) z 

n
  y  if  z  >  1, and by the 

expression C(n, k) y  if  z  <  1.  Adding these terms over all nonnegative values of k and 
using the fact that the sum of all the coefficients C(n, k) is 2 

n, we obtain the desired 
upper estimates.� 
 
We are now prepared to complete the proof of the result on the existence of n th roots. 
 

Proof of the second part of Theorem 5.   We again have separate cases where r  ≤≤≤≤ 1 
or r  >  1, and in each case we need to show that both  z 

n  <  r and z 
n  >  r are 

impossible.   
 
Before proceeding we make some elementary observations.  If r  =  1 then z  = 1 and 
there is nothing to prove.  We CLAIM that if r  <  1 or  r  >  1 then z also satisfies z  <  1 
or  z  >  1 respectively.  —  If r  <  1 then we claim there is a v such that 0   <   v   <   1 
and v  

n   >  r. If this is true then r is an upper bound for S and therefore the least upper 
bound z must be strictly less than 1 (in fact, it must be strictly less than v).    By the 
Lemma 7 we know that if 1   >   t   >   0 then (1 – t) 

n  >  1 – 2 
n 

 and therefore if we 
choose v such that x   =   1 – v satisfies 2 

n x   <  1 – r  then v  
n  will be strictly greater 

than r.  Finally, if r   >  1 then r  
– 1 <  1, and therefore it is possible to find some w  such 

that  0   <   w   <   1 and w  
n   >  r  – 1.   If we set v  =  w  – 1, we then obtain the inequalities 

v   >   1 and v  
n   <  r.  But this means that 1  <  v  ≤≤≤≤  z.  

 
Suppose now that 1  <  r  and z 

n  <  r , where z   >   1 by the preceding paragraph.   If we 
have w  >  z then w  n  ≥≥≥≥   r because z is the least upper bound of all x such that x  

n <  r.  
Let s   =   r  –  z  

n ; it will suffice to find a number v such that v  
n lies between z n and r.  If 

1  >   y   >   0 then Lemma 8 implies that (z + y) 
n is less than z 

n  + 2 
n

 z 
n

 y, and if we now 
choose y so that 2 

n
 z 

n
 y   <   s, then v   =   z   +  y  will satisfy the desired condition z 

n  <  
v  

n  <   r.  Now suppose we have 1    >   r  and z 
n  <   r, so that z   <   1 by the preceding 

paragraph.   Let w and s be as before.  Then we still have w  
n  ≥≥≥≥   r and we would again 

like to find some v such that v  
n lies between z n and r.   Taking y as before, we can now 

use Lemma 8 to conclude that (z + y)  
n   <    z 

n  + 2 
n

 y, and if we choose y so that 2 
n y   <   

s then v   =   z   +  y  satisfies the desired condition z 
n   <   v  

n   <    r.   Observe that the 
main difference in the arguments for the two cases 1   <   r and 1   >   r  is the estimate 
for (z + y) n  given by the Binomial Theorem. 
 
Suppose now that z 

n   >   r .   By the definition of a least upper bound, for every h  >  0 
there is some w such that  z  –  w  >  h  and  w  

n <  r.  Hence if x   <   z and h   =   z  – x  
then we can find a w such that  x   <   w   <   z and w  n <  r.  The latter in turn implies that 
x  

n  <   w  
n  <   r .   Thus we have shown that if x  <  z  then w  

n <  r,   while if x   >   z   
then w  n  >  z 

n  >   r .  Once again it will suffice to find a number v such that v n lies 
between z 

n and r.  Let s  =  z 
n  –  r  and let y  >  0 as before, but this time consider the 

quantity (z – y) 
n.   If  r   >  1 we then obtain the inequality 

 

(z – y) 
n   >   z 

n   –  2 
n z 

n  y 
 

while if r   >  1 we obtain the inequality 
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(z + y) n   >   z 
n  + 2 

n y . 
 

In each case if we choose y sufficiently small the right hand side will be strictly greater 
than r, which contradicts our previous observation that  x  <  z  implies  w  

n <  r .  This 
completes the proof of Theorem 5.� 
 
The next result is a simple consequence of Theorem 5 and the proof of Lemma V.1.3, 
but it provides an important relation between the algebraic and order structures on the 
real number system. 
 
Corollary 8.  A real number x is nonnegative if and only if there is another real number y 
such that y   2  =  x. 
 
Proof.    The proof of Lemma V.1.2 only depends upon algebraic and ordering 
properties that hold for both the integers and the real numbers, and thus it follows that 
Lemma V.1.2 is also true for the real numbers; therefore for every real number y we see 
that the square y  2 is nonnegative.  Conversely, by Theorem 5 we know that every 
nonnegative number is the square of some other real number. 
 
Section 4.5 of Lipschutz discusses the use of Theorem 5 to define rational and irrational 
powers of a positive real number (in particular, see the subheading, “Exponential 
Functions,” at the bottom of page 101). 
 
