Affine transformations and convexity

The purpose of this document is to prove some basic properties of affine transformations involving convex sets. Here are a few online references for background information:

```
http://math.ucr.edu/~res/progeom/pgnotes02.pdf
    http://math.ucr.edu/~res/math133/metgeom.pdf
```

Recall that an affine transformation of \mathbb{R}^{n} is a map of the form $F(\mathbf{x})=\mathbf{b}+A(\mathbf{x})$, where $\mathbf{b} \in E$ is some fixed vector and A is an invertible linear tranformation of \mathbb{R}^{n}.

Affine transformations satisfy a weak analog of the basic identities which characterize linear transformations.

LEMMA 1. Let F as above be an affine transformation, let $\mathbf{x}_{0}, \cdots, \mathbf{x}_{k} \in \mathbb{R}^{n}$, and suppose that $t_{0}, \cdots, t_{k} \in \mathbb{R}$ satisfy $\sum_{j} t_{j}=1$. Then

$$
F\left(\sum_{j} t_{j} \mathbf{x}_{j}\right)=\sum_{j} t_{j} F\left(\mathbf{x}_{j}\right) .
$$

Notation. If $t_{0}, \cdots, t_{k} \in \mathbb{R}$ satisfy $\sum_{j} t_{j}=1$ and $\mathbf{x}_{0}, \cdots, \mathbf{x}_{k} \in \mathbb{R}^{n}$, then $\sum_{j} t_{j} \mathbf{x}_{j}$ is said to be an affine combination of the vectors $\mathbf{x}_{0}, \cdots, \mathbf{x}_{k} \in \mathbb{R}^{n}$.
Proof. Since $\sum_{j} t_{j}=1$ we have

$$
\begin{gathered}
F\left(\sum_{j} t_{j} \mathbf{x}_{j}\right)=A\left(\sum_{j} t_{j} \mathbf{x}_{j}\right)+\mathbf{b}=A\left(\sum_{j} t_{j} \mathbf{x}_{j}\right)+\sum_{j} t_{j} \mathbf{b}= \\
\sum_{j} t_{j} A \mathbf{x}_{j}+\sum_{j} t_{j} \mathbf{b}=\sum_{j} t_{j}\left(A \mathbf{x}_{j}+\mathbf{b}\right)=\sum_{j} t_{j} F\left(\mathbf{x}_{j}\right)
\end{gathered}
$$

which is what we wanted prove.
We also note the following simple property of affine transformations in \mathbb{R}^{2} :
LEMMA 2. Let F be an affine transformation of \mathbb{R}^{2}, and let $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}$ be points such that the lines $\mathbf{x y}$ and $\mathbf{z w}$ are parallel. Then the lines $F(\mathbf{x}) F(\mathbf{y})$ and $F(\mathbf{z}) F(\mathbf{w})$ are also parallel.
Proof. Since the two lines are disjoint and F is $1-1$, it follows that their images - which are also lines because F is an affine transformation - must also be disjoint. -
CONVEX SETS. Here are the basic definitions we need for convexity:
Definition. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, then the closed segment $[\mathbf{x y}]$ is the set of all vectors \mathbf{v} such that

$$
\mathbf{v}=t \mathbf{x}+(1-t) \mathbf{y}
$$

where $t \in \mathbb{R}$ satisfies $0<t<1$.
This corresponds to the intuitive notion of closed line segment in elementary geometry.
Definition. A subset $K \subset \mathbb{R}^{n}$ is said to be convex if $\mathbf{x}, \mathbf{y} \in K$ implies that [$\left.\mathbf{x y}\right]$ is contained in K; in other words, $\mathbf{x}, \mathbf{y} \in K$ and $0 \leq t \leq 1$ implies that $t \mathbf{x}+(1-t) \mathbf{y} \in K$.

The following result suggests that the notions of convexity and affine transformation have some useful interrelationships.

