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V  I  I  I  : Set theory as a foundation for  
 

mathematics 
 
 

This material is basically supplementary, and it was not covered in the course.  In the 
first section we discuss the basic axioms of set theory and the desirability of making the 
axiom system as simple and irredundant as possible.  The main objective of the second 
section is to describe exactly how one can simplify our assumptions for set theory, with 
particular attention to our fairly lengthy set of axioms for number systems; it turns out 
that one can replace these by a single assumption that is far more concise and is also 
central to the basic logical consistency issues raised in the previous unit.  In the third 
section we prove results stated in Unit V about the essential uniqueness of number 
systems satisfying our axioms for the integers and the real number system.  The fourth 
and final section covers a topic that fits in with both the naïve and formal approaches.  In 
Unit I  of these notes we mentioned that the axioms for Euclidean geometry were viewed 
as a major portion of the logical foundations for mathematics up to the early 19th century, 
and that by the end of that century set theory was quickly evolving into a new logical 
basis for the subject.  One natural question is whether the axioms for classical Euclidean 
geometry can be integrated into the new framework for mathematics, and if so the next 
question is how this can be done.  In the final section we explain how one can view the 
classical axiomatic approach to geometry within the environment of set theory.  

 
 
 

V  I   I   I . 1 :  Formal development of set theory 
 

 
(Halmos, §§ 1 – 10, 14;  Lipschutz, § 1.12) 

 

In Section I  I .1 we began by describing set theory from a naïve viewpoint and then 
indicated how one could set things up more formally.  In most of the notes, our approach 
has been very much on the naïve side; usually we have introduced assumptions about 
set theory as they were needed to continue or expedite the discussion without worrying 
too much about how one should express everything in a completely rigorous manner.  
This allowed us to develop the subject fairly rapidly.  At some points we mentioned the 
need to be more specific about some issues (e.g., describing the “ admissible”  logical 
statements that can be used to describe sets) or the possibility of deriving some of our 
assumptions as logical consequences of the others.  For example, in Section I  I  I .2 of 
the notes we mentioned that the existence of objects with the properties of ordered pairs 
can be proved from the other assumptions; details appear on pages 23 – 25 of Halmos.  
Frequently the proofs of such implications are somewhat complicated and unmotivated 
and the approach may seem artificial, and therefore we have simply added assumptions 
in Section I  I  I .2 and elsewhere to save time and to focus attention on points that are 
directly related to the uses of set theory in the mathematical sciences. 



 173

 
However, once the basics of set theory have been covered and assimilated, there are 
some extremely compelling reasons to look back and examine the assumptions in order 
to see if they can be simplified and redundant assumptions can be eliminated. 
 
One major reason to look for simpler and more concise assumptions is a basic principle 
in the philosophy of science called Ockham’s razor, which was originally stated by 
William of Ockham (1285 – 1349).  In modern language, this principle states that 
 

complications should not be introduced unless they are necessary 
 

or in more imperative terms 
 

do not invent unnecessary entities to explain something. 
 

Since we shall appeal to Ockham’s razor at other points in this unit, we include an online 
reference to a biography for William of Ockham: 
 

http://plato.stanford.edu/entries/ockham/ 
 

In the mathematical sciences there are important practical justifications for using 
Ockham’s razor that go well beyond simplicity of exposition.   Since the mathematical 
sciences are so heavily dependent upon deductive logic, it is absolutely essential to 
have some assurance that the basic assumptions are logically sound.  If the 
assumptions for some theory lead to logical contradictions, serious questions arise about 
the validity and reliability of the theory’s conclusions and value.    Simplified lists of 
basic assumptions turn out to be extremely useful for testing the logical 
soundness of a mathematical system.  The reason is obvious; there are fewer things 
to verify, for much of the work is redirected into verifying the original assumptions are 
equivalent to the simplified ones. 
 
The advantages of simplified lists of assumptions are also illustrated very clearly by 
examples within mathematics itself.   In mathematical proofs by contradiction, the 
underlying idea for proving P implies Q is to assume that P is true, to add an assumption 
that Q is false, and to use the new, longer set of hypotheses to obtain a contradiction.   
This method has a fundamental implication:  As lists of assumptions become longer 
and more complicated, one must be increasingly careful in checking whether the 
entire list of assumptions is logically consistent.   It is generally much easier to 
check shorter systems of axioms for consistency than it is to check longer ones, so if we 
want to understand the consistency properties of our axioms it is highly desirable to have 
an equivalent version which is as simple as possible.    
 
 

Summary of the basic axioms 
 
As noted in Unit VI  I , one standard axiomatic approach to set theory in present day 
mathematics is based upon axioms introduced by E. Zermelo during the first decade of 
the 20th century, with a few subsequent modifications due to other mathematicians, most 
notably A. Fraenkel.  Versions of most Zermelo – Fraenkel (ZF) axioms have been 
introduced in previous units, and all the other assumptions we have introduced turn out 
to be consequences of these axioms, all of which are listed below: 
 

• The Axiom of Extensionality (see Section I  I .1) 
• The Axiom of Pairs (see Section I  I .2 and also below) 
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• The Axiom of Specification (see Section I  I .2) 
• The Axiom of the Power Set (see Section I  I  I .3) 
• The Axiom of Unions (see Section I  I  I .3) 
• The Axiom of Replacement (see Section I  V.4)  
• The Axiom of Foundation (see Section I  I  I .5) 
• The Axiom of Number Systems (see Sections V.1 and V.4 as 

well as the next paragraph)  
 

Note that the Axiom of Choice is missing from this list; if this is added, one obtains the 
system called ZFC in the previous unit.  Since a few of the ZF axioms have not yet 
been formulated explicitly, we shall explain the latter in more detail.  Given two objects a 
and b, the Axiom of Pairs formally states the existence of the set we have called {a, b}.  
A close inspection of the underlying logical principles reveals a need to make such an 
assumption in addition to the Axioms of Specification and Unions; in particular, 
something like this is needed to ensure that sets actually exist in our abstract logical 
system.   The Axiom of Number Systems is actually not in the usual version of ZF, but 
it represents our assumption that the integers and real number systems are sets; much 
of this unit will be devoted to discussing the drastically simplified version of this axiom 
which is part of the usual ZF axioms. 
 

As noted in Section VI  I .5, our formulation of set theory in these notes is based on a 
variant of ZF that is due to von J. Neumann, P. Bernays and K. Gödel and called NBG; 
this formulation is closely related to ZF and is perhaps the most widely used (although 
this is generally not stated explicitly outside of mathematical writings on set theory and 
the foundations of mathematics).  One major feature in the latter is its use of classes for 
collections that are too large to be sets; in ZF these are not regarded as legitimate 
objects of any sort.  Another important difference is that the Axiom of Specification is 
simplified in a significant manner.  As noted earlier, both formulations yield the same 
logical consequences, and one is logically consistent if and only if the other is.  
 

We have already given a few online references for the usual axioms of set theory.   Here 
is one more: 
 

http://mathworld.wolfram.com/Zermelo-FraenkelAxioms.html 
 

 
 

V  I   I   I . 2 :  Simplified axioms for the basic number systems 
 

 
(Halmos, §§ 11 – 13) 

 
Units I  I  through VI  I  covered the basic material in set theory that is needed to use the 
latter in the mathematical sciences, and this section discusses two basic issues.  One, 
which has already been discussed at some length, concerns the logical consistency 
problems that follow from Gödel’s Incompleteness Theorem.  The other is to replace our 
fairly lengthy set of axioms for the real number system by something that is more 
concise but logically equivalent.  We have already noted the important relationship 
between these two issues in the preceding section.   
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The logical consistency problem for set theory 
 
As we have already stated, the logical incompleteness results of Gödel imply that we 
can never be completely sure that any “ reasonable”  system of axioms for set theory like 
ZF (Zermelo – Fraenkel) is logically consistent.  However, by the relative consistency 
results of Gödel that we have also discussed, neither the Axiom of Choice nor the 
(Generalized) Continuum Hypothesis is a potential source of consistency problems. In 
view of all these results, it is natural to ask where such potential difficulties might lie.  
There are many similarities between the Axiom of Choice and the Axiom of Foundation; 
both seem reasonable and both make it easier to discuss some mathematical topics, but 
both are basically nonconstructive existence statements.  One further similarity is that 
there are Gödel relative consistency results for both the Axioms of Foundation and 
Choice:  If the standard ZFC axioms for set theory are logically inconsistent, then the 
system ZF without the Axiom of Choice is also logically inconsistent.  Furthermore, if 
ZF is logically inconsistent, then ZF without the Axiom of Foundation is also logically 
inconsistent.  
 

Among the remaining axioms, the next natural candidates are those dealing with 
something that is infinite.  There are two axioms of this type in ZF, one of which is the 
Axiom of Infinity  —   which assumes the existence of an infinite set  —   and the Axiom 
of Specification  —   which is really an infinite (in fact, countably infinite) list of axioms, 
one for each of the admissible statements that can be used to define a set.  In our 
setting, one can prove rigorously that if there is an internal contradiction in the ZF 
axioms for set theory, it must arise either from  
 

(1)  the assumptions about constructing sets with definitions given by fairly 
general types of valid mathematical statements, or from 

 

(2)  the assumptions about the existence of the real numbers and its 
standard hierarchy of subsystems including the natural numbers 
(nonnegative integers), the (signed) integers and the rational numbers.   

  

Problems concerning the first point arose at the end of the 19th century and the 
beginning of the 20th century, and two of these are the previously mentioned paradoxes 
of B. Russell and C. Burali – Forti.  We have already noted that mathematicians and 
logicians resolved these problems by suitably restricting the class of admissible 
grammatical statements for specifying sets and by adding an axiom which guarantees, 
among other things, that a set cannot be a member of itself.  All of this has now been in 
place and in its current form for over three quarters of a century.  During the intervening 
time, no additional problems involving the first point have arisen; of course, there are no 
guarantees that new difficulties will never emerge.   However, the absence of new 
problems over 75 years of intense critical study of foundational questions and enormous 
progress in all areas of the mathematical sciences lead to an important subjective 
conclusion: The current Axiom of Specification is highly reliable even if we cannot be 
sure it is absolutely perfect.  Confidence in this respect is reinforced by the NBG 
formulation of set theory due to von Neumann, Bernays and Gödel that we discussed in 
Section VI I .5.   The crucial feature of NBG is that the latter reduces the Axiom of 
Specification to a FINITE list of assumptions at the expense of assuming the 
existence of “ proper classes”  that are not sets. 
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As noted in Section VI  I .5, even if some new problems eventually arise, most if not all 
mathematicians strongly believe that they can be handled effectively, although this could 
very well take a considerable amount of time and effort.   It does not seem likely that 
such repairs would have much effect on most of the mathematics that is currently 
known, and it is even less likely that there would be any real effect on the applications of 
the subject (but there might be exceptions for subjects like modern theoretical physics 
which rely particularly heavily on mathematical ideas).  However, we can never be 
absolutely certain of this. 
 
We now turn to the second point regarding our axioms for number systems.  Given the 
numerous assumptions we have made about the real number system, one MUST 
NOT simply ignore the possibility that they could be manipulated to derive a 
logical contradiction.   Of course, many of the assumptions about algebraic equations 
and inequalities are quite standard, and many are just refinements of the simple 
assumptions (the “ common notions” ) at the beginning of Euclid’s Elements.  However, 
there are two aspects of the axioms for the real numbers that are especially problematic: 
 

A. The existence of infinite sets (for example, the real numbers) is 
assumed. 

B. There is a strong assumption about the existence of least upper 
bounds that is far less elementary than the other assumptions on 
equations and inequalities and goes beyond the standard 
properties of arithmetic operations and inequalities.  Formally, this 
is another example of a nonconstructive existence statement. 