 

Base 10 and decimal expansions 
 
 
We shall only summarize the main points here, leaving the proofs to an Appendix for this 
section of the notes.   
 
One of the most elementary facts about a positive real number x is that it can be written 
as the sum [x]  +  ( x  ) of a nonnegative integer [x] and a nonnegative real number ( x  ) 
that is strictly less than one, and this decomposition is unique.  The integer [x] is often 
called the greatest integer function of x or the integral part of x or the characteristic of x, 
and the remaining number ( x  ) is often called the fractional part or mantissa of x.   The 
characteristic – mantissa terminology dates back to the original tables of base 10 
logarithms published by H. Briggs (1561 – 1630); the literal meaning of the Latin root 
word mantisa is “makeweight,” and it denotes something small that is placed onto a 
scale to bring the weight up to a desired value.  We shall derive the decomposition of a 
nonnegative real number into a characteristic and mantissa from the axiomatic 
properties of the real numbers. 
 
Theorem 9.  Let r  be an arbitrary nonnegative real number.  Then there is a unique 

decomposition of r as a sum n  +  s  where n  is a nonnegative integer and 0  ≤≤≤≤  s  <  1. 
 
Here is the standard result on base  N or N – adic expansions of positive integers.  In 
the standard case when N  =  10,  this yields the standard way of writing a nonnegative 
integer in terms of the usual Hindu – Arabic numerals, while if n  =  2 or 8 or 16 this 
yields the binary or octal or hexadecimal expansion respectively. 
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Theorem 10.  Let k be a positive integer, and let N   >   1 be another positive integer.  
Then there are unique integers aj such that   0   ≤≤≤≤   aj   ≤≤≤≤   N – 1 and  
 

k    =    a0   +  a1 ⋅⋅⋅⋅ N   +   …   +  am ⋅⋅⋅⋅ Nm 
 
for a suitable nonnegative integer m. 
 
For both practical and theoretical reasons, a mathematically sound definition of the real 
numbers should yield the usual decimal expansions for base 10 as well as the 
corresponding expansions for other choices of the base N.   We shall verify this here and 
show that decimal expansions have several properties that are well – known from our 
everyday experience in working with decimals. 
 
Although decimal expansions of real numbers are extremely useful for computational 
purposes, they are not particularly convenient for theoretical or conceptual purposes.  
For example, although every nonzero real number should have a reciprocal, describing 
this reciprocal completely and explicitly by infinite decimal expansions is awkward and 
generally unrealistic.  Another difficulty is that decimal expansions are not necessarily 
unique; for example, the relation  
 

1. 0    =    0. 999999999999999999999 … 
 

reflects the classical geometric series formula 
 

a  / (1 – r  )    =     a   +   a r    +  a r  2  + …   +  a r  k  + … 
 

when a   =  9 / 10 and r   =   1 / 10.  A third issue is whether one gets an equivalent 
number system if one switches from base 10 arithmetic to some other base.  It is natural 
to expect that the answer to this question is yes, but any attempt to establish this directly 
runs into all sorts of difficulties almost immediately.  This is not purely a theoretical 
problem; the use of digital computers to carry out numerical computations implicitly 
assumes that one can work with real numbers equally well using infinite expansions with 
base 2 (or base 8 or 16 as in many computer codes, or even base 60 as in ancient 
Babylonian mathematics).  One test of the usefulness of the abstract approach to real 
numbers is whether it yields such consequences. 
 
The preceding discussion justifies the standard method for expressing the integral part 
of a positive real number.  Of course, the next step is to justify the standard expression 
for the fractional part.  A natural first step is to verify that the usual types of infinite 
decimal expansions always yield real numbers. 
 
Theorem 11. (Decimal Expansion Theorem).   Every infinite series of real numbers 
having the form  
  

  a N ⋅⋅⋅⋅10 N  +  a 
N–1 ⋅⋅⋅⋅10 N – 1  +  …  +  a 0  +  b  1 ⋅⋅⋅⋅10 – 1  +  b 2 ⋅⋅⋅⋅10 – 2  +  …  +   b  k  ⋅⋅⋅⋅10 – k  + … 

 

(with  0   ≤≤≤≤   a i , b  j   ≤≤≤≤   9) 
 

is convergent.   Conversely, every positive real number is the sum of an infinite series of 
this type where the coefficients of the powers of 10 are integers satisfying the basic 
inequalities  0  ≤≤≤≤   a i , b  j   ≤≤≤≤  9.   
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This turns out to be a fairly direct consequence of standard results on convergence of 
infinite series whose terms are all nonnegative (see Rudin, Theorem 3.25, page 60, for a 
proof): 

COMPARISON TEST.  Suppose that 

 

are two series whose terms are nonnegative and satisfy an   <  bn  for all n.   If the 
second series converges, then the first one does also.  

