
Affine transformations and convexity

The purpose of this document is to prove some basic properties of affine transformations
involving convex sets. Here are a few online references for background information:

http://math.ucr.edu/∼res/progeom/pgnotes02.pdf

http://math.ucr.edu/∼res/math133/metgeom.pdf

Recall that an affine transformation of R
n is a map of the form F (x) = b+A(x), where b ∈ E

is some fixed vector and A is an invertible linear tranformation of R
n.

Affine transformations satisfy a weak analog of the basic identities which characterize linear
transformations.

LEMMA 1. Let F as above be an affine transformation, let x0, · · · ,xk ∈ R
n, and suppose that

t0, · · · , tk ∈ R satisfy
∑

j tj = 1. Then

F
(

∑

j tj xj

)

=
∑

j

tj F (xj) .

Notation. If t0, · · · , tk ∈ R satisfy
∑

j tj = 1 and x0, · · · ,xk ∈ R
n, then

∑

j tj xj is said to
be an affine combination of the vectors x0, · · · ,xk ∈ R

n.

Proof. Since
∑

j tj = 1 we have

F
(

∑

j tj xj

)

= A
(

∑

j tj xj

)

+ b = A
(

∑

j tj xj

)

+
∑

j

tj b =

∑

j

tj Axj +
∑

j

tj b =
∑

j

tj (Axj + b) =
∑

j

tj F (xj)

which is what we wanted prove.

We also note the following simple property of affine transformations in R
2:

LEMMA 2. Let F be an affine transformation of R
2, and let x, y, z, w be points such that the

lines xy and zw are parallel. Then the lines F (x)F (y) and F (z)F (w) are also parallel.

Proof. Since the two lines are disjoint and F is 1–1, it follows that their images — which are
also lines because F is an affine transformation — must also be disjoint.

CONVEX SETS. Here are the basic definitions we need for convexity:

Definition. If x, y ∈ R
n, then the closed segment [xy] is the set of all vectors v such that

v = tx + (1 − t)y

where t ∈ R satisfies 0 < t < 1.

This corresponds to the intuitive notion of closed line segment in elementary geometry.

Definition. A subset K ⊂ R
n is said to be convex if x, y ∈ K implies that [xy] is contained in

K; in other words, x, y ∈ K and 0 ≤ t ≤ 1 implies that tx + (1 − t)y ∈ K.
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The following result suggests that the notions of convexity and affine transformation have some
useful interrelationships.

LEMMA 3. Let K ⊂ R
n be convex, let x0, · · · ,xm ∈ K, and suppose that t0, · · · , tm ∈ R

satisfy tj ≥ 0 and
∑

j tj = 1. Then
∑

j tj xj ∈ K.

Notation. If t0, · · · , tm ∈ R satisfy tj ≥ 0 and
∑

j tj = 1 and x0, · · · ,xm ∈ R
n, then

∑

j tj xj is said to be a convex combination of the vectors x0, · · · ,xm ∈ R
n.

Proof. Since a term tj xj makes no contribution to a sum if tj = 0, it suffices to consider the case
where each tj is positive. The proof proceeds by induction on m. If m = 1 the result is tautological,
and if m = 2 the result follows from the definition of convexity.

Assume now that the result is true for m ≥ 2, and suppose we are given scalars t0, · · · , tm+1 ∈

R satisfying tj > 0 and
∑

j tj = 1 together with vectors x0, · · · ,xm+1 ∈ K. Set σ equal to
∑

i≤m ti, and for 0 ≤ s ≤ m set sj equal to tj/σ. Then it follows that sj > 0 and
∑

j sj = 1,
so by induction we know that y =

∑

j sjxj is in K. By construction we have 0 < σ < 1 and
σ + tm+1 = 1, and therefore it follows that

∑

j

tj xj =





∑

j≤m

tj xj



 + tm+1 xm+1 =

σ y + tm+1 xm+1 ∈ K

which is what we wanted to prove.

COROLLARY 4. If F is an affine transformation of R
n and A ⊂ R

n is convex, then the image

F [A] is also convex.

Proof. Suppose that x, y ∈ A and 0 ≤ t ≤ 1. Then Lemma 1 implies that

F (tx + (1 − t)y) = t F (x) + (1 − t)F (y)

and hence the segment [F (x)F (y)] is contained in F [A].