 
 

The standard axioms for set theory 
 
Since the existence of infinite number systems is absolutely central to mathematics, it 
should be clear that we cannot avoid making some assumption about the existence of 
an infinite set.  A major goal of this section is to indicate how one can use such an axiom 
to prove the existence of a system which satisfies all the properties we assumed for the 
real number system.  Once this is done, we can use the principle of Ockham’s razor to 
simplify out axioms for set theory to the following: 
 

1. The axioms listed in the preceding section, except for the Axiom of 
Number Systems, which is related to the Standard Axiom of Infinity.  

2. A simply stated Standard Axiom of Infinity, which is given below. 
3. The Axiom of Choice or an equivalent statement (e.g., the Well – 

Ordering Property or Zorn’s Lemma). 
 

Here is the formal statement of the axiom mentioned in the second point on the list: 
 
STANDARD AXIOM OF INFINITY.   There is a set ωωωω  such that the following hold: 
 

 (1) The empty set Ø belongs to ωωωω. 
 (2) For each x  ∈∈∈∈  ωωωω, we also have x ∪∪∪∪ {  x  }  ∈∈∈∈  ωωωω. 

(3) If A is an arbitrary subset of ωωωω satisfying the preceding two conditions 

when ωωωω is replaced by A, then A  =  ωωωω. 
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This axiom corresponds to a model for the nonnegative integers in which Ø corresponds 
to 0 and x ∪∪∪∪ {  x  }  corresponds to x + 1, and the axiom merely says that this specific 
infinite class is a set.   
 

We can check directly that this set ωωωω satisfies Peano Axioms, with σσσσ(x)  =  x  ∪∪∪∪  {  x  }  , as 

follows:   If y  =  σσσσ(x)  for some x, then x  ∈∈∈∈  y and hence y is nonempty.  Therefore the 
empty set cannot be equal to σσσσ(x)  for any x.   Next, we need to show that σσσσ is 1 – 1.  
Suppose however that σσσσ(x)  =  σσσσ(y) .  Then we have x  ∪∪∪∪  {  x  }  =  y  ∪∪∪∪  {  y  }  ,  If x and y 

are unequal this can only happen if x  ∈∈∈∈  y and y  ∈∈∈∈  x  ; but the Axiom of Foundation 
implies that these cannot both be true, and this forces us to conclude that x  =  y, so that 

σσσσ is 1 – 1.  Finally, if M is a subset of ωωωω which contains Ø and such that x ∈∈∈∈ M implies 

σσσσ(x)  ∈∈∈∈  M ,  then the third condition in the Standard Axiom of Infinity implies M  =  ωωωω.� 
 
In claiming that the simplified axiom list given above is adequate to yield everything we 
have done in these notes, we are asserting in particular that  
 

the existence of an object with all the properties of the real 
number system exists under these assumptions.   

 

The remainder of this section will explain why this is true.  The basic idea is to construct 
a system satisfying all the properties of the real numbers using the simplified axiom 
list in which the assumption on  ωωωω replaces the Axiom of Number Systems.  We shall not 
attempt to include all the details; most turn out to be fairly routine arguments, but the 
work is often tedious.  Instead, our main emphasis will be to explain the ideas in the 
construction.  Here are some online references which cover the details in an extremely 
thorough manner. 
 

http://www.math.nus.edu.sg/~urops/Projects/RealNumbers.pdf 
 

http://www.math.ku.dk/~kiming/courses/2004/matm/real_numbers.pdf 
 

The first reference covers everything, and the second concentrates on Cantor’s 
construction of the real numbers which is described below.  
 

Showing the existence of a object with all the properties of the real number system 
requires the following preliminary steps:  
 

1. It is necessary to construct the arithmetic operations and linear 
ordering on the standard model for the Peano axioms. 

2. It is necessary to construction of the (signed) integers from the 
standard model for the Peano axioms. 

3. It is necessary to construct the rational numbers from the integers. 
4. It is necessary to construct the real numbers from the rationals. 

 

We shall consider each of these in the order listed. 
 
  

Arithmetic operations, linear ordering and the Peano axioms 
 
Before we can think of constructing the integers or anything else that is larger than the 
natural numbers N, we need to define addition and multiplication on an abstract system 
satisfying the Peano axioms and verify that they have the usual properties.  The 
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following recursive definitions of addition, multiplication, and exponentiation are 
standard, and in particular they appear on page 51 of Goldrei. 
 

(1) ADDITION  n + k :  n + 0  =  n    and    n  +  σσσσ(k)  =  σσσσ(n + k). 

(2) MULTIPLICATION  n  ××××\k  =        n  ⋅⋅⋅⋅ k :  n  ⋅⋅⋅⋅ 0  =  0    and    n  ⋅⋅⋅⋅ σσσσ(k)  =  (n  ⋅⋅⋅⋅ k) + n. 

(3) EXPONENTIATION  n  
k  =        n^k  (provided n  ≠≠≠≠  0) :  n^0  =  1  and  

n^ σσσσ(k)  =  (n^k) ⋅⋅⋅⋅ n.  ( If n  =  0, then we define  0^k  =  0 for all k  ≠≠≠≠  0). 
 

The familiar basic arithmetic rules for these operations are stated in Theorem 3.12 on 
page 53 of Goldrei.  These include the commutative and associative laws of addition and 
multiplication, the distributive law, and the three standard laws of (integral) exponents: 
 

(m⋅⋅⋅⋅n)^k  =  (m^k)    ⋅⋅⋅⋅(n^k),     (n^a)^b  =  n^ (a⋅⋅⋅⋅b),    (n^a) ⋅⋅⋅⋅(n^b)  =  n^ (a + b) 
 

Further arithmetic rules appear on pages 53 – 56; most of these are identities for special 
cases when n or k is equal to 0 or 1. 
 

The definition of inequality is very easy in this standard model for the Peano axioms; 
namely, n  <  m if and only if n  ∈∈∈∈  m  .  The basic properties of inequalities (e.g., for 
unequals added to or multiplied by equals) are stated in Theorem 3.13 on page 56, with 
some further properties listed on the next page. 
 
 

Construction of the (signed) integers and rational numbers 
 

If one thinks as the (signed) integers as an extension of the natural numbers to allow 
arbitrary subtraction and the rational numbers as an extension of the integers to allow 
division by a nonzero integer, it is not surprising that the construction of the integers from 
the natural numbers and the construction of the rational numbers from the integers 
should be similar. 
 
Construction of the integers.    It is useful to begin by stating exactly what we need to 
do.  Using the existence of a Peano system we are supposed to construct a set Z 
together with binary operations A : Z ×××× Z  →→→→  Z and M : Z ×××× Z  →→→→  Z that correspond 
to addition and multiplication respectively, we are also supposed to construct a linear 
ordering on Z, and finally we are supposed to show that these three operations satisfy 
the properties that were listed in Section V.2.    
 

We have already stated that we want the integers to be a system in which subtraction is 
always possible, and the key idea in the construction is to start with ordered pairs of 
natural numbers that we shall think of as formal difference expressions.  Of course, two 
difference expressions a – b and c – d may yield the same number, so we need to 
identify two difference expressions that yield the same value.   It is a very easy exercise 
in algebra to see that a – b  =  c – d is true if and only if a + d  =  b + c; the second 
equation is meaningful within the natural numbers, so we can state our condition for 
formal differences to be the same using a binary relation given by a subset of N ×××× N: 
 
Definition.  Two elements (a, b) and (c, d) of N ×××× N are formal difference equivalent 
if a + d  =  b + c. 
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The name of the relation suggests that formal difference equivalence should be an 
equivalence relation, and in fact this is true.  The proof is a fairly straightforward 
exercise.  As on page 32 of Goldrei, we may now define the integers Z to be the set of 
all equivalence classes of this equivalence relation.  There is a natural embedding of 
N into Z given by sending n to the equivalence class of (n, 0). 
 

The next step is to define addition, multiplication and ordering on Z so that it extends the 
given definitions on N.  It is easy to guess what sorts of properties the correct definitions 
should have. 
 
Provisional definitions.   Suppose we are given integers x and y with representatives 
(a, b) and (c, d) respectively.   Then the sum x + y should be represented by the 

ordered pair (a + c, b + d) , the product x  ⋅⋅⋅⋅ y should be represented by the more 
complicated ordered pair (a c + b  d, b  c + a d) , and the strict linear ordering x  <  y 
should be equivalent to  a + d  <  b + c. 
 
One fundamental issue with this providional definition is that the output is given by 
choosing representatives for the equivalence classes x and y.   Since we want 
functions that are single valued, we need to show that any other choices of 
representatives for the equivalence classes will yield the same element of Z.  In 
standard mathematical terms, we must show that our constructions of addition, 
multiplication and ordering are well – defined.  This required verifying the three items 
in the following statement. 
 
Well – definition of operations.   In the notation above, suppose that (p, q) and (a, b) 
represent the same element of Z, and likewise that (r, s) and (c, d) represent the same 
element of Z.  Then each of the following pairs also represent the same element of Z: 
 

� The pairs (a + c, b + d) and  (p + r, q + s). 
� The pairs (a c + b  d, b  c + a d) and  (p  r + q  s, q  r + p  s). 
� The inequality a + d  <  b + c is true if and only if p + s  <  q + r is true. 

 

Verifying the preceding statements requires a series of elementary but fairly tedious 
calculations; these are all carried out in the first online document cited above. 
 

The preceding defines addition, multiplication and ordering for the integers, and the next 
steps are to show that the definitions extend the ones for N and have all the required 
properties listed in Section V.1.   Once again, the details may be found in the first online 
document in our list.  The verifications are elementary but somewhat tedious; the 
standard advice is that “ every mathematician should go through the details once and 
understand them, but not worry about committing them to memory.”   
 

Construction of the rational numbers.    We are now ready to discuss the construction 
of the rational numbers from the integers.  This is done on pages 29 – 31 of Goldrei with 
some motivation on page 28. 
 

As we have already noted, the construction of the rational numbers from the integers is 
supposed to allow division by nonzero  quantities, and following the previous 
construction we begin by considering ordered pairs of integers (with the second one 
nonzero) to be formal quotients.  This is slightly different from the approach in Goldrei, 



 180

where the denominator is assumed to be positive, but one ultimately obtains the same 
system regardless of whether the denominators are assumed to be positive or merely to 
be nonzero. 
 

One standard condition for two ratios of integers a/b and c/d to be equal is a d  =  b  c.  
One may use this to define rational numbers using ordered pairs of integers (x, y) such 
that the second term is nonzero, and saying that two elements (a, b) and (c, d) of the set 

Z ×××× ( Z  – {  0 } ) are formal quotient equivalent if a ⋅⋅⋅⋅ d  =  b  ⋅⋅⋅⋅ c  . 
 

The name of the relation suggests that formal quotient equivalence should be an 
equivalence relation, and in fact this is true.  The proof is a fairly straightforward 
exercise.  As on page 29 of Goldrei, we may now define the rational numbers Q to be 
the set of all equivalence classes of this equivalence relation.  There is a natural 
embedding of Z into Q given by sending the integer a to the equivalence class of (a, 1). 
 

We can now formulate provisional definitions for addition, multiplication and ordering.  
The underlying idea is the same as for the construction of the integers, but the formulas 
will be much different.  Suppose we are given rational numbers x and y with 
representatives (a, b) and (c, d) respectively.   Then the sum x + y should be 

represented by the ordered pair (a d + b  c, b  d), the product x  ⋅⋅⋅⋅ y should be represented 
by the more complicated ordered pair (a c, b  d), and the strict linear ordering x  <  y 
should be equivalent to  a b  d  

2  <  b  
2c  d  .   —  Since the latter differs from Goldrei and is 

clearly more complicated than anything else in sight, we should explain it.  A ratio u/v 
will be positive if and only if the product of the numerator and the denominator is 
positive, and a / b  <  c  / d should hold if and only if the difference (c  / d) – (a / b) is 

positive.  The latter fraction is equivalent to (b  c – a d)/b  d, and the product of this 
fraction’s numerator and denominator is simply b  

2
 c  d  –  a b  d  

2.    
 