Theorem 10 immediately yields the standard “scientific notation” for a positive real 
number: 

Corollary 12. (Scientific Notation Representation).  Every positive real number has a 

unique expression of the form a ⋅⋅⋅⋅10 M, where 1  ≤≤≤≤            a  <             10 and  M  is an integer.  

 

Decimal expansions of rational numbers 

One basic test for the effectiveness of a mathematical theory is whether one can use it 
to shed light on patterns that run through many basic examples.  The decimal 
expansions for rational numbers are an example of this type.  If one computes the 
decimal expansions for some simple fractions, the results turn out to yield decimal 
expansions that are eventually repeating.  Here are some examples: 

1 / 3   =     0.333333333333333333333333333333333333 … 
1 / 6   =     0.166666666666666666666666666666666666 … 
1 / 7   =     0.142857142857142857142857142857142857 … 
1 / 11   =   0.010101010101010101010101010101010101 … 
1 / 12   =   0.083333333333333333333333333333333333 … 
1 / 13   =   0.076923076923076923076923076923076923 … 
1 / 17   =   0.058823529411764705882352941176470588 … 
1 / 18   =   0.055555555555555555555555555555555555 … 
1 / 19   =   0.052631578947368421052631578947368421 … 
1 / 23   =   0.043478260869565217391304347826087695 … 
1 / 27   =   0.037037037037037037037037037037037037 … 
1 / 29   =   0.034482758620689655172413793103448275 … 
1 / 31   =   0.032258064516129032258064516129032258 … 
1 / 34   =   0.029411764705882352941176470588235294 … 
1 / 37   =   0.027027027027027027027027027027027027 … 

Motivated by such examples, it is natural to ask whether the decimal expansions for an 
arbitrary rational number must have the following special property: 

Theorem 13. (Eventual Periodicity Property.)  Suppose that r is a rational number 
such that 0   <   r   <   1, and let  
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r    =    b  1 ⋅⋅⋅⋅10 – 1  +  b  2 ⋅⋅⋅⋅10 – 2   +   …   +  bk ⋅⋅⋅⋅10 – k  +  … 

be a decimal expansion.  Then the sequence { bk } is eventually periodic ; i.e.,  there 
are positive integers M and Q such that b  k  =   b  k + Q for all k  >  M. 

CONVERSELY, suppose that the statement in the claim holds for the decimal expansion 
of some number, and choose m and Q as above.  Let s be given by the first m – 1 terms 
in the decimal expansion of y, and let  t  be the sum of the next  Q  terms.  It then follows 
that y is equal to s   +   t (1 + 10 – Q  + 10 – 2Q  + 10 – 3Q  + … ).  Now s, t and the 
geometric series in parentheses are all rational numbers, and therefore it follows that y 
is also a rational number.  Therefore we have the following result: 
 
Theorem 14.   A real number between 0 and 1 has a decimal expansion that is 
eventually periodic if and only if it is a rational number. 

Similar results hold if the numerical base10 is replaced by an arbitrary integer N  >  1. 

 

Uniqueness properties of decimal expansions 

Finally, here is the standard criterion for two decimal expressions to be equal: 

Theorem 15.   Suppose that we are given two decimal expansions that yield the same 
real number: 

aN ⋅⋅⋅⋅10 N + a 
N – 1 ⋅⋅⋅⋅10 N – 1 + … +  a0  +  b1 ⋅⋅⋅⋅10 – 1 + b2 ⋅⋅⋅⋅10 – 2 + … +  bk  ⋅⋅⋅⋅10 – k  + …   =   

 

cN ⋅⋅⋅⋅10 N + c  
N – 1 ⋅⋅⋅⋅10 N – 1 + … +  c0  + d1 ⋅⋅⋅⋅10 – 1 + d2 ⋅⋅⋅⋅10 – 2 + … +  dk  ⋅⋅⋅⋅10 – k  + … 

Then aj   =   c j  for all j, and one of the following is also true: 

1. For each k we have b  k  =  d  k. 
2. There is an L  >  0  such that b  k  =  d  k for every k  <  L 

but b  L + 1  =  d L  + 1,  with b  k  =  0 for  k  >  L and d  k  =  9 
for all  k  >  L. 

3. There is an L  >  0  such that b  k  =  d  k for every k  <  L 
but  d  L + 1 =  b L  + 1,  with d  k  =  0 for  k  >  L and b  k  =  9 
for all  k  >  L (the opposite of the previous possibility). 