Since every pair of points in F [A] can be expressed as F (x) and F (y) for some x, y ∈ A, the
preceding sentence implies that F [A] must be convex.

Extreme points. This is a fundamental concept involving convex sets.

Definition. A point p in a convex set K is said to be an extrme point if it cannot be written in
the form p = tx + (1 − t)y where x and y are distinct points of K and 0 < t < 1; informally
speaking, this means p is not between two other points of K.

EXAMPLE 0. Let a < b ∈ R, and let X ⊂ R be the closed interval [a, b]. We claim that a and b
are the extreme points of X. — First of all, if a < x < b and

t =
x − a

b − a

then 0 < t < 1 and x = (1−t)a + tb, so the two endpoints are the only possible extreme points. To
see that each is an extreme point, suppose we are given a point x which is NOT an extreme point.
Choose distinct points u and v in [a, b] and t in the open interval (0, 1) such that x = (1− t)u + tv;
without loss of generality we may as well assume u < v (note that t ∈ (0, 1) implies 1 − t ∈ (0, 1)
and 1 − (1 − t) = t). The inequalities in the preceding sentence imply that u < x < v, and since
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a and b are minimal and maximal points of the interval X = [a, b] it follows that x 6= a, b, which
means that a and b are extreme points of X.

EXAMPLE 1. If a, b, c are noncollinear points and X is the solid triangular region consisting
of all convex combinations of these vectors, then the extreme points of X are a, b, and c. —
First of all, this set is convex because Lemma 3 implies that a convex combination of convex
combinations is again a convex combination. To prove the assertion about extreme points, note
that if ta + ub + v c is a convex combination in which at least two coefficients are positive, then
an argument like the inductive step of Lemma 3 implies that this convex combination is between
two others, and therefore the only possible extreme points are the original vectors. Furthermore,
if p = tx + (1 − t)y where x and y are convex combinations and 0 < t < 1, then one can check
directly that at least two barycentric coordinates of p must be positive (this is a bit messy but
totally elementary). Therefore a point that is not an extreme point cannot be one of a, b, c and
hence these must be the extreme points of X.

EXAMPLE 2. Let X be the solid rectangular region in R
2 given by [0, p] × [0, q] where 0 ≤ q ≤ p.

In this case we claim that X is convex and the extreme points are the vertices (0, 0), (p, 0), (0, q)
and (p, q). — This will be a consequence of Example 0 and the following result:

PROPOSITION 5. Let K1 and K2 be convex subsets of R
n and R

m respectively. Then

K1 × K2 ⊂ R
n × R

m ∼= R
n+m is convex. Furthermore, a point (p1,p2) is an extreme point of

K1 × K2 if and only if p1 is an extreme point of K1 and p2 is an extreme point of K2

Proof. The first step is to prove that K1×K2 is convex. Suppose that t ∈ (0, 1) and that (x1,x2)
and (y1,y2) belong to K1 × K2. Then

(1 − t) · (x1,x2) + t · (y1,y2) =
(

(1 − t) · x1 + t · y1, (1 − t) · x2 + t · y2

)

and by convexity the first and second coordinates belong to K1 and K2 respectively.

The statement about extreme points will follow if we can prove the contrapositive: A point p

in K1 × K2 is not an extreme point if and only if at least one of its coordinates is not an extreme

point of the corresponding factor. — Write p = (p1,p2). If p is not an extreme point then we
have

p = (p1,p2) = (1 − t) · (x1,x2) + t · (y1,y2)

where 0 < t < 1 and (x1,x2) and (y1,y2) are distinct points of K1 × K2. By the definition of
an ordered pair, it follows that either the first or second coordinates of (x1,x2) and (y1,y2) are
distinct; if we choose i = 1 or 2 such that the ith coordinates are distinct, then it follows that
pi cannot be an extreme point of Ki. Conversely, suppose that one coordinate pi of p is not an
extreme point of the corresponding convex set Ki. Without loss of generality, we may as well
assume that i = 1 (if i = 2, reverse the roles of 1 and 2 in the argument we shall give to obtain the
same conclusion in that case). Choose x1 6= y1 ∈ K1 and t ∈ (0, 1) such that p1 = (1− t)x1 + ty1.
Then we also have

p = (p1,p2) = (1 − t) · (x1,p2) + t · (y1,p2)

and therefore p is not an extreme point of K1 × K2.