LEMMA 3. Let $K \subset \mathbb{R}^{n}$ be convex, let $\mathbf{x}_{0}, \cdots, \mathbf{x}_{m} \in K$, and suppose that $t_{0}, \cdots, t_{m} \in \mathbb{R}$ satisfy $t_{j} \geq 0$ and $\sum_{j} t_{j}=1$. Then $\sum_{j} t_{j} \mathbf{x}_{j} \in K$.

Notation. If $t_{0}, \cdots, t_{m} \in \mathbb{R}$ satisfy $t_{j} \geq 0$ and $\sum_{j} t_{j}=1$ and $\mathbf{x}_{0}, \cdots, \mathbf{x}_{m} \in \mathbb{R}^{n}$, then $\sum_{j} t_{j} \mathbf{x}_{j}$ is said to be a convex combination of the vectors $\mathbf{x}_{0}, \cdots, \mathbf{x}_{m} \in \mathbb{R}^{n}$.
Proof. Since a term $t_{j} \mathbf{x}_{j}$ makes no contribution to a sum if $t_{j}=0$, it suffices to consider the case where each t_{j} is positive. The proof proceeds by induction on m. If $m=1$ the result is tautological, and if $m=2$ the result follows from the definition of convexity.

Assume now that the result is true for $m \geq 2$, and suppose we are given scalars $t_{0}, \cdots, t_{m+1} \in$ \mathbb{R} satisfying $t_{j}>0$ and $\sum_{j} t_{j}=1$ together with vectors $\mathbf{x}_{0}, \cdots, \mathbf{x}_{m+1} \in K$. Set σ equal to $\sum_{i \leq m} t_{i}$, and for $0 \leq s \leq m$ set s_{j} equal to t_{j} / σ. Then it follows that $s_{j}>0$ and $\sum_{j} s_{j}=1$, so by induction we know that $\mathbf{y}=\sum_{j} s_{j} \mathbf{x}_{j}$ is in K. By construction we have $0<\sigma<1$ and $\sigma+t_{m+1}=1$, and therefore it follows that

$$
\begin{gathered}
\sum_{j} t_{j} \mathbf{x}_{j}=\left(\sum_{j \leq m} t_{j} \mathbf{x}_{j}\right)+t_{m+1} \mathbf{x}_{m+1}= \\
\sigma \mathbf{y}+t_{m+1} \mathbf{x}_{m+1} \in K
\end{gathered}
$$

which is what we wanted to prove.
COROLLARY 4. If F is an affine transformation of \mathbb{R}^{n} and $A \subset \mathbb{R}^{n}$ is convex, then the image $F[A]$ is also convex.
Proof. Suppose that $\mathbf{x}, \mathbf{y} \in A$ and $0 \leq t \leq 1$. Then Lemma 1 implies that

$$
F(t \mathbf{x}+(1-t) \mathbf{y})=t F(\mathbf{x})+(1-t) F(\mathbf{y})
$$

and hence the segment $[F(\mathbf{x}) F(\mathbf{y})]$ is contained in $F[A]$.
Since every pair of points in $F[A]$ can be expressed as $F(\mathbf{x})$ and $F(\mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in A$, the preceding sentence implies that $F[A]$ must be convex. -
Extreme points. This is a fundamental concept involving convex sets.
Definition. A point \mathbf{p} in a convex set K is said to be an extrme point if it cannot be written in the form $\mathbf{p}=t \mathbf{x}+(1-t) \mathbf{y}$ where \mathbf{x} and \mathbf{y} are distinct points of K and $0<t<1$; informally speaking, this means \mathbf{p} is not between two other points of K.

EXAMPLE 0 . Let $a<b \in \mathbb{R}$, and let $X \subset \mathbb{R}$ be the closed interval $[a, b]$. We claim that a and b are the extreme points of X. - First of all, if $a<x<b$ and

$$
t=\frac{x-a}{b-a}
$$

then $0<t<1$ and $x=(1-t) a+t b$, so the two endpoints are the only possible extreme points. To see that each is an extreme point, suppose we are given a point x which is NOT an extreme point. Choose distinct points u and v in $[a, b]$ and t in the open interval $(0,1)$ such that $x=(1-t) u+t v$; without loss of generality we may as well assume $u<v$ (note that $t \in(0,1)$ implies $1-t \in(0,1)$ and $1-(1-t)=t)$. The inequalities in the preceding sentence imply that $u<x<v$, and since
a and b are minimal and maximal points of the interval $X=[a, b]$ it follows that $x \neq a, b$, which means that a and b are extreme points of X.