One can reformulate the preceding into a strict uniqueness result as follows: 

Corollary 16.  Every positive real number has a unique decimal expansion of the form 

  aN ⋅⋅⋅⋅10N   +   aN – 1 ⋅⋅⋅⋅10N – 1  +  …  +  a0   +   b1 ⋅⋅⋅⋅10– 1  +  b2 ⋅⋅⋅⋅10– 2  +  …  +  bk ⋅⋅⋅⋅10– k  +  …  
 

such that b  k  is nonzero for infinitely many choices of k. 
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EXAMPLE.  We can use the preceding result to define real valued functions on an 
interval in terms of decimal expansions.  In particular, if we express an arbitrary real 
number x  ∈∈∈∈  (0, 1] as an infinite decimal  
 

x   =   0  . b  1  b 2  b  3  b 4  b 5  b  6  b 7  b  8  b 9 … 
 

where infinitely many digits b  k  are nonzero, then we may define a function f from (0, 1] 
to itself by the formula 
 

f (x)   =   0  . b  1  0  b  2  0  b 3  0  b 4  0  b  5  0  b 6  0  b 7  0  b  8  0  b 9 0 … 
 

and if we extend this function by setting f (0)  =  0  then we obtain a strictly increasing 
function on the closed unit interval (verify that the function is strictly increasing!).  Note 
that this function has a jump discontinuity at every finite decimal fraction. 
 
Since every nondecreasing real valued function on a closed interval is Riemann 
integrable, we know that f can be integrated.  It turns out that the value of this integral is 
a fairly simple rational number; finding the precise value is left as an exercise for the 
reader (this is a good illustration of the use of Riemann sums – a natural strategy is to 
partition the unit interval into pieces whose endpoints are finite decimal fractions with at 
most n nonzero terms and to see what happens to the Riemann sums as n increases). 
 
 

 
V. 5.  Appendix A :     Proofs of results on number expansions 

 
 

This appendix contains proofs of several results from Section 5: 
 
   Theorem V. 5. 9 
   Theorem V. 5. 10 
   Theorem V. 5. 11 
   Theorem V. 5. 12 
   Corollary V. 5. 13 
   Theorem V. 5. 14 
   Theorem V. 5. 15 
   Corollary V. 5. 16 
  
We begin by proving that a positive real number can be written in an essentially unique 
manner as the sum of an integral part and a fractional part which lies between 0 and 1.  
 
Theorem V. 5. 9.  Let r be an arbitrary nonnegative real number.  Then there is a unique 
decomposition of r as a sum of the form  n  +  s  such that  n is a nonnegative integer 
and  0  ≤≤≤≤  s  <  1. 
 
Proof.  By the Archimedean Law there is a nonnegative integer m such that m  >  r, and 
since the nonnegative integers are well – ordered there is a minimum such integer .  
Since r is nonnegative it follows that m1 cannot be zero and hence must also be positive.  
Therefore m1 – 1 is also nonnegative and by the minimality of the positive integer m1 we 
must have m1 – 1  ≤≤≤≤   r.  If we take n  =  m1 – 1 and s  =  r – n then we have r  =  n  +  s 
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where n and s have the desired properties.  Suppose that we also have r  =  q  +  v  

where q is a nonnegative integer and 0   ≤≤≤≤   q   <  1.   By hypothesis we have   
 

q    ≤≤≤≤    r    <    q + 1 
 

and the right hand inequality implies n + 1   ≤≤≤≤   q + 1, or equivalently n  ≤≤≤≤   q.  The 
equation r  =  n  +  s   =  q  +  v  can therefore be rewritten in the form  
 

0   ≤≤≤≤    q – n   =   s – v 
 

and since ( i )  s – v   ≤≤≤≤    s  <  1  and ( ii )  q – n  is an integer, it follows that n  =  q and 
s  =  v.� 

Base N expansions for natural numbers 

We shall use the long division property for natural numbers to derive the standard result 
on base N expansions of positive integers.  In the standard case when N  =  10,  this 
yields the standard way of writing a nonnegative integer.  
 
Theorem V. 5. 10.  Let k be a positive integer, and let N   >   1 be another positive 
integer.  Then there are unique integers aj such that   0   ≤≤≤≤   aj   ≤≤≤≤   N – 1 and  
 

k    =    a0   +  a1  N   +   …   +  am   Nm 
 

for a suitable nonnegative integer m. 
 
In the course of proving this result it will be useful to know the following: 
 
Lemma 1.    Suppose that integers N, k, and aj are given as above.  Then we have 

 

a0   +  a1  N   +   …   +  am   Nm    ≤≤≤≤    N m + 1. 
 