The final result reflects the importance of extreme points.

THEOREM 6. Let A ⊂ R
n be a convex set, and suppose that F is an affine transformation of

R
n. Then F maps the extreme points of A onto the extreme points of F [A].
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Proof. We shall prove the following contrapositive statement: If p ∈ A, then p is not an

extreme point of A if and only if F (p) is not an extreme point of F [A]. — Note that every point
q ∈ F [A] is F (p) for some p ∈ A.

Suppose that p is not an extreme point of A. Then p = tx + (1 − t)y where x and y are
distinct points of A and 0 < t < 1. By Lemma 1 we then have

F (p) = t F (x) + (1 − t)F (y)

and since F is 1–1 it follows that F (p) is not an extreme point of F [A]. To prove the converse,
combine this argument with the fact that F −1 is also affine.

COROLLARY 7. If 0 ≤ p, q and 0 ≤ r, s and F is an affine equivalence mapping [0, p] × [0, q]
onto [0, r] × [0, s], then F sends the vertices of the first solid rectangular region to the vertices of

the second.

This follows immediately from the theorem and Example 2.

Convex hulls. Given a subset X in R
n, the convex hull is defined so that it will be the unique

smallest convex subset containing X.

Definition. If X ⊂ R
n, then the convex hull of X, written Conv (X), is the set of all convex

combinations
∑

j tj xj where x0, · · · ,xm ∈ X and t0, · · · , tm ∈ R satisfy tj ≥ 0 and
∑

j tj = 1.

Here are some elementary properties of convex hulls; they combine to prove that the convex
hull is in fact the unique smallest convex subset of R

n containing X.

LEMMA 8. The convex hull has the following properties:

(i) If X ⊂ R
n, then Conv (X) is a convex subset of R

n.

(ii) If X is convex, then X = Conv (X).

(iii) If X ⊂ Y ⊂ R
n, then Conv (X) ⊂ Conv (Y ).

Proof. The third statement follows immediately from the definition, and the second follows
immediately from Lemma 3.

To prove the first statement, let yi (where 1 ≤ i ≤ n) be points of Conv (X), and let si ≥ 0
satisfy

∑

i si = 1. We can then find finitely many xj ∈ X such that for each i we have

yi =
∑

j

ti,j xj

where each ti,j is nonnegative and
∑

j ti,j = 1, and hence we also have the following:

∑

i

si yi =
∑

i

si

(

∑

j ti,j xj

)

=
∑

j

(
∑

i si ti,j) xj

We claim that the sum of the coefficients in the right hand expression is equal to 1; this will prove
that the vector in question belongs to Conv (X), which is what we want to prove. This may be
verified as follows:

∑

j

(
∑

i si ti,j) =
∑

i

si

(

∑

j ti,j

)

=
∑

i

si · 1 = 1
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As noted above, this shows that Conv (X) is closed under taking convex combinations and hence
is convex.

Finally, the following result is often very useful for studying the effects of affine transformations
on geometrical figures, especially when combined with Theorem 6.

THEOREM 9. If X ⊂ R
n and F is an affine transformation of R

n, then F maps Conv (X) onto

Conv (F [X]).

Proof. We shall first show that F maps Conv (X) into Conv (F [X]). To see this, note that
v ∈ Conv (X) implies that v =

∑

j tj xj where x0, · · · ,xm ∈ X and t0, · · · , tm ∈ R satisfy tj ≥ 0
and

∑

j tj = 1, and since F is an affine transformation we have

F
(

∑

j tj xj

)

=
∑

j

tj F (xj) ∈ Conv (F [X]) .

To see that every point in Conv (F [X]) comes from a point in Conv (X), note that a point y in
Conv (F [X]) has the form

∑

j tj F (xj) for suitable tj and xj , and by Lemma 1 this expression is

equal to F
(

∑

j tj xj

)

; since the expression inside the parentheses lies in Conv (X), it follows that

y ∈ F [Conv (X)] as required.
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