In analogy with the construction of integers, the next step is to verify that these 
constructions do not depend upon the choices of representatives for x and y.  This is 
covered fairly explicitly on pages 29 – 30 of Goldrei, and because of this and the 
similarity to the integral case we shall not state all the details here.  These are also 
verified in the first online document cited above, and the advice at the end of the 
discussion of the integers applies here equally well.  One additional point to be checked 
is that the new definitions of addition, multiplication and ordering coincide with the 
previous ones on the integers; i.e., those formal quotients whose denominators are 
equal to 1.  This is a tedious but extremely simple exercise, and the argument contains 
no surprises. 
 

To complete the discussion of the rational numbers, we need to show that they have the 
standard fundamental properties along the lines of Unit V.  Specifically, these include all 
the properties of the real numbers except the Dedekind Completeness Property. 

 
 

The Dedekind construction of the real numbers 
 
At certain points when it was necessary for ancient Greek mathematicians to compare 
irrational numbers, this was done using an idea essentially due to Eudoxus of Cnidus 
(408 – 355 B. C. E.), which we state in modern language: 
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Condition of Eudoxus.  Two real numbers x and y are equal if and only if the following 
two statements hold. 
 

(1) Every rational number less than x is also less than y. 
(2) Every rational number greater than x is also greater than y. 

 

One proves this result as follows:  If x and y are unequal, say x  <  y, then there is a 
rational number b between them, and this rational number b is greater than x but less 
than y.  Similar considerations apply if x  >  y.� 
 
In particular, the Condition of Eudoxus plays an important role in the theory of irrational 
geometric proportions as developed in Euclid’s Elements. 
 
During the late 1850s, R. Dedekind took these ideas one important step further.  For 
each real number a, the set of all rational numbers that are less than a has some easily 
stated properties, and Dedekind’s idea was that a converse was true; namely, a set of 
rational numbers which looks like it could be a set defined by a number actually arises 
from a real number.  The treatment on pages 8 – 17 of Goldrei is slightly different from 
Dedekind’s in some respects, but it is closely related and yields an equivalent object.  
For the sake of completeness, here is a reference to a readily available book which 
contains Dedekind’s fundamental (and still very readable) paper, Continuity and 
irrational numbers.  
 

R. Dedekind, Essays on the Theory of Numbers (Authorized 
Translation by W. Beman).  Dover, New York, 1963.  ISBN: 0–
486–21010–3. 

 

Later in this unit we shall indicate how Dedekind’s approach to the real numbers 
depends very substantially on being able to work effectively with infinite sets. 
 
In order to proceed , we need to formalize the notion of “ a set of rational numbers which 
looks like it could be a set defined by a number”  in the preceding paragraph. The 
following definition appears on page 9 of Goldrei. 
 
Definition.  A nonempty set S of rational numbers is a left Dedekind set (or the left 
half of a Dedekind cut) if it has the following properties: 
 

1. The set S has an upper bound. 
2. The set S has no largest element. 
3. If x  <  y  and y  ∈∈∈∈  S, then x  ∈∈∈∈     S. 

 

Strictly speaking, a left Dedekind cut consists of two sets, one of which is given above 
and the other, the right half, is the relative complement.  Every rational number q 
determines a left Dedekind set, which is merely the set of all rational numbers that are 
less than q.  Verifying the three conditions for such a set is a straightforward exercise. 
 
In Dedekind’s approach, one defines the real numbers to be the collection of all left 
Dedekind sets; the axioms of set theory will then imply that this collection is a set. 
 
The next step is to define addition, multiplication and ordering for left Dedekind sets.  It is 
particularly easy to define ordering, for it corresponds to set – theoretic inclusion.  With 
this definition, the important Dedekind Completeness Property follows very quickly; in 
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fact, the least upper bound of a bounded collection of left Dedekind sets turns out to be 
the union of these sets (see Goldrei, Theorem 2.2, pages 13 – 14). 
 
Defining addition is a little less trivial but still not difficult.  Given two left Dedekind sets C 
and D, the sum C + D is taken to be the set of all rational numbers expressible as x + y 

where x  ∈∈∈∈ C and y  ∈∈∈∈  D.  One needs to check that this is again a left Dedekind set, but 
this can be done.  It is also useful to describe the negative of a left Dedekind set C at 
this point.  Let B0  denote the complement of C in the rational numbers, and take B 
equal to B0 if the latter has no least element m and B  =  B0 – {  m  } otherwise; finally 
define the negative – C to be the set of all numbers x such that – x  ∈∈∈∈  B.   
 

CLAIM:  The set  – C is a left Dedekind set. 
 

Proof.   The first thing to note is that this set is nonempty, or equivalently that B is 
nonempty.  The first two conditions on C imply that B0 is nonempty, so all that remains is 
to verify that B0 contains more than its least element.  In fact, if m is the least element 

and z  >  m, then we claim that x  ∈∈∈∈     B0 , for otherwise we would have z  ∈∈∈∈     C, and 

therefore the third property would imply m  ∈∈∈∈     C, which we know is false. 
 
We shall now verify the three characterizing properties in order.  (1) Observe that if y is 
any element of C then y is a lower bound for the sets B0 and B; to see this, suppose that 

x  ∈∈∈∈     B0  and that y is not strictly less than x.  Then we have x  ≤≤≤≤  y, and by the defining 

properties of C it will follow that x  ∈∈∈∈     C, which contradicts the construction of B0 as a set 
that is disjoint from C.  It therefore follows that – y is an upper bound for – C.  (2)  For 

each x  ∈∈∈∈     – C we need to find some y such that y  ∈∈∈∈     – C and y  >  x.  By definition, if 

we have x  ∈∈∈∈     – C then – x  ∈∈∈∈     B0 but – x is not the least element of the latter.  If B0 has 

no least element then clearly there is some w  ∈∈∈∈     B such that w  <  – x.  If B0 has a least 
element we have to look more carefully.  Suppose that w lies between the least element 

m and – x; we claim that w  ∈∈∈∈     B. If not, then we must have w  ∈∈∈∈     C, and by the third 

condition in the definition of a left Dedekind set it will follow that m  ∈∈∈∈     C, which is false.  
Therefore in both cases we have an element of B such that w  <  – x , and consequently 
we also have x  <  – w where both of the latter belong to – C.  Hence the latter has no 

largest element.  (3) If x  <  y  and y  ∈∈∈∈  – C, then we need to prove that x  ∈∈∈∈     – C.  By 

construction we know that – y  ∈∈∈∈     B, and of course we also have – y  <  – x, so the 

proof reduces to showing that – x  ∈∈∈∈     B.   What are the other possibilities?  One option 
is that – x could be the least element of B0 , but this is not true because it is greater than 

– y and the latter lies in B.  Thus the only remaining alternative to – x  ∈∈∈∈     B is that we 

have – x  ∈∈∈∈     C.   Since – x  >  – y it would follow that – y would lie in C and we know 
this is false because – y actually lies in the disjoint subset B.  Therefore the only 

possibility is that – x  ∈∈∈∈     B, which is equivalent to x ∈∈∈∈     – C.  This completes the proof 
that the set – C is a left Dedekind set.� 
 
The general definition of multiplication is more complicated.  However, if we are given 
two sets C and D that are positive in the sense that both contain 0 (hence also contain 
some positive rational numbers), the definition is again simple:   The product of the sets 
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C ⋅⋅⋅⋅ D is then taken to be the set of all rational numbers expressible as x  ⋅⋅⋅⋅ y where x ∈∈∈∈ C 

and y ∈∈∈∈ D.  In the remaining cases one must adjust the definition; this is explained 
thoroughly on page 15 of Goldrei, and it simply corresponds to the usual rules for 
determining whether the product of two numbers is positive, negative or zero if at least 
one of the factors is nonpositive.  We specifically took the trouble to define the negative 
of a left Dedekind set explicitly so that the notion could be used in the definition of 
multiplication. 
 

Having defined the algebraic structure on left Dedekind sets, it remains to verify that the 
ordering and algebraic operations satisfy all the properties that are supposed to hold for 
the real numbers.  These are listed in Theorem 2.3 on page 16 of Goldrei.   Once again, 
the first online document cited above has all the details.  

 
 

The Cantor construction of the real numbers 
 
Given the fundamental importance of the real numbers in mathematics, it certainly would 
not hurt to confirm the existence of such a system by describing another construction.  
The standard alternative to Dedekind’s construction is the so – called Cauchy 
sequence construction due to Cantor.   Both yield systems satisfying the axioms for 
the real numbers, and by the uniqueness results in Section 3, the systems obtained by 
the different methods are the same for all mathematical purposes.   Each approach to 
constructing the real number system has its own advantages and disadvantages.  Some 
constructions or proofs that are simple and natural in one are difficult or awkward in the 
other.  In particular, the definition of multiplication is much easier in Cantor’s 
construction, but one does not need to worry about equivalence classes in Dedekind’s 
construction, which defines real numbers directly as subsets of the rationals. 
 
The starting point for Cantor’s construction is slightly different to the basic idea exploited 
by Dedekind; namely, every real number is the limit of a sequence of rational numbers.  
There are several ways one can see this, and the standard representations by (usually) 
unending decimal expansions provide a particularly direct means of doing so (see 
Section V.5 of these notes).    
 
Cantor’s construction of the real numbers is described on pages 17 – 24 of Goldrei.  In 
order to begin, one needs to define a type of sequence that looks like it should have a 
limit; the precise concept is called a Cauchy sequence, and it is defined on page 18 
(Note:  On page 17, Goldrei notes that every Cauchy sequence of real numbers 
converges to a limit and describes this as “ a dull observation”  — not everyone would 
agree with this opinion, and regardless of whether or not one agrees with it, the result 
itself and its numerous generalizations are extremely important for many purposes).  
Sequences whose values are constant and equal to some fixed rational number are 
Cauchy sequences, and they yield an embedding of the rationals into the set of 
equivalence classes of Cauchy sequences.  One then defines a notion of equivalence if 
the sequences approach each other asymptotically, after which one defines addition, 
multiplication and ordering as on pages 22 – 23 of Goldrei.  It follows immediately that 
these operations correspond to the ones we already have for rational numbers.  Finally, 
as indicated on page 23 of Goldrei, one proves that the sets of equivalence classes of 
Cauchy sequences have all the required properties of the real number system, and this 
completes the proof that Cantor’s construction also yields a model for the real numbers. 
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The preceding discussions of the Dedekind and Cantor constructions of the real 
numbers are only meant to summarize the latter and to indicate the crucial role of infinite 
set theory in both approaches.  A reader interested in seeing more of the details is urged 
to consult the listed references. 
 
 

The roles of the real number constructions 
 
Most books on the theory of functions of a real variable written during the past few 
decades begin with the axioms for the real number system and proceed to develop the 
foundations of calculus from that basis.  The actual means of construction of the real 
numbers is unimportant from this viewpoint, and the following quote from page 16 of 
Goldrei summarizes the situation quite well: 
 

The methods found in standard real analysis texts … never “ look inside”  any real 
number, so the fact that a real number has been defined as a set of rationals 
ceases to be relevant. 

 

Although the method of construction for the real numbers is relatively unimportant once 
the process is finished, both the Dedekind and Cantor methods are useful for studying 
certain other types of questions about embedding one mathematical system in another, 
where the latter has some desired properties; usually these involve adjoining additional 
points so that certain “ good”  sequences will have limits.   Such constructions occur 
frequently in mathematics and its applications (particularly to physics), and they are 
characterized by names such as envelopes, extensions, compactifications, limiting 
objects, or (the default term) completions.    
 