Proof of Lemma 1.    Since aj   ≤≤≤≤   N – 1 for each j we have   
 

aj   Nj   ≤≤≤≤   (N – 1) Nj    =   N j + 1  –  N j 
 

and therefore we have the inequality 
 

a0   +  a1  N   +   …   +  am   Nm    ≤≤≤≤    N – 1   +  (N 2 – N)   +   …   +  (N m + 1 – Nm)    =  
 

N m + 1  –  1   <    N m + 1.� 
 

Proof of Theorem V. 5. 10.   It is always possible to find an exponent q such that 2 q  >  
k, and since k  >  2 it follows that we also have   N q   >   2 q   >   k.  Let [ Sm ] be the 
statement of the statement that every positive integer less than   N m + 1   has a unique 
expression as above.  If m  =  0 then the result follows immediately from the long division 
theorem, for then k    =    a0.    Suppose now that [ Sp – 1 ] is true and consider the 
statement [ Sp ].  If k   <   N p + 1  then we can use long division to write k uniquely in the 
form  
 

k    =    k0   +  ap   N p 
 

where a p    >   0 and  0   ≤≤≤≤   k0   <   N p.   We claim that ap   <   N .  If this were false then 
we would have k    >    ap   N p    >    N N p   =   N p + 1 and this contradicts the assumption 
that k   <     N p + 1.     
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By induction we know that k0  has a unique expression as a sum  
 

k0    =    a0   +  a1  N   +   …   +  a p - 1  N p - 1 
 

for suitable aj.  This proves existence.  To prove uniqueness, suppose that we have   
 

k    =    a0   +  a1  N   +   …   +  a p   N p       =    b0   +  b1  N   +   …   +  b  p   N p . 
 

Denote all but the last terms of these sums by  A  =  a0   +  a1  N   +   …   +  a p – 1   N p – 1 
and  B  =    b0   +  b1  N   +   …   +  b  p – 1  N p – 1.  Then we have 0  ≤≤≤≤  A , B  ≤≤≤≤   N p – 1 by 
the lemma, and therefore by the uniqueness of the long division expansion of k it follows 
that a p  =  b  p    and   A   =   B.    By the induction hypothesis the latter implies that  a j  =  
b  j    for all j  <  p.  Therefore we have also shown uniqueness.� 
 

Decimal expansions for real numbers 

As we have already noted, a mathematically sound definition of the real numbers should 
yield the usual decimal expansions for base 10 as well as the corresponding expansions 
for other choices of the base N.   We shall verify this and show that decimal expansions 
have many properties that are more or less predictable on empirical grounds.  
 
One such property is the well – known decimal equality 1. 0  =  0 . 9999999 …  so we 
begin by noting this reflects the geometric series formula 
 

a / (1 – r )    =     a   +   a r    +  a r  2  + …   +  a  r  k  + … 
 

when a   =  9 / 10 and r   =   1 / 10.  In fact, the geometric series plays a key role in 
proving that infinite decimal expansions always yield real numbers. 
 
Theorem  V. 5. 11. (Decimal Expansion Theorem.)   Every infinite series of real 
numbers having the form  
  

  aN10 N  +  a 
N–110 N – 1  +  …  +  a0  +  b110 – 1  +  b210 – 2  +  …  +   bk 10 – k  + … 

 

(with  0    ≤≤≤≤    ai ,  b j    ≤≤≤≤   9) 
 

is convergent.   Conversely, every positive real number is the sum of an infinite series of 
this type where the coefficients of the powers of 10 are integers satisfying the basic 
inequalities  0    ≤≤≤≤    ai ,  b j    ≤≤≤≤   9.   
 
As noted above, there are two ways of writing 1 as an infinite series of this type, so such 
a representation is not unique, but empirical evidence suggest that all ambiguities in 
decimal expansions arise from this example, and we shall verify this later.  
 
PROOF OF THE DECIMAL EXPANSION THEOREM.  The proof of this result splits 
naturally into two parts, one for each implication direction.   
 
Formal infinite decimal expansions determine real numbers:   If one can show this 
for positive decimal expansions, it will follow easily for negative ones as well, so we shall 
restrict attention to the positive case.   Consider the formal expression given above:  
  

  ( aN10N   +   aN–110N – 1  + … + a0   +   b110– 1  +  b210– 2  +  …  +  bk10– k  +  … ) 
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For each integer p  >  0, define s  p to be the sum of all terms in this expression up to and 
including b  p10 – p and let  S be the set of all such numbers s p .  Then the set S has an 
upper bound, and in fact we claim that 10N + 1 is an upper bound for S.  To see this, 
observe that  aN 10 N  +  aN–110 N – 1  +  …   +  a0      ≤≤≤≤       10 N + 1  – 1 by a previous lemma 
and  
 

b110 – 1  +   b210 – 2  + … +  bk10 – k  + …     ≤≤≤≤    
    

9 (10 – 1  +   10 – 2  + … +  10 – k  + … )  =  1    
 

and the assertion about an upper bound follows immediately from this.  The least upper 
bound r for S turns out to be the limit of the sequence of partial sums { s p } . 
 
Real numbers determine infinite decimal expansions:  Given (say) a positive real 
number r, the basic idea is to find a sequence of finite decimal fractions { s p } such that 
for every value of  p the number sp  is expressible as a fraction whose denominator is 
given by 10 p and  
 

s p      ≤≤≤≤           r    <   s p   + 10 – p. 
 