EXAMPLE 1. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are noncollinear points and X is the solid triangular region consisting of all convex combinations of these vectors, then the extreme points of X are \mathbf{a}, \mathbf{b}, and \mathbf{c}.
First of all, this set is convex because Lemma 3 implies that a convex combination of convex combinations is again a convex combination. To prove the assertion about extreme points, note that if $t \mathbf{a}+u \mathbf{b}+v \mathbf{c}$ is a convex combination in which at least two coefficients are positive, then an argument like the inductive step of Lemma 3 implies that this convex combination is between two others, and therefore the only possible extreme points are the original vectors. Furthermore, if $\mathbf{p}=t \mathbf{x}+(1-t) \mathbf{y}$ where \mathbf{x} and \mathbf{y} are convex combinations and $0<t<1$, then one can check directly that at least two barycentric coordinates of \mathbf{p} must be positive (this is a bit messy but totally elementary). Therefore a point that is not an extreme point cannot be one of $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and hence these must be the extreme points of X.

EXAMPLE 2. Let X be the solid rectangular region in \mathbb{R}^{2} given by $[0, p] \times[0, q]$ where $0 \leq q \leq p$. In this case we claim that X is convex and the extreme points are the vertices $(0,0),(p, 0),(0, q)$ and (p, q). - This will be a consequence of Example 0 and the following result:

PROPOSITION 5. Let K_{1} and K_{2} be convex subsets of \mathbb{R}^{n} and \mathbb{R}^{m} respectively. Then $K_{1} \times K_{2} \subset \mathbb{R}^{n} \times \mathbb{R}^{m} \cong \mathbb{R}^{n+m}$ is convex. Furthermore, a point $\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$ is an extreme point of $K_{1} \times K_{2}$ if and only if \mathbf{p}_{1} is an extreme point of K_{1} and \mathbf{p}_{2} is an extreme point of K_{2}

Proof. The first step is to prove that $K_{1} \times K_{2}$ is convex. Suppose that $t \in(0,1)$ and that $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and $\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$ belong to $K_{1} \times K_{2}$. Then

$$
(1-t) \cdot\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)+t \cdot\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\left((1-t) \cdot \mathbf{x}_{1}+t \cdot \mathbf{y}_{1},(1-t) \cdot \mathbf{x}_{2}+t \cdot \mathbf{y}_{2}\right)
$$

and by convexity the first and second coordinates belong to K_{1} and K_{2} respectively.
The statement about extreme points will follow if we can prove the contrapositive: A point \mathbf{p} in $K_{1} \times K_{2}$ is not an extreme point if and only if at least one of its coordinates is not an extreme point of the corresponding factor. - Write $\mathbf{p}=\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$. If \mathbf{p} is not an extreme point then we have

$$
\mathbf{p}=\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=(1-t) \cdot\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)+t \cdot\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)
$$

where $0<t<1$ and $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and $\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$ are distinct points of $K_{1} \times K_{2}$. By the definition of an ordered pair, it follows that either the first or second coordinates of $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and $\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$ are distinct; if we choose $i=1$ or 2 such that the $i^{\text {th }}$ coordinates are distinct, then it follows that \mathbf{p}_{i} cannot be an extreme point of K_{i}. Conversely, suppose that one coordinate \mathbf{p}_{i} of \mathbf{p} is not an extreme point of the corresponding convex set K_{i}. Without loss of generality, we may as well assume that $i=1$ (if $i=2$, reverse the roles of 1 and 2 in the argument we shall give to obtain the same conclusion in that case). Choose $\mathbf{x}_{1} \neq \mathbf{y}_{1} \in K_{1}$ and $t \in(0,1)$ such that $\mathbf{p}_{1}=(1-t) \mathbf{x}_{1}+t \mathbf{y}_{1}$. Then we also have