We conclude this discussion of the real numbers with another quotation taken from 
pages 16 – 17 of Goldrei, which summarizes the preceding discussion and relates it to 
the material at the end of Section V.2: 
 

It is relevant to note at what cost we have defined the real numbers.  First, we 
have defined reals in terms of rational numbers.  …  Secondly, the definition of 
an individual real number is as an infinite set of rationals.  Use of the infinite in 
mathematics has been a matter of controversy for a good 2000 [ actually, more 
like 2500 ] years [ in Western civilization at least – many classical Indian 
mathematicians were not at all reluctant to discuss such matters].  Arguably 
mathematicians of the 19th century were confident with what is called a 
potentially infinite set, one for which, however (finitely) many elements you 
have, there is always another available.  But in treating an actually infinite set, 
like a Dedekind left set of rationals, as a legitimate mathematical object suitable 
for all sorts of manipulation, seemed somewhat dubious. 

 

Complex numbers and other standard constructions.   Once the real numbers are 
defined, there is no problem defining systems like the complex numbers, the usual 
coordinate spaces of n – dimensional vectors with real or complex coefficients, or any of 
the other objects one sees in basic undergraduate mathematics; in fact, all the usual 
construction go through unchanged.   
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V  I   I   I . 3 :  Uniqueness of number systems 
 
 

In the preceding section we outlined the construction of number systems which satisfy 
the basic properties of the integers, rational numbers and real numbers using the 
Standard Axiom of Infinity.  The purpose of this section is to provide detailed proof ofthe 
following uniqueness results for number systems from Unit V:  
 
Theorem V.1.6.  Suppose that X and Y are sets with notions of addition, multiplication 
and ordering which satisfy all the conditions for the integers.  Then there exists a unique 
1 – 1 correspondence from h from X to Y that is an isomorphism in the appropriate 

sense:  For all u, v  ∈∈∈∈ X we have h(u + v)   =   h(u)  +  h(v), h(u  ⋅⋅⋅⋅ v)   =   h(u) ⋅⋅⋅⋅ h(v), and 
h(u)  <  h(v) if and only if u  <  v.  The map h sends the zero and unit of X to the zero 
and unit of Y respectively.  
 
Theorem  V. 4.4.  Suppose that X and Y are sets with notions of addition, multiplication 
and ordering which satisfy all the conditions for the real number system.  Then there 
exists a unique 1 – 1 correspondence from h from X to Y that is an isomorphism in the 

appropriate sense:  For all  u, v  ∈∈∈∈ X we have h(u + v)  =  h(u)  +  h(v), h(u ⋅⋅⋅⋅ v)   =   

h(u) ⋅⋅⋅⋅ h(v), and h(u)  <   h(v) if and only if u  <  v.  The map h sends the zero and unit of 
X to the zero and unit of Y, and accordingly it also sends the “ integers”  in X to the 
“ integers”  in Y (and similarly for the “ rationals”  in the appropriate systems). 
 
As indicated in Unit V, these results imply that  
 

any statement about the addition, multiplication and ordering of X is 
true about the addition, multiplication and ordering of Y and 
conversely.   

 

Informally, this means that X and Y are “ the same for all practical purposes.”   The 
significance of this is also noted in Sections V.1 and V.4; if there are two systems that 
satisfy these axioms such that the properties of addition, multiplication and ordering 
differed in some nontrivial fashion, then one can and should question whether there are 
different versions of mathematics depending upon which system of is chosen to 
be the “ integers”  or the “ real numbers.”    The uniqueness theorem implies that no 
such difficulties of this sort exist. 
 
 

Existence of an isomorphism 
 
As usual with statements about the existence of a unique object, the proof splits into two 
parts, one to establish existence and the other to establish uniqueness.  Therefore our 
first objective will be to construct an isomorphism from X to Y.  We shall start very 
formally and write our systems as (X, AX, MX, OX) and (Y, AY, MY, OY), where A and M 
denote the respective additions and multiplications and O denotes the respective linear 
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orderings.   In this terminology, an isomorphism from X to Y will denote a 1 – 1 

correspondence f : X →→→→ Y such that for all  u, v ∈∈∈∈ X we have the following relations: 
 

(1)  f  (AX(u, v) )   =   AY(f(u), f(v) ).  [The mapping f is additive.] 
 

(2)  f  (MX(u, v) )    =   MY( f(u), f(v) ).   [The mapping f is multiplicative.]    

(3)  If (u, v) ∈∈∈∈ OX, then (f(u), f(v) ) ∈∈∈∈ OY.  [The mapping f is order preserving.] 
 

Formally, we want to prove the following. 
 
Theorem 1.  If X and Y are systems satisfying the axioms for either the integers or the 
real numbers (the same number system in both cases), then there exists an 
isomorphism f : X →→→→ Y in the sense described above. 
 
It is an elementary exercise to verify that if f defines an isomorphism from X to Y, then 
the inverse function f  

–
 
1 defines an isomorphism from Y to X.  In particular, if X is 

isomorphic to Y, then Y is isomorphic to X and one can simply say that X and Y are 
isomorphic (to each other).   
 
The constructions of the isomorphisms start with the definition for natural numbers ( = 
nonnegative integers) and the proceeds to its definition for the (signed) integers; in the 
case of the real numbers, the definition is extended still further, first to the rational 
numbers and ultimately to the real numbers.  The first step in both arguments is the 
same. 
 
First step.   We have already noted that there are (unique) embeddings of the natural 
numbers —  say eX and eY   —   into X and Y sending zero element 0 of N  to the zero 
elements 0X and 0Y of X and Y  respectively and satisfying the basic conditions 
 

eX( σσσσ(n) )   =   eX(n)  +  1X ,     eY(σσσσ(n) )   =   eY(n)  +  1Y 
 

where 1X and 1Y are the unit elements of X and Y respectively.  For each x ∈∈∈∈ X there is 

at most one n  ∈∈∈∈  N such that  x   =  eX(n), and therefore we can construct a well-
defined function  
 

f1 : eX(N) →→→→ eY(N) 
 

by setting  f1(eX(n) )   =   eY(n) for n  ∈∈∈∈  N.  By construction this defines a one-to-one 
correspondence between eX(N)  and eY(N). 
 
CLAIM:  The map f1 satisfies the conditions 
 

f1( AX(u, v) )   =   AY( f1(u), f1(v) ) ,   
 

f1( MX(u, v) )   =   MY( f1(u), f1(v) ), 
 

if (u, v) ∈∈∈∈ OX,  then ( f1(u), f1(v) ) ∈∈∈∈ OY 
 

for all u, v  ∈∈∈∈  N.  Using the maps eX and eY  we may rewrite these conditions as  
 

f1(AX( eX(m), eX(n) ) )   =   AY(f1(eX(m) ), f1( eX (n) ) ),   
 

f1(MX ( eX(m), eX(n) ) )   =   MY(f1(eX(m) ), f1( eX(n) ) ),   
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if (eX(m), eX(n) ) ∈∈∈∈ OX, then ( f1(eX(m) ),  f1( eX(n) ) ) ∈∈∈∈ OY 
 

for all m, n ∈∈∈∈ N.  We shall verify the first two of these by induction on n; in order to 
simplify the notation and stress the underlying ideas we shall use the standard algebraic 
terminology to denote the addition, multiplication and linear orderings on X and Y. 
 
Addition.   Suppose that  n  =  0.   Then  
 

f1( eX(m) + eX(0) )   =   f1( eX(m) + 0X )  =  f1( eX(m) )   = 
eY (m) + 0Y    =    eY (m) +  eY (0)   =   f1( eX(m) )  + f1( eX(0) ). 

 

Thus the equation is true for n  =  0 and all  m.  Suppose now that it is true for n = k  and 
all m;  we need to show it is true for n = σ(k) and all m.  But  
 

f1( eX(m) + eX( σσσσ (k) ) )   =   f1( eX(m) + eX(k) + 1X )   =   f1( eX(m) + eX(k) + 1X )   = 
 f1( eX(m) + 1X + eX(k) )   =   f1( eX( σσσσ (m) ) + eX(k) ) 

 

and by the induction hypothesis the last expression is equal to  
 

f1( eX( σσσσ(m) ) ) + f1( eX(k) ). 
 

The latter in turn is equal to  
 

eY( σσσσ(m) ) + eY(k)    =   eY(m) + 1Y + eY(k)   =   eY(m) + eY( σσσσ(k) )   = 
  f1( eX(m) ) + f1( eX(σσσσ(k)) ). 

 

This completes the verification of the inductive step. 
 
Multiplication.   Suppose that n =  0.   Then  
 

f1( eX(m) ⋅⋅⋅⋅ eX(0) )   =   f1(eX(m) ⋅⋅⋅⋅ 0X)   =  f1(0X)   =   0Y    =   eY(m) ⋅⋅⋅⋅ 0Y   =    
eY(m) ⋅⋅⋅⋅ eY(0)   =   f1( eX(m) ) ⋅⋅⋅⋅ f1( eX(0)  ). 

 

Thus the equation is true for n  =  0 and all  m.  Suppose that we know the equation is 
true for  n  =  k  and all  m;  we need to show it is true for n  =  σ(k) and all m.  But  
 

f1( eX(m) ⋅⋅⋅⋅ eX( σσσσ(k)  ) )   =   f1( eX(m) ⋅⋅⋅⋅ eX(k) + eX(m)  )   = 
f1( eX(m) ⋅⋅⋅⋅ eX(k)  )  +  f1( eX(m)  ) 

 

because we have already verified that  f1 is additive, and by the induction hypothesis the 
last expression is equal to  f1(eX(m) ) ⋅⋅⋅⋅ f1(eX(k) ) + f1(eX(m) ).  The latter in turn is equal to  
 

eY(m)  ⋅⋅⋅⋅ eY(k) + eY(m)   =   eY(m) ⋅⋅⋅⋅ eY(σσσσ(k) )   =    f1(eX(m) )  ⋅⋅⋅⋅ f1(eX( σσσσ(k) ) ). 
 

As before, this completes the verification of the inductive step. 
 

Ordering.   If eX(m)  <   eX(n) then there is a nonzero natural number c ∈∈∈∈ N such that 

eX(m) + eX(c)   =   eX(n). Since f1 is one-to-one, it follows that eY(c)  =  f1(eX(c))  ≠≠≠≠  0Y, so 
that eY(c)  >  0Y .  By the additivity of f1 it follows that  
 

f1(eX(m) )   =   eY(m)   =   eY(m) + 0Y    <   eY(m) + eY(c)   = 
 f1(eX(m) + eX(c) )   =   f1(eX(n) ) 

 

as required. 
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Notational conventions.    Let F be a system satisfying the axioms for the integers or 
the real number system, and let e F : N  →→→→ F be the embedding of the natural numbers 
that has been used extensively in the preceding step of the proof.  We define the 

integers in F to be the set of all objects of the form e F(a) – e F(b) for some a, b ∈∈∈∈ N, and 
we shall denote this set by Z  (F).  Similarly, if F satisfies the axioms for the reals, we 
define the rational numbers or rationals in F to be the set of m/n where m and n are 
integers in F  and n is nonzero, and we shall denote this set by Q(F).  If we are dealing 
with one fixed system in a given context we shall omit the “ (F)”  to simplify and 
standardize the notation.  
 
Second step.  We need to extend f1 to negative integers.  Clearly we want a definition 

sending a negative number of the form – eX(n)  ∈∈∈∈  X  to – eY(n)   =   – f1(eY(n) ), but we 
shall take a slightly less direct approach that will be helpful in verifying the crucial 
properties of the extended map without a succession of case by case arguments.   
 

By the preceding definition, every integer n  ∈∈∈∈  X can be represented as a difference 

eX(a) – eX(b) for some a, b ∈∈∈∈ N; this representation is not unique, but it is elementary to 
check that eX(a) – eX(b)   =   eX(c) – eX(d) if and only if  
 

eX(a) + eX(d)   =   eX(b) + eX(c). 
 

We shall extend  f1 to a map  f2 on integers by setting   
 

f2 (eX(a) – eX(b) )   =   eY(a) – eY(b)   =    f1(eX(a) ) – f1(eX(b) ). 
 