More precisely, suppose that we already have s p and we want to find the next term.  By 
construction 10 p s p  is a positive integer and   10 p s p     ≤≤≤≤           10 p r    <   10 p s  p + 1, so that    
 

10 p + 1 s p      ≤≤≤≤      10 p + 1 r    <   10 p + 1 s p  + 10. 
 

Choose b p+ 1 to be the largest integer such that  
 

b p+ 1   ≤≤≤≤   10 p + 1 r  –  10 p+ 1 s p. 
 

The right hand side is positive so this means that bp + 1   ≥≥≥≥   0.  On the other hand, the 
previous inequalities also show that  b  p + 1   <  10 and since b p + 1    is an integer this 
implies  b p+ 1   ≤≤≤≤   9. If we now take s p+ 1    =   10 s p  +  b p+ 1    then it will follow that  
 

s p+ 1    ≤≤≤≤   r   <   s  p+ 1  +  10 – (p +  1). 
 

To see that the sequence converges, note that it corresponds to the infinite series 
 

s p    +   ΣΣΣΣ p  (b p + 1 10 –  p), 
 

which converges by a comparison with the modified geometric series s p  + ΣΣΣΣ p 10 (1– p).� 

Corollary  V. 5. 12. (Scientific Notation Representation).   Every positive real number 
has a unique expansion of the form a ⋅⋅⋅⋅10 M, where 1  ≤≤≤≤            a  <            10 and M is an integer.  

Existence.  If x has the decimal expansion 
 

  a N ⋅⋅⋅⋅10 N  +  a 
N–1 ⋅⋅⋅⋅10 N – 1  +  …  +  a 0  +  b  1 ⋅⋅⋅⋅10 – 1  +  b  2 ⋅⋅⋅⋅10 – 2  +  …  +   b  k  ⋅⋅⋅⋅10 – k  + … 

 

(with  0    ≤≤≤≤    a i ,  b  j    ≤≤≤≤   9) 
 

then x ⋅⋅⋅⋅10 – N  lies in the interval [1, 10) by construction.  
 
Uniqueness.  Suppose that we can write x as a ⋅⋅⋅⋅ 10 M and b ⋅⋅⋅⋅ 10 N.  Then by the 
conditions on the coefficients, we know that x  ∈∈∈∈  [10 M, 10 M + 1)  ∩∩∩∩  [10 N, 10 N + 1).  Since 
the half open intervals [10 M, 10 M + 1) and  [10 N, 10 N + 1) are disjoint unless M  =  N, it 
follows that the latter must hold.  Therefore the equations x  =  a ⋅⋅⋅⋅10 M  =  b ⋅⋅⋅⋅10 N and M  
=  N imply a  =  b.� 
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Decimal expansions of rational numbers 

In working with decimals one eventually notices that the decimal expansions for rational 
numbers have the following special property: 

Theorem V. 5. 13. (Eventual Periodicity Property.)  Let r be a rational number such 
that 0   <   r   <   1, and let  

r    =    b110 – 1  +  b210 – 2   +   …   +  bk10 – k  +  … 

be a decimal expansion.  Then the sequence { bk } is eventually periodic ; i.e.,  there 
are positive integers M and Q such that b  k  =   b  k + Q for all k  >  M. 

Proof.   Let a / b  be a rational number between 0 and 1, where a and b are integers 
satisfying 0   <   a   <   b.  Define sequences of numbers rn and xn recursively, beginning 
with r0   =   a  and  x0   =   0.  Given rn and xn express the product 10 r  n by long division 
in the form 10 r  n   =  b x  n + 1  +  r  n + 1 where x  n + 1  ≥≥≥≥  0 and  0   ≤≤≤≤    r  n + 1   <   b .  
 
CLAIMS:   

1. Both of these numbers only depend upon r n . 
2. We have xn + 1   <  10. 

 

The first part is immediate from the definition in terms of long division, and to see the 
second note that x  n + 1  ≥≥≥≥   10 would imply 10 rn   ≥≥≥≥  10 b, which contradicts the 
fundamental remainder condition rn   <   b. 
 
Since rn can only take integral values between 0 and b – 1, it follows that there are some 
numbers Q and m such that rm   =   rm + Q.   
 

CLAIM:   r k   =   r k + Q   for all  k  ≥≥≥≥   m. 
 