Before proceeding any further we need to show that  f2  is well-defined; in other words, 
we need to verify that  
 

if eX(a) – eX(b)   =   eX(c) – eX(d),  then  eY(a) – eY(b)   =   eY(c) – eY(d).    
 

Equivalently, we need to show that  
 

if eX(a) + eX(d)   =   eX(b) + eX(c),  then eY(a) + eY(d)   =   eY(b) + eY(c).    
 

To see the latter, apply f1 to both sides of the first equation and note that the additivity of 
f1 on N implies that  
 

eY(a) + eY(d)   =   f1(eX(a) ) +  f1(eX(d) ) =  f1(eX(a) + eX(d) )   =  
 f1(eX(b) + eX(c) )   =   f1(eX(b) ) + f1(eX(c) )   =   eY(b) + eY(c) 

 

so that  f2  is well-defined.   
 
Throughout the remainder of this step in the proof we shall consider two integers in X of 
the form m  =  eX(a) – eX(b) and n  =  eX(c) – eX(d).   
 
We must now show that   f2 is 1 – 1.  To see this, suppose that   f2 (m)   =   f2 (n).  By 
construction it follows that eY(a) – eY(b)   =   eY(c) – eY(d) so that we have  eY(a) + eY(d)   
=   eY(b) + eY(c).   The identities of the previous paragraph now imply that 
 

f1(eX(a) + eX(d) )   =   f1(eX(b) + eX(c) ) 
 

and since  f1 is 1 – 1 it follows that eX(a) + eX(d)  =  eX(b) + eX(c).  But the latter implies 
eX(a) – eX(b)  =  eX(c) – eX(d) which in turn implies that m   =   n.  By construction it 
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follows that the image of f2 is the set of all differences of elements in the image of eY ; in 
other words, f2 maps the integers in X onto the integers in Y.     
 
We next verify that f2 is additive:  
 

f2 (m + n)   =   f2 (eX(a) – eX(b) + eX(c) – eX(d) )   =  
f2 (eX(a) + eX(c) – eX(b) – eX(d) )   =    f2 ( ( eX(a) + eX(c) ) – ( eX(b) + eX(d) ) )   =  

f1(eX(a) + eX(c) ) – f1(eX(b) + eX(d) )   =  (eY(a) + eY(c) ) – (eY(b) + eY(d) )   =  
eY(a) – eY(b) + eY(c) – eY(d)     =    f2 (m) + f2 (n). 

 

The verification that f2 is multiplicative proceeds similarly: 
 

f2 (m  ⋅⋅⋅⋅ n)   =   f2 ( (eX(a) – eX(b) ) ⋅⋅⋅⋅ (eX(c) – eX(d) ) )   = 

 f2 ( (eX(a) ⋅⋅⋅⋅ eX(c) + eX(b) ⋅⋅⋅⋅ eX(d) ) – (eX(a) ⋅⋅⋅⋅ eX(d) + eX(b) ⋅⋅⋅⋅ eX(c) ) )    =  

f1(eX(a) ⋅⋅⋅⋅ eX(c) + eX(b) ⋅⋅⋅⋅ eX(d) ) – f1(eX(a) ⋅⋅⋅⋅ eX(d) + eX(b) ⋅⋅⋅⋅ eX(c) )    =  

( f1(eX(a) ) ⋅⋅⋅⋅ f1(eX(c) ) +  f1(eX(b) ) ⋅⋅⋅⋅ f1(eX(d) ) ) –  

( f1(eX(a) ) ⋅⋅⋅⋅ f1(eX(d) ) + f1(eX(b) ) ⋅⋅⋅⋅ f1(eX(c) ) )   = 

(eY(a) ⋅⋅⋅⋅ eY(c) + eY(b) ⋅⋅⋅⋅ eY(d) )  –  (eY(a) ⋅⋅⋅⋅ eY(d) + eY(b) ⋅⋅⋅⋅ eY(c) )  = 

(eY(a) – eY(b) ) ⋅⋅⋅⋅ (eY(c) – eY(d) )   =   f2 (m) ⋅⋅⋅⋅ f2 (n).  
 

To prove that f2 is order preserving, suppose that m  <  n, so that we have  
 

eX(a) – eX(b)   <    eX(c) – eX(d). 
 

Adding eX(b) – eX(d) to both sides of this inequality yields 
 

eX(a) + eX(d)   <   eX(b) + eX(c) 
 

and since  f1 is order preserving the latter in turn implies 
 

eY(a) + eY(d)   =   f1(eX(a) ) +  f1(eX(d) )   =   f1(eX(a) + eX(d) )   < 
f1(eX(b) + eX(c) )    =    f1(eX(b) ) + f1(eX(c) )   =   eY(a) + eY(c).   

 

If we now subtract eY(b) + eY(d) from both sides of the outside inequality we obtain the 
desired conclusion: 
 

f2 (m)   =   eY(a) – eY(b)   <   eY(c) – eY(d)   =   f2 (n) 
 

This completes the second step of the proof. 
 

Note that the preceding two steps complete the proof of Theorem V.1.6.�  
 
Third step.  We may now assume that X and Y satisfy the axioms for the real numbers, 
so that we need an extension of f2 to rational numbers of the form a / b where a and b 

are integers and b is nonzero.  Recall from elementary algebra that two fractions a / b 
and c  / d (with b and d nonzero) are equal if and only if a d   =   b  c.   
 

The idea is to consider a number q ∈∈∈∈ X of the form a / b, where a and b are integers in X 

and b is nonzero, and to define f3(q)  =  f2(a) / f2(b).  In order to show that this is a valid 
definition we need to check two things.  First of all, since f2 is 1 – 1 it follows that f2(b) is 
nonzero if b is nonzero, so the quotient is actually defined.  Second, we need to show 
that the value obtained by the formula is the same if we write q as a quotient of integers 
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in two different ways.  In other words, we need to show that if a / b  =  c  / d (with b and d 

nonzero) then we also have f2(a) / f2(b)  =  f2(c) / f2(d).  To do this, begin with the previous 
observation that ad  =  bc and apply f2 to both sides of the equation to obtain f2(a) ⋅⋅⋅⋅ f2(d)   
=   f2(b) ⋅⋅⋅⋅ f2(c). If we then divide both sides of this equation by f2(b) ⋅⋅⋅⋅ f2(d) we obtain the 
desired equation  f2(a) / f2(b)   =   f2(c) / f2(d).  
 
By construction the image of f3 consists of all expressions of the form u / v where u and 
v are in the image of  f2 and v is nonzero; in other words, f3 maps the rationals in X 
onto the rationals in Y.  We claim that f3 is also 1 – 1.  
 
Throughout the remainder of this step in the proof we shall consider two rational 
numbers in X of the form p  =  a / b and q  =  c  / d where a, b, c, d are integers in X and 
b and d are nonzero.   
 
To prove that f3 is 1 – 1, suppose that f3 (p)  = f3 (q).  By construction it follows that  

f2(a) / f2(b)  =  f2(c) / f2(d), which is equivalent to  f2(a) ⋅⋅⋅⋅ f2(d)   =  f2(b)  ⋅⋅⋅⋅ f2(c) .   Since f2 is 
multiplicative we have f2(a d)   =    f2(a) ⋅⋅⋅⋅ f2(d)   =    f2(b) ⋅⋅⋅⋅ f2(c)   =    f2(b  c), and since  f2 is 
one-to-one this implies a d  =  b  c, which in turn implies a/b  =  c/d and hence that the 
mapping f3 is also 1 – 1. 
 
The verification that f  3 is additive is a consequence of the following string of 
equations: 
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Similarly, the verification that f  3 is multiplicative follows from a somewhat different 
string of equations: 
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Finally we need to show that f  3 is order preserving.   We shall do this using the fact 
that a fraction a / b is positive if and only if the product of the number and denominator 
ab is positive (the second number is the product of the first with the positive number b2

 ).  
Therefore suppose that p  <  q  ; then  p – q is positive, and by the observation on the 
signs of fractions in the previous sentence it follows that the integer (bc – ad) ⋅⋅⋅⋅ bd is also 
positive.  Since f2 is order preserving it follows that  
 

f2 ( (bc – ad) ⋅⋅⋅⋅ bd)   =   (f2 (b) ⋅⋅⋅⋅ f2 (c)  –  f2 (a) ⋅⋅⋅⋅ f2 (d) ) ⋅⋅⋅⋅ (f2 (b) ⋅⋅⋅⋅ f2 (d) ) 
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is also positive.  But the right hand side of this equation is equal to f3(q) –  f3(p) , so the 
preceding observations imply that f3 (q)   >   f3 (p) as required. 
 
Fourth step.   We need to extend f3 to all elements of X .   Given a number r ∈∈∈∈ X ,  
consider the set  D(r) of all rational numbers q ∈∈∈∈ X such that q  <  r.  Let k be a positive 

integer that is greater than r, and consider the set f3 [D(r) ] ⊂⊂⊂⊂ Y.  Since f3  is order 
preserving it follows that  f3(k) is an upper bound for  f3 [D(r) ] and therefore by 
completeness the set  f3 [D(r) ] has a (unique) least upper bound; we take f(r) to be this 
least upper bound.  This definition may be rewritten as follows: 
 

f(r)   =   L.U.B.  q < r   f3(q)  
 

The first order of business is to show that f3(r)  =  f(r) when r is rational.  If r is rational 
and q  ∈∈∈∈  D(r), then by the previous work we know that f3(q)  <   f3(r), so that f3(r) is an 
upper bound for  f3 [D(r) ] and consequently is greater than or equal to the least upper 
bound, which is  f(r).  Suppose now that f(r)  <   f3(r).  It follows that there is a rational 
number t ∈∈∈∈ X such that f(r)  <   f3(t)  <   f3(r).  Since f3 is order preserving, the second 
inequality implies that t   <   r.  The latter in turn implies t  ∈∈∈∈  D(r) and hence f3 (t)  ≤≤≤≤  f(r), 
which when combined with the previously displayed inequality f(r)  <   f3 (t) yields a 
contradiction.  It follows that f(r)  =  f3 (r).   
 
To show that f is 1 – 1 , assume that r and s are real numbers in X such that r  <  s.  
Choose rational numbers p and q such that r   <  p  <   q   <   s.  As before, it follows 

that f3(p) is an upper bound for f3[ D(r) ] and therefore we have f(r)  ≤≤≤≤   f3(p)  =  f(p).  
Furthermore, since f3  =  f  for rational numbers it follows that f(p)  <  f(q), and also since 

q  ∈∈∈∈  D(s) it follows that f(q)  =  f3(q)  ≤≤≤≤  f(s).  If we put these inequalities together we 
find that  f(r)  <  f(s) and consequently that f is also  1 – 1.  Note that this argument 
also shows that f is order preserving.  
 
We shall next verify that the function f maps X onto all of Y.  Let  y  ∈∈∈∈  Y be arbitrary, 
and let D∗ (y) be the set of all rational numbers q  ∈∈∈∈  Y such that q  <  y; by construction 

y is an upper bound for D∗ (y), and in fact  y is the least upper bound of D∗ (y) because if  
z  <  y then there is a rational number p such that  z  <  p  <  y.  As before there is a 
positive integer k  ∈∈∈∈  Y such that y  <  k, and since the function  f3  is order preserving it 

follows that  k0  =  f3
–

 
1(k) is an upper bound for the set  f3

–
 
1[ D∗ (y) ].  Therefore the latter 

set has an upper bound that we shall denote by x.  We claim that  f(x)  =  y, and we shall 

do this by showing that  y  ≤≤≤≤   f(x) and strict inequality does not hold.   To show the 

inequality, suppose that we have q  <  y, and choose a rational number p  ∈∈∈∈  Y such 
that q  <  p  <  y. If we write q0  =  f3

–
 
1(q) and p0  =  f3

–
 
1(p) then q0  <  p0, and since both 

belong to the set  f3
–

 
1[ D∗ (y) ] it follows that q  0  <  p  0  <  x.  Since the function  f is order 

preserving the identities p  =  f3(p  0)  =  f(p0) and q  =  f3(q  0)  =  f(q  0) imply  the chain of 
inequalities  q  <  p  <  f(x).  Thus f(x) is an upper bound for D∗ (y); since y is the least 

upper bound for D∗ (y), we must have y  ≤≤≤≤  f(x).  The proof that y  =  f(x)  thus reduces to 
showing that f(x) is not strictly greater than  y.   
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Assume the contrary.  Then there is a rational number q satisfying  y  <  q  <  f(x), and 
write  q  =   f3(q  0)  =   f(q  0) as before.  Since the function f is order preserving, it follows 
that q  0  <  x.  But the definition of  x  as a least upper bound implies the existence of a 
rational number p0 such that   q  0  <  p  0 and p  =  f  3

–1(p  0) lies in D∗(y); i.e.,  we must 
have p  <  y.  Once again we have q  =  f3(q  0)   <   f3(p  0)  =  p,  and if we combine this 
with the other inequalities, we get the longer string of inequalities y   <   q   <   p   <   y,  
which is a contradiction.  This completes the proof that y  =  f(x). 
 
The next step is to show that f is additive.  Let u and v be arbitrary real numbers in X.    
 
Consider first the special case where one of these numbers (say v) is rational.  In this 
case the set D(u + v) is the set of all numbers expressible as sums  
 

f3 (q)  +  f3 (v)   =    f3 (q)  +  f(v) 
 

where q  ∈∈∈∈  D(u), and therefore we have  
 

f(u + v)   =   L.U.B.  q < u + v   f3 (q)   =    [ L.U.B.  p < u   f3 (p) ]  +  f(v)   =   f(u) + f(v)  
 

and hence  f is additive if v is rational and u is arbitrary.   
 
We now consider the general case.  If q is a rational number such that  q  <  v, then we 
have f(u) + f(q)   =   f(u + q)   <   f(u + v) because f is order preserving and it is also 
additive if one of the summands is rational.  Therefore q  <  v implies that  
 

f3 (q)   =   f(q)   <   f(u + v)  –  f(u)  
 

and consequently we have 
 

f(v)   =   L.U.B.  q < v   f3 (q)    ≤≤≤≤   f(u + v)  –  f(u).  
 

Additivity will follow if we can show that  f(v)  <  f(u + v) –  f(u) is impossible, so assume 
that it does hold.  In this case there is a rational number r ∈∈∈∈ Y such that  
 

f(v)   <   r   <   f(u + v)  –  f(u)  
 

and because  f  is onto we may write r   =   f(q)  for some rational number q ∈∈∈∈ X .  Since  
f is order preserving we know that  v   <   q, and consequently the order preserving and 
partial additivity properties of  f  imply that  
 

f(q)   =   r   <   f(u + v) –  f(u)   <   f(u + q) –  f(u)   =   f(u) + f(q) –  f(u)   =   f(q) 
 

which is a contradiction. Therefore the assumption  f(v)  <  f(u + v) –  f(u)  must be 
incorrect, and by the preceding discussion it follows that  f  must be additive. 
 
At this point, the only statement that remains to be shown is that f is multiplicative.  
We first observe that f is multiplicative if at least one of the factors is 0 or  ±±±± 1.   If one of 
the factors is + 1, this is immediate because f(1X)  =  1Y .  If one of the factors is zero, 
this follows quickly because the product of anything with zero is zero and f (0X)  =  0Y .  If 
one of the factors is – 1, this will follow provided we can demonstrate that f(– a)  =  – f(a) 
for all  a ∈∈∈∈ X , for then we have f(– 1X)   =   – f(1X)   =   – 1Y and furthermore  
 

f ((– 1X) ⋅⋅⋅⋅ a)   =    f(– a)   =   – f(a)   =   (–1Y) ⋅⋅⋅⋅ f(a)   =   f(–1X) ⋅⋅⋅⋅ f(a). 
 

To see that f(– a)  =  – f(a), let b  =  – a.  Since f  is additive we have that  
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0Y   =   f(0X )   =   f(a + b)   =   f(a) + f(b) 
 

and the latter implies that  f(b)  =  – f(a) as required.  We are going to need the basic 
identity f(– a)  =  – f(a) in order to complete the final step in the verification that f is 
multiplicative.  
 
The next step in verifying that f is multiplicative is to show this is true if both of 
the factors are positive.  The proof of this fact is very similar to the proof of additivity 
(since the exponential map defines an order preserving isomorphism from the additive 
group of real numbers to the multiplicative group of positive real numbers, this should 
not be surprising).  Let u and v be arbitrary positive real numbers in X.   Since f is order 
and zero preserving it follows that both f(u) and f(v) are positive.  
 
Consider first the special case where one of these numbers (say v) is rational (and 
positive!).  In this case, the set D(u  ⋅⋅⋅⋅ v) is the set of all real numbers expressible as sums 
f3 (q) ⋅⋅⋅⋅ f3 (v)  =   f3 (q) ⋅⋅⋅⋅ f(v) where q  ∈∈∈∈  D(u), and therefore we have  
 

f(u  ⋅⋅⋅⋅ v)   =   L.U.B.  q < u  ⋅⋅⋅⋅ v  f3 (q)   =   [  L.U.B. p < u   f3 (p) ]  ⋅⋅⋅⋅ f(v)   =   f(u) ⋅⋅⋅⋅ f(v)  
 

and hence  f is multiplicative if v is rational and u is arbitrary.   
 
We now consider the general case.  If q is a rational number such that  q  <  v, then we 
have f(u) ⋅⋅⋅⋅ f(q)   =   f(u  ⋅⋅⋅⋅ q)  <   f(u  ⋅⋅⋅⋅ v) because f  is order preserving and it is also additive 
if one of the summands is rational.  Therefore q  <  v implies that  
 

f3 (q)   =   f(q)   <   f(u  ⋅⋅⋅⋅ v) / f(u) 
 

and consequently we have 
 

f(v)   =   L.U.B.  q < v   f3 (q)   ≤≤≤≤   f(u  ⋅⋅⋅⋅ v) / f(u).  
 

Multiplicativity will follow if we can show that f(v)  <  f(u  ⋅⋅⋅⋅ v) / f(u) is impossible, so 
assume that it does hold.  In this case there is a rational number r ∈∈∈∈ Y such that  
 

f(v)   <   r   <   f(u  ⋅⋅⋅⋅ v) / f(u) 
 

and because f  is onto we may write r  =   f(q)  for some rational number q ∈∈∈∈ X. Since f 
is order preserving we know that v  <  q, and consequently the order preserving and 
partial multiplicativity properties of  f  imply that  
 

f(q)   =   r   <   f(u  ⋅⋅⋅⋅ v) / f(u)  <   f(u  ⋅⋅⋅⋅ q) / f(u)   =   f(u) ⋅⋅⋅⋅ f(q) / f(u)   =   f(q)   
 

which is a contradiction. Therefore the assumption f(v)  <  f(u  ⋅⋅⋅⋅ v) / f(u) must be incorrect, 
and by the preceding discussion it follows that  f  must be multiplicative. 
 
Finally, we need to verify that f is multiplicative in all cases.   Given a nonzero real 
number a, set εεεε(a) equal to + 1 if a is positive and – 1 if a is negative.  Then we may 
express a   =   εεεε (a) ⋅⋅⋅⋅ |a| where the absolute value |a| is positive.  Using the multiplicativity 
of f for the product |u|⋅⋅⋅⋅|v| and the identity  f(εεεε ⋅⋅⋅⋅ a)  =  εεεε ⋅⋅⋅⋅ f(a)  for εεεε  =  ±±±± 1 we have  
 

f(u  ⋅⋅⋅⋅ v)   =   f ( (εεεε (u) ⋅⋅⋅⋅ |u|) ⋅⋅⋅⋅ (εεεε (v) ⋅⋅⋅⋅ |v|) )   =   f (εεεε (u) ⋅⋅⋅⋅ εεεε (v) ⋅⋅⋅⋅ |u| ⋅⋅⋅⋅ |v|)   = 
(εεεε (u) ⋅⋅⋅⋅ εεεε (v) ) ⋅⋅⋅⋅ f(|u| ⋅⋅⋅⋅ |v|)   =   (εεεε (u) ⋅⋅⋅⋅ εεεε (v) ) ⋅⋅⋅⋅ f(|u|) ⋅⋅⋅⋅ f(|v  |)   =   

(εεεε (u) ⋅⋅⋅⋅ f(|u|)) ⋅⋅⋅⋅ (εεεε (v) ⋅⋅⋅⋅ f(|v|))   =   (f(εεεε (u) ⋅⋅⋅⋅ |u|) ) ⋅⋅⋅⋅ (f(εεεε (v) ⋅⋅⋅⋅ |v|))   =   f(u) ⋅⋅⋅⋅ f(v)  
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and this completes the proof that f is multiplicative.  As noted before, this completes the 
proof of Theorem 1 as well as Theorem V.4.4.� 
 
 

Uniqueness of the isomorphisms 
 
It turns out that the isomorphisms constructed above are unique.  This is equivalent to 
saying that if A satisfies the axioms for the integers or the real numbers, then the only 
isomorphism of A with itself that preserves addition, multiplication and ordering is 
the identity.   In fact, a slightly stronger result is true 
 
Theorem 2.   If A satisfies the axioms for the real numbers or the integers and the 
mapping f :  A →→→→ A is a 1 – 1 correspondence that is additive and multiplicative (but is 
not assumed to preserve the ordering), then f is the identity. 
 
It is possible to define meaningful notions of isomorphism for many different classes of 
mathematical objects.   If the domain and codomain of an isomorphism are the same, it 
is often called an automorphism.  Given an object satisfying the axioms for the real 
number system, the identity map on that object is always an automorphism, and the 
main result above can be reformulated to state that for a system satisfying the axioms 
for the real number system there are no other automorphisms. 
 
Example of a nontrivial automorphism.  In contrast, there are some systems closely 
related to the real number systems that have nontrivial automorphisms.  Perhaps the 
most important example is the field of complex numbers C.  Of course, this is the 
system one obtains from the real numbers by adding an element i that is supposed to be 
the square root of – 1.  A detailed account of the complex numbers is really beyond the 
scope of these notes, but the book by Birkhoff and MacLane covers the basics in a clear, 
concise and thorough manner.  Here our interest lies with the complex conjugation 
mapping on complex numbers sending a complex number z  =  a + b  i  to its conjugate 

χχχχ(z)  =  z∗  =  a – b  i.  This is a 1 – 1 correspondence because the identity z  =  (z∗)∗
 

implies χχχχ χχχχ  =  1C , so that χχχχ is its own inverse, and χχχχ is an automorphism because 
complex conjugation satisfies the following two elementary identities: 
 

(z + w) ∗    =    z∗  +  w∗                (z ⋅⋅⋅⋅ w) ∗    =     z∗ ⋅⋅⋅⋅ w∗ 
 

For the sake of completeness we note that the set of all automorphisms of the 
complex numbers is HUGE (in fact, its cardinality is 2|C|  >  |C|), but conjugation is the 
only nontrivial automorphism that sends real numbers to themselves and it is also the 
only nontrivial one which defines a continuous mapping from C to itself. 
   
Proof of Theorem 2.   The proof begins with a couple of simple observations: 
 

(a) The only element u  ∈∈∈∈  A such that x  ⋅⋅⋅⋅ u   =   x  for all x ∈∈∈∈ A is the unit 
element. 

(b) The only element z  ∈∈∈∈  A such that x ⋅⋅⋅⋅ z  =  z  for all x ∈∈∈∈ A is the zero 
element. 
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These follow because u  =  1 ⋅⋅⋅⋅ u   =  1 and  0  =  0 ⋅⋅⋅⋅ z   =  z .  Since f sends elements 
with properties (a) and (b) into elements with the corresponding properties, it follows that 
we must have  f  (1)  =  1 and  f  (0)  =  0. 
 