We already know this for p   =   m, so assume it is true for p   ≤≤≤≤    k.  Now each term in 
the sequence r  n depends only on the previous term, and hence the relation rk   =   r k + Q   
implies r k + 1   =   r k + Q + 1.  Therefore the claim is true by finite induction.� 
 
CONVERSELY, suppose that the statement in the claim holds for the decimal expansion 
of some number, and choose m and Q as above.  Let s be given by the first m – 1 terms 
in the decimal expansion of y, and let  t  be the sum of the next  Q  terms.  It then follows 
that y is equal to s   +   t (1 + 10 – Q  + 10 – 2Q  + 10 – 3Q  + … ).  Now s, t and the 
geometric series in parentheses are all rational numbers, and therefore it follows that y 
is also a rational number.  Therefore we have the following result: 
 
Theorem V. 5. 14.   A real number between 0 and 1 has a decimal expansion that is 
eventually periodic if and only if it is a rational number.� 
 
In Section 5 we gave the following examples to illustrate the theorem: 
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1 / 3   =     0.333333333333333333333333333333333333 … 
1 / 6   =     0.166666666666666666666666666666666666 … 
1 / 7   =     0.142857142857142857142857142857142857 … 
1 / 11   =   0.010101010101010101010101010101010101 … 
1 / 12   =   0.083333333333333333333333333333333333 … 
1 / 13   =   0.076923076923076923076923076923076923 … 
1 / 17   =   0.058823529411764705882352941176470588 … 
1 / 18   =   0.055555555555555555555555555555555555 … 
1 / 19   =   0.052631578947368421052631578947368421 … 
1 / 23   =   0.043478260869565217391304347826087695 … 
1 / 27   =   0.037037037037037037037037037037037037 … 
1 / 29   =   0.034482758620689655172413793103448275 … 
1 / 31   =   0.032258064516129032258064516129032258 … 
1 / 34   =   0.029411764705882352941176470588235294 … 
1 / 37   =   0.027027027027027027027027027027027027 … 

 

Note that the minimal period lengths in these examples are 1, 1, 6, 2, 1, 6, 16, 1, 18, 22, 
3, 28, 15, 16 and 3.  One is naturally led to the following question: 
 

Given a fraction a / b between 0 and 1, what determines the (minimal) period length Q? 
 

To illustrate the ideas, we shall restrict attention to the special case where a / b  =  1 / p, 
where p is a prime not equal to 2 or 5 (the two prime divisors of 10).  In this case the 
methods of abstract algebra yield the following result: 
 
Theorem 2.  If p  ≠≠≠≠  2, 5 is a prime, then the least period Q for the decimal expansion of 
1 / p is equal to the multiplicative order of 10 in the (finite cyclic) group of multiplicative 
units for the integers mod p.� 
 
We shall not verify this result here, but the proof is not difficult. 
 
Corollary 3.  The least period Q divides p – 1. 
 
The corollary follows because the order of the group of units is equal to p – 1 and the 
order of an element in a finite group always divides the order of the group.� 
 
One is now led to ask when the period is actually equal to this maximum possible value.  
Our examples show this is true for the primes 7, 19, 23 and 29 but not for the primes 11, 
13, 31 or 37.   
 
More generally, one can define a primitive root of unity in the integers mod p to be an 
integer a mod p such that a is not divisible by p and the multiplicative order of the class 
of a in the integers mod p is precisely p – 1.  Since the group of units is cyclic, such 
primitive roots always exist, and one can use the concept of primitive root to rephrase 
the question about maximum periods for decimal expansions in the following terms: 
 

For which primes p is 10 a primitive root of unity mod p? 
 
A simple answer to this question does not seem to exist.  In the 1920s E. Artin (1898 – 
1962) stated the following conjecture: 
 

Every integer a   > 1 is a primitive root of unity mod p for infinitely many primes p. 
 

This means that 10 should be the primitive root for infinitely many primes p, and hence 
there should be infinitely many full – period primes.  Quantitatively, the conjecture 
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amounts to showing that about 37% of all primes asymptotically have 10 as primitive 
root.  The percentage is really an approximation to Artin’s constant  
 

 
 

where pk denotes the k th prime.  Further information about this number and related 
topics appears in the following online reference: 
 

http://mathworld.wolfram.com/ArtinsConstant.html 

 

Uniqueness of decimal expansions 

The criterion for two decimal expressions to be equal is well understood. 

Theorem V. 5. 15.   Suppose that we are given two decimal expansions that yield the 
same real number: 

aN10 N + a 
N–110 N – 1 + … +  a0  +  b110 – 1 + b210 – 2 + … +  bk 10 – k  + …   =   

 

cN10 N + c  
N–110 N – 1 + … +  c0  + d110 – 1 + d210 – 2 + … +  dk 10 – k  + … 

Then aj   =   c j for all j, and one of the following is also true: 

1. For each k we have bk  =  dk  . 
2. There is an L  >  0  such that bk  =  dk for every k  <  L but b  L + 1  

=  d  L  + 1,  while bk  =  0 for all  k  >  L and dk  =  9 for all  k  >  L  . 
3. There is an L  >  0  such that bk  =  dk for every k  <  L but  d  L + 1  

=  b  L  + 1,  while dk  =  0 for all  k  >  L and bk  =  9 for all  k  >  L 
(the opposite of the previous possibility). 

If x and y are given by the respective decimal expansions above, then x   =   y   implies 
the greatest integer functions satisfy [x]   =   [y],  which in turn implies that a j   =   c j j for 
all j.  Furthermore, we then also have ( x  )   =   ( y) and accordingly the proof reduces to 
showing the result for numbers that are between 0 and 1.     