We shall also need two other standard elementary properties of automorphisms (and 
isomorphisms):   
 

(c)  For all x  ∈∈∈∈  A we have  f(– x)  =  – f(x) . 
(d)  If A  =  R, then for all nonzero x  ∈∈∈∈  A we have  f(x–1)  =   f(x) 

–1. 
 

The proof of (c) is the same argument that was used in the uniqueness proof, and the 
proof of (d) is based upon similar considerations: 
 

1   =   f  (1)   =   f(x  x  

–1)  =  f(x) f(x  

–1)  ⇒  f  (x  

–1)  =  f  (x) –1 
 

The main idea behind the proof is to show successively that f must be the identity on 
each of the following: 
 

1. The natural numbers. 
2. The integers.   
3. The rational numbers. 
4. All real numbers. 

 

If A is the integers, then only the first two steps are needed.  Predictably, we take these 
steps in the order listed. 
 

The natural numbers.   Let e : N  →→→→ A be the embedding described in the section on 
axioms for the real numbers.  We shall show that f( e(n) ) =  e(n)  by induction on n; we 
have already verified this if n  =  0 or n  =  1.  Suppose that this is known for n  =  k.  
Then by the additivity of f and the inductive hypothesis we have  
 

f ( e(σσσσ(k) ) )   =   f ( e(k) + 1)   =   f (e(k) ) + 1   =   e(k) + 1   =   e(σσσσ(k) ), 
 

and hence f is the identity on the natural numbers (more correctly, on the image of the 
natural numbers in the reals). 
 

The integers.   Given an integer n ∈∈∈∈ Z  , write n  =  e(a) – e(b) where a, b ∈∈∈∈ N.  Then 
by the preceding step in the proof, the additivity condition and property (c) above we 
have  
 

f(n)  =   f (e(a) – e(b) )   =   f ( e(a) ) –  f (e(b) )   =   e(a) –  e(b)   =   n 
 

as required.  Note that this completes the proof if A  =  Z. 
 

The rational numbers.   We may now assume that A  =  R.  Given an arbitrary rational 

number q  ∈∈∈∈  Q express q as a quotient a b 
– 1 where a, b  ∈∈∈∈  Z and b is nonzero.  As 

before, by the immediately preceding step in the proof, the multiplicativity of f and 
property (d) above we have  
 

f(q)  =  f(a b–1)  =   f(a) f(b–1)  =   f(a) f(b)–1  =  a b–1  =  q 
 

as required. 
 

The set of all real numbers.   The crucial step in the proof is to show that  f is order 

preserving.   Suppose that a, b  ∈∈∈∈  R satisfy a  >  b .  If   c  =  a – b  then  c  >  0 and 
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therefore c has a unique positive square root that we shall call  d.   If we apply f to both 
sides of the equation d  

2  =  a – b  we obtain the equation 
 

f(d) 2  =   f(d  
2)   =   f(a – b)   =   f(a)  –  f(b); 

 

this quantity is nonzero because f is 1 – 1 (look at the right hand side), and it is 
nonnegative because it is a square (look at the left hand side).  Therefore the quantity in 
question is positive as claimed. 
 

To conclude the proof, let a  ∈∈∈∈ R be arbitrary.  We need to show that neither of the strict 
inequalities a  >  f(a)  or  a  <  f(a)  can hold.  The proofs in both cases are similar so we 
shall do them simultaneously.  Suppose that a  >  f(a)   or  a  <  f(a)  is true, and in the 
respective cases choose a rational number q such that   
 

a  >  q  >  f(a)  or    a  <  q  <  f(a) . 
 

Since f is order preserving and is the identity on rational numbers, these inequalities 
respectively imply 
 

f(a)  >  f(q)  =  q  >  f(a)  and    f(a) <   f(q)  =  q  <  f(a) . 
 

In either case we obtain a contradiction, and therefore we must have f(a)  =  a .�  
 
 

 
 

V  I   I   I . 4 :  Set theory and classical geometry 
 
 

In Section I .2 we noted that classical Euclidean geometry had served as a working 
foundation for much of mathematics before the development of set theory and the 
Dedekind – Cantor constructions for the real number system out of the rational numbers.  
Further discussion of this point appears on pages 212 and 258 – 259 of the following 
online documents: 
 

http://math.ucr.edu/~res/math133/geomnotes5a.pdf 
 

http://math.ucr.edu/~res/math133/geomnotes5b.pdf 
 

We also noted in Section I .2 that logical difficulties were noticed in the classical setting 
for geometry (i.e., as presented in the Elements) around the same time, but subsequent 
work near the end of the 19th century put classical geometry into a more logically 
rigorous form that meets current standards.  The purpose of this appendix is to indicate 
in more detail how classical Euclidean geometry fits into the framework of set theory in 
modern mathematics.  Our purpose is not really to go through the basics of classical 
Euclidean geometry but rather to explain how one integrates it into modern mathematics.  
References for further details will be given at appropriate points. 
 
In the Elements, geometry is developed by starting with some basic assumptions on the 
properties of space and deriving an extensive list of logical consequences.  If we are 
going to work within set theory, we must formulate the key mathematical aspects of 
geometry in set – theoretic terms rather than “ physical reality.”   The first step in this 
process is very simple.  A set should be a formal mathematical model for a geometrical 
plane or 3 – dimensional space E , and the points of the space should be the elements 
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of E.   Lines, and also planes in the 3 – dimensional case, will then be sets of points and 
hence subsets of E; the geometric concept of a point x lying on a line L or plane P will 
mean that x belongs to L or P respectively.   In the Elements, both lines and planes are 
defined intuitively, but from the viewpoint of logic it is necessary to start with some things 
that are simply given without formal definitions, and therefore the formal set – theoretic  
approach to geometry takes lines and planes simply as distinguished classes of subsets, 
nothing more and nothing less.   When we study geometry we usually think that these 
mathematical lines and planes should be idealizations of physical lines and planes, but 
this intuition serves only as a guide and motivation for our work.  To summarize this 
discussion, the first steps in placing deductive geometry within the framework of set 
theory is to assume that plane or 3 – space of classical geometry should be a set E, and 
the additional structure should one or two classes of proper subsets depending upon the 
dimension.  In both cases there is a family of nonempty proper subsets ΛΛΛΛ called lines, 
and in the 3 – dimensional case there is also a second family of nonempty proper 
subsets ΠΠΠΠ called planes such that ΛΛΛΛ and ΠΠΠΠ are disjoint.   
 
Clearly we need to make some assumptions; for example, we obvious need to know that 
two points determining a unique line.  Properties of this sort are called incidence 
axioms, and here are lists of the respective axioms for the plane and 3 – space. 
 

Planar axioms. 
 

[I  – 1]  Given two distinct points x and y in E, there is a unique line L in ΛΛΛΛ such that both 
x  ∈∈∈∈  L and y  ∈∈∈∈  L. 
 

[I  – 2]  Every line L contains at least two points. 
 

Spatial axioms. –  In addition to the previous axioms, also include the following. 
 

[I  – 3]  Given three distinct points x, y and z in E such that no line L contains them all 
(i.e., they are noncollinear), there is a unique plane P in ΠΠΠΠ such that x, y, z  ∈∈∈∈  L. 
 

[I  – 4]  Every plane P contains at least three noncollinear points. 
 

[I  – 5]  If two points of a line L belong to a plane P, then the entire line is contained in P. 
 

[I  – 6]  If two planes have one point in common, then they also have a line in common. 
 

The last two axioms correspond to everyday experience about the relation between 
planes and lines.   One can derive various consequences from these assumptions (for 
example, that two distinct lines have at most one point in common), but we shall not 
work these out.   
 
We now proceed to the basic measurement concepts in classical geometry; namely, 
linear and angular measurement.  Once again, it is advisable to set things up formally so 
that at least linear measurement is an undefined concept and at this point it is also better 
to take both types of measurements as undefined concepts.   We have mentioned that 
the classical Greek approach to real numbers was to view them as lengths of segments; 
we shall effectively reverse this approach by defining lengths of segments in terms of 
the real number system, which we now have at our disposal.   Now the length of a 
segment can also be viewed as the distance between the endpoints, and the principle of 
Ockham’s razor indicates the latter is preferable way of viewing an undefined concept 
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because it will not require us to digress and explain exactly what a line segment should 
be.  Therefore the “ undefined”  linear measurement structure will be a a function 
 

d : E ×××× E   →→→→   R 
 

that will have several properties, of which these are the most basic: 
 

1. The quantity d(x, y) is always nonnegative, and it is zero if and 
only if x  =  y. 

2. For all x and y we have d(x, y)  =  d(y, x). 
 

Likewise, at this point we would like to define angle measure in a manner that does not 
require us to explain exactly what is meant by an angle.  Intuitively it is clear that a 
nontrivial angle (two distinct branch pieces and not a straight angle) is completely 
determined by 3 noncollinear points such that the middle one is the vertex of the angle.  
One way of doing this is to start by taking the subset Indep.(E ×××× E ×××× E) of all ordered 

triples (x, y, z) in E ×××× E ×××× E such that x, y and z are three noncollinear points of E (i.e., 
the three points are geometrically independent), and to define angle measurement to be 
a function  
 

αααα    :  Indep. (E ×××× E ×××× E)   →→→→   (0, 180) 
 

which will have some desired properties that we shall not attempt to describe for the time 
being. 
 

Restriction to the planar case.  Henceforth, unless there is an explicit statement to the 
contrary, we shall focus our attention on classical plane geometry.  We have already 
seen that formulating incidence axioms is a somewhat more complicated in the 3 – 
dimensional case.  In fact, working everything out in three dimensions is a fairly routine 
extension of the 2 – dimensional case; aside from the additional incidence axioms, it is 
only necessary to make some relatively straightforward adjustments in wording to a few 
of the axioms.  This is not difficult, but the relatively minor differences make it awkward 
to discuss both cases simultaneously, and concentrating on the simpler case illustrates 
the basic ideas that arise in both situations.   
 
By the preceding discussion, the data we need to discuss Euclidean plane geometry are 
the set E of points, the family ΛΛΛΛ of lines, the linear measurement function d, and the 

angular measurement function αααα.... Such an approach to axiomatic geometry is called a 

synthetic metric approach.  The idea is basically due to G. D. Birkhoff (1884 – 1944), 
and it is described in the two references listed below.  These two references differ 
significantly in content and objectives; the first item is a research paper in which an 
extremely short list of axioms is stated, and the second is a book which was written to 
relate Birkhoff’s ideas to the content and exposition of standard high school courses in 
geometry at the time (the book was first published in 1940). 
 

G. D. Birkhoff, A set of postulates for plane geometry 
(based on scale and protractors), Annals of Mathematics 
(2) 33 (1932), pp. 329 – 345. 

 

G.   D. Birkhoff and R. Beatley, Basic Geometry (3rd Ed.).  
A. M. S.  Chelsea Publishing, Providence, RI, 1999.  ISBN: 
0–821–82101–6   
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More elaborate (and higher level) accounts of classical geometry based upon Birkhoff’s 
approach appear in the textbook and online site listed below: 
 

E. E. Moise, Elementary Geometry from an Advanced 
Standpoint (3rd Ed.).   Addison – Wesley, Reading, MA, 
1990.  ISBN: 0–201–50867–2 

 

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/hyprgeom.html 
 

We shall call the latter Royster’s online site. 
 
 

A brief description of the axioms 
 
We have seen that the axioms for the real number system split naturally into three 
groups.  One set of axioms concerns the basic properties of addition and multiplication, 
a second set concerns the basic properties of the linear ordering and its relationship to 
the arithmetic operations, and the third is the Dedekind Completeness Axiom.  There is 
also a division of the axioms for Euclidean plane geometry into several groups.   To save 
time and space, we shall not quote all the axioms precisely.  Full statements and further 
information can be found in the four references cited above as well as the following 
sources: 
 

E. C. Wallace and S. F. West, Roads to Geometry (3rd 
Ed.). Prentice – Hall, Upper Saddle River, NJ, 2003.  ISBN: 
0–130–41396–8. 

  

http://math.ucr.edu/~res/math153/history03.pdf 
 

1. Incidence  axioms. 
 

We have already discussed these. 
 

2. Distance axioms. 
 

We have discussed some simple properties that distance is supposed to satisfy, but the 
most important properties are summarized in the following strong assumption. 
 

RULER POSTULATE.  If L is a line, then there is a 1 – 1 correspondence f : L  →→→→     R 
such that for all x, y  ∈∈∈∈     L we have d(x, y)  =  | f(x) – f(y) | .  In other words, with respect 
to the given notion of distance on the plane, every line looks like the standard real 
number line. 
 

3.  Separation axiom. 
 

In order to state this axiom correctly we must make several definitions based upon the 
structure developed thus far.  All this is done explicitly at the online site: 
 

http://math.ucr.edu/~res/math153/history03c.pdf 
 

and therefore we  shall only explain the key ideas.  Using the Ruler Postulate one can 
formulate a concept of betweenness for an ordered triple of distinct collinear points.  The 
Plane Separation Postulate is an assumption which states that for each line L, the points 
of the relative complement E – L split into a pair of disjoint subsets, called the sides or 
(open) half – planes in E with respect to L and these have the expected properties 
involving betweenness; namely, if two points lie on the same side then every point 
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between them also lies on that side, and if two points lie on opposite sides, then there is 
some point of L that lies between them.  
 

4. Angular measurement axioms. 
 

It is not possible to write these down formally without introducing numerous definitions 
based upon all the previous data and assumptions, so we shall simply try to summarize 
what happens.  One needs (1) a simple, general criterion  for constructing angles with a 
given measurement in a fairly arbitrary position, (2) an assumption that supplementary 
angles have measurements adding up to 180, (3) the usual sort of principle for 
concluding that  the measurement of one angle is the sum of the measures of two other 
angles, and finally (4) something relating  linear measures  to angular measures; a 
standard way of doing this is to assume the familiar Side – Angle – Side congruence test 
from elementary geometry, but it is also possible to formulate everything with a simpler 
underlying assumption.   
 

5.  Euclidean Parallel Postuate. 
 

This corresponds to Euclid’s Fifth Postulate.  For reasons related to Ockham’s razor, 
many mathematicians starting (at least) with Proclus Diadochus (410 – 485) have 
preferred to take the following statement named after J. Playfair (1748 – 1819), which is 
logically equivalent to the original Euclid’s Fifth Postulate but does not involve linear or 
angular measurement: 
 

PLAYFAIR’S POSTULATE.  Given a line L and a point x not on L, then there is a 

unique line M in the plane determined by L and x such that x  ∈∈∈∈     M but L and M do not 
have any points in common (since we are working in a plane, such lines are parallel). 
 

Abbreviated versions of the axioms.  Partly because of Ockham’s razor, and partly for 
reasons involving logical consistency like those stated in Section 1, it is useful to find 
axiomatic systems that are as economical as possible.  In his 1932 paper, Birkhoff 
showed that one could get by with four assumptions that are simple to state but have 
very strong implications.  There is a much different approach to making everything more 
concise in  
 

http://math.ucr.edu/~res/math153/history03c.pdf 
 

which gives a set of six relatively straightforward axioms that only involve the two 
“ undefined concepts”   of lines and  distance; in this system it is possible to construct a 
notion of angular measurement which has all the desired properties.    Of course, it is 
necessary to prove that such a construction is possible under the given assumptions and 
that the construction satisfies the required conditions.   Completing these tasks takes a 
significant amount of time and effort, and it relies very heavily upon numerous ideas in 
the following book by H. G. Forder (1889 – 1981): 
 

H. G. Forder, The foundations of Euclidean geometry 
(Reprint of the original 1927 edition). Dover Books, New 
York, NY, 1958. ASIN: B0007F8NLG. 

 

One additional advantage of the axiom system described in the online reference is that it 
adapts very easily to give a set of axioms for the non – Euclidean geometry that was 
developed in the early 19th century by J. Bolyai (1802 – 1860) and N. Lobachevsky 
(1792 – 1856), and was also known to C. F. Gauss.  All one needs to do is replace the 
final axiom. 
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5*.  Hyperbolic Parallel Postuate. 
 

There are two versions, but one can prove that they are logically equivalent. 
 

STRONG VERSION.  Given a line L and a point x not on L, then there are at least two 

lines M and N such that x  ∈∈∈∈     M  ∩∩∩∩  N but  L  ∩∩∩∩  M  and L  ∩∩∩∩  N are both empty. 
 

WEAK VERSION.  There is at least one pair (L, x), consisting of a line L and a point x 

not on the line L,  for which there are at least two lines M and N such that x  ∈∈∈∈     M  ∩∩∩∩  N 
but both of the sets  L  ∩∩∩∩  M  and L  ∩∩∩∩  N are empty. 
 

The weak version of the Hyperbolic Parallel Postulate is the formal negation of Playfair’s 
Postulate; namely, the existence of unique parallels fails somewhere.  The strong 
version says it fails everywhere, and the point of logical equivalence is that if Playfair’s 
Postulate fails somewhere then it fails everywhere.  Of course, this is something that 
must be proved, and the material in Royster’s online site gives the details. 
 
Birkhoff’s abbreviated axioms and non – Euclidean geometry.  The four Birkhoff 
axioms in the 1932 paper cannot be simply modified to describe non – Euclidean 
hyperbolic geometry.  The reason for this is related to the final axiom, which is the Side – 
Angle – Side Similarity Theorem from classical Euclidean geometry.   There is no 
corresponding similarity theory in non – Euclidean geometry, so it is clear that one 
cannot get a short system of axioms for the latter by some simple changes to the 
Birkhoff axioms. 
 
 

Relative consistency models for the axioms 
 
The book by Moise and the online reference by Royster show that one can obtain a 
complete description of the Euclidean plane or the non – Euclidean hyperbolic plane 
using the axioms described above.  However, this does not quite imply that classical 
Euclidean geometry can be integrated into set theory.  In order to complete the process, 
we need to show the following: 
 

It is possible to construct a system within set theory 
which satisfies all the conditions for a Euclidean plane 
that we have described above. 

 

The existence of such an example (or model for the axioms) will also show that the 
axioms satisfy an important relative consistency test; namely, the axioms for Euclidean 
geometry are logically consistent if the axioms for set theory are logically consistent.  
The online document 
 

http://www.math.uiuc.edu/~gfrancis/M302/handouts/postulates.pdf 
 

constructs a system of the desired type, showing that the abbreviated Birkhoff axioms 
are satisfied.  In fact, the construction is based upon the standard coordinate model for 
Euclidean geometry in which points are interpreted as ordered pairs of real numbers, 
lines are defined to be the sets of ordered pairs (x, y) such that A  x  +  B  y  +  C  =  0, 
where at least one of A, B is nonzero, distance is defined by the usual formula in 
coordinate geometry, and angle measure measurement is defined by the standard 
vector formula for the cosine of an angle between to two vectors (note that the standard 
Cauchy – Schwarz – Bunyakovsky  inequality in linear algebra implies this algebraically 
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defined number lies in the interval [ – 1, 1 ] ).   Details appear on pages 5 – 7 of the 
online reference.  Algebraic verification of the Birkhoff axioms for these definitions of 
lines, distance and angle measurement are summarized on pages 5 – 8 of the document 
cited directly above.�  
 
There is one point in the preceding reference that deserves some thought.  The inverse 
cosine function is of course given in terms of the cosine function, but the usual definition 
of the latter in trigonometry books is given geometrically.  This may raise questions 
about whether the reasoning described in the preceding paragraph is circular.  One way 
to answer such an objection is to define trigonometric functions, and derive the basic 
trigonometric identities, by some formal method that does not use Euclidean geometry 
explicitly (although the reasoning may/will be geometrically motivated at various points).   
This can be done by defining the sine and cosine to be equal to the usual power series 
expansions that are given in calculus and somehow proving that the functions defined by 
these power series have the expected properties (e.g., the standard trigonometric 
equation sin2 θθθθ     +  cos2 θθθθ   =   1, or the formulas for the sine and cosine of a sum of two 
numbers) without using geometrical arguments.  One reference for such a development 
of the basic trigonometric functions is pages 182 – 184 of the previously cited book by 
Rudin (Principles of Mathematical Analysis).   A more elementary discussion along 
the same lines appears in Appendix E of the following book:  
 

P. Ryan, Euclidean and non-Euclidean geometry: An analytical 
approach. Cambridge University Press, Cambridge, U. K., and New 
York, NY, 1986. ISBN: 0–521–27635–7 

 

Relative consistency models for non – Euclidean geometry.  One can also prove a 
relative consistency result for non – Euclidean geometry by constructing set – theoretic 
models of the corresponding axioms, but both the construction of the model and the 
verification of its key properties are considerably more difficult than in the Euclidean 
case.  The models, and the verification that they satisfy the axioms, are given by results 
of E. Beltrami (1835 – 1900), F. Klein (1849 – 1925) and H. Poincaré (1854 – 1912) from 
the second half of the 19th century. 
 
The existence of such relative consistency models is the basis for assertions that the 
parallel postulate in classical geometry cannot be proven from the other 
assumptions.  If this were possible, it would contradict the existence of the models 
discussed in the preceding paragraph.  Further discussion about the relative consistency 
of non – Euclidean geometry can be found on pages 255 – 258 of the following online 
document: 
 

http://math.ucr.edu/~res/math133/geomnotes5b.pdf 
 

The logical independence of the Euclidean and hyperbolic parallel postulates from the 
preceding assumptions is analogous to the formal status of the Axiom of Foundation, the 
Axiom of Choice and the Generalized Continuum Hypothesis that was discussed in the 
previous unit.  However, there is one significant difference, for mathematicians find it 
convenient to view both axiom systems for geometry as equally valid, but in contexts 
that do not touch upon the foundations of mathematics it is generally more convenient to 
stick with a fixed list of axioms for set theory.  Generally this is given by ZFC or NBG 
plus the Axiom of Choice with no assumption either way about the Generalized 
Continuum Hypothesis, but as we have noted there are some important exceptions, 
most notably the viewpoints of intuitionism and constructivism.   A full discussion of 
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such matters is beyond the scope of these notes, but we shall include a list of online 
references for both the mainstream view of the foundations of mathematics as well as 
some of the alternatives: 
 

http://sakharov.net/foundation.html 
 

http://en.wikipedia.org/wiki/Philosophy_of_mathematics 
 

http://en.wikipedia.org/wiki/Foundations_of_mathematics 
 

http://www.rbjones.com/rbjpub/logic/   
 

http://www.math.psu.edu/simpson/hierarchy.html 
 

http://plato.stanford.edu/entries/hilbert-program/ 
 

http://en.wikipedia.org/wiki/David_Hilbert#Formalism 
 

http://plato.stanford.edu/entries/logic-intuitionistic/ 
 

http://www.math.fau.edu/Richman/HTML/CONSTRUC.HTM 
 

http://en.wikipedia.org/wiki/Constructivism_(mathematics) 
 

http://plato.stanford.edu/entries/mathematics-constructive/ 
 

http://www.rbjones.com/rbjpub/philos/maths/faq025.htm 
 

http://www.rbjones.com/rbjpub/philos/maths/faq027.htm 
 

http://www.rbjones.com/rbjpub/philos/maths/faq004.htm 
 

Additional remarks on alternate formulations for the foundations of mathematics (using 
functions rather than sets as the main building blocks) were made at the beginning of 
Section IV.3. 
   