The following special uniqueness result will be helpful at one point in the general proof. 

Lemma 4.  For each positive integer k let t  k be an integer between 0 and  9.  Then we 
have 

1   =   t110–1 + t210–2 + … +  tk10–k  + …  

if and only if  tk   =   9  for all k. 

Proof.   Let t be the summation on the right hand side.  If tk   =   9 for all k then t  =  1 by 
the geometric series formula.  Conversely, if tm   <   9 for a specific value of m then 
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t110 –1 + t210 –2 +  … +  tk10 –k  +  …   <   u110 –1  +  u210 –2  + …  +  uk10 –k  +  … 

where uk  =   9 for k  ≠≠≠≠  m and   um   ≤≤≤≤   8.  The latter implies that the right hand side is 
less than or equal to 1 – 10 – m, which is strictly less than 1.� 

Theorem 5.  If we are given two decimal expansions 

x   =   x110 –1  +  x210 –2  +  …  +   xk10 –k   +  …  

y   =   y110 –1  +  y210 –2  +  …  +   yk10 –k   +  …  

then x  =  y if and only if one of the following is true: 

1. For all positive integers k we have xk   =   yk . 
2. There is some positive integer M such that [  i  ] xk   =   yk   for all  

k   <   M,  [ii]  xM    =    yM   +  1, [iii]  xk   =   0  for  k   >   M,  and 
[iv]  yk   =   9  for  k   >   M. 

3. A corresponding statement holds in which the roles of xk   and  
yk   are interchanged: There is some positive integer M such 
that [i] xk   =   yk   for all  k   <   M,  [ii]  yM    =    xM   +  1, [iii]  yk   

=   0  for  k   >   M,  and [iv]  xk   =   9  for  k   >   M. 

Proof.   Suppose that the first alternative does not happen, and let  L be the first positive 

integer such that  xL   ≠≠≠≠   yL .  Without loss of generality, we may as well assume that  the 
inequality is xL   >   xL    (if the inequality points in the opposite direction, then one can 
apply the same argument reversing the roles of xk and xk throughout).  Let z be given by 
the first L – 1 terms of either x or y (these are equal). 

CASE 1.  Suppose that xL   ≥≥≥≥    yL  +  2.  Note that yL   ≤≤≤≤   7 is true in this case.   We 
then have  

y   ≤≤≤≤   z  + 10 – L yL  +  9 ×××× 10 – L (10–1 + 10–2 + … +  10–k  + …  )   =   z + 10 – L ( yL +1 )    <   

z  + 10 – L ( xL )    ≤≤≤≤   z  + 10 – L ( xL +   xL + 110–1 + xL + 210–2 + … +  xL + k10–k  + … )   =   x.  

Therefore x  >  y  if we have xL   ≥≥≥≥    yL  +  2.   

CASE 2.  Suppose that xL   =  yL  +  1, and let  w  =  10 – L yL, so that  xL   =   w  + 10 – L. 
We may then write 

x    =    z  +  (w   +  10 – L)   +  10 – L u     and     y    =    z   +   w   +  10 – L v 

where by construction u and v satisfy 0   ≤≤≤≤  u,  v   ≤≤≤≤   1.  If x  =  y  then the displayed 
equations imply that  10 – L  +  10 – L u    =  10 – L v.  The only way such an equation can 
hold is if u   =   0  and v   =   1.    The first of these implies that the decimal expansion 
coefficients for the sum  

0     =     u     =      xL + 110–1  +  xL + 210–2  +  …  +   xL + k10–k  + … 
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must satisfy x  k = 0 for all k   >   L, and by the lemma the second of these can only 
happen if the decimal expansion coefficients for the sum  

1     =     v     =     yL + 110–1 + yL + 210–2 + … +  yL + k10–k  + … 

satisfy y  k   =   9 for all k   >   L  .  Therefore the second alternative holds in Case 2. 

Conversely, the standard geometric series argument shows that two numbers with 
decimal expansions given by the second or third alternatives must be equal.   Of course, 
the two numbers are equal if the first alternative holds, so this completes the proof of the 
theorem.�  

One can reformulate the preceding into a strict uniqueness result as follows: 

Corollary V. 5. 16.  Every positive real number has a unique decimal expansion of the 
form 

  aN10 N   +   aN – 1 10 N – 1  +  …  + a0   +   b110 – 1  +  b210 – 2  +  …  +  bk10 – k  +  …  
 

such that b  k  is nonzero for infinitely many choices of k. 
 
This follows immediately from the preceding results on different ways of expressing the 
same real number in decimal form; there is more than one way of writing a number in 
decimal form if and only if it is an integer plus a finite decimal fraction, and in this case 
there is only one other way of doing so and all but finitely many digits of the alternate 
expansion are equal to 9.� 
 
 