$$
\mathbf{p}=\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=(1-t) \cdot\left(\mathbf{x}_{1}, \mathbf{p}_{2}\right)+t \cdot\left(\mathbf{y}_{1}, \mathbf{p}_{2}\right)
$$

and therefore \mathbf{p} is not an extreme point of $K_{1} \times K_{2}$..
The final result reflects the importance of extreme points.
THEOREM 6. Let $A \subset \mathbb{R}^{n}$ be a convex set, and suppose that F is an affine transformation of \mathbb{R}^{n}. Then F maps the extreme points of A onto the extreme points of $F[A]$.

Proof. We shall prove the following contrapositive statement: If $\mathbf{p} \in A$, then \mathbf{p} is not an extreme point of A if and only if $F(\mathbf{p})$ is not an extreme point of $F[A]$. - Note that every point $\mathbf{q} \in F[A]$ is $F(\mathbf{p})$ for some $\mathbf{p} \in A$.

Suppose that \mathbf{p} is not an extreme point of A. Then $\mathbf{p}=t \mathbf{x}+(1-t) \mathbf{y}$ where \mathbf{x} and \mathbf{y} are distinct points of A and $0<t<1$. By Lemma 1 we then have

$$
F(\mathbf{p})=t F(\mathbf{x})+(1-t) F(\mathbf{y})
$$

and since F is $1-1$ it follows that $F(\mathbf{p})$ is not an extreme point of $F[A]$. To prove the converse, combine this argument with the fact that F^{-1} is also affine.

COROLLARY 7. If $0 \leq p, q$ and $0 \leq r, s$ and F is an affine equivalence mapping $[0, p] \times[0, q]$ onto $[0, r] \times[0, s]$, then F sends the vertices of the first solid rectangular region to the vertices of the second.

This follows immediately from the theorem and Example 2.■
Convex hulls. Given a subset X in \mathbb{R}^{n}, the convex hull is defined so that it will be the unique smallest convex subset containing X.
Definition. If $X \subset \mathbb{R}^{n}$, then the convex hull of X, written $\operatorname{Conv}(X)$, is the set of all convex combinations $\sum_{j} t_{j} \mathbf{x}_{j}$ where $\mathbf{x}_{0}, \cdots, \mathbf{x}_{m} \in X$ and $t_{0}, \cdots, t_{m} \in \mathbb{R}$ satisfy $t_{j} \geq 0$ and $\sum_{j} t_{j}=1$.

Here are some elementary properties of convex hulls; they combine to prove that the convex hull is in fact the unique smallest convex subset of \mathbb{R}^{n} containing X.

LEMMA 8. The convex hull has the following properties:
(i) If $X \subset \mathbb{R}^{n}$, then $\operatorname{Conv}(X)$ is a convex subset of \mathbb{R}^{n}.
(ii) If X is convex, then $X=\operatorname{Conv}(X)$.
(iii) If $X \subset Y \subset \mathbb{R}^{n}$, then $\operatorname{Conv}(X) \subset \operatorname{Conv}(Y)$.

Proof. The third statement follows immediately from the definition, and the second follows immediately from Lemma 3.

To prove the first statement, let \mathbf{y}_{i} (where $1 \leq i \leq n$) be points of $\operatorname{Conv}(X)$, and let $s_{i} \geq 0$ satisfy $\sum_{i} s_{i}=1$. We can then find finitely many $\mathbf{x}_{\mathbf{j}} \in X$ such that for each i we have

$$
\mathbf{y}_{i}=\sum_{j} t_{i, j} \mathbf{x}_{j}
$$

where each $t_{i, j}$ is nonnegative and $\sum_{j} t_{i, j}=1$, and hence we also have the following:

$$
\sum_{i} s_{i} \mathbf{y}_{i}=\sum_{i} s_{i}\left(\sum_{j} t_{i, j} \mathbf{x}_{j}\right)=\sum_{j}\left(\sum_{i} s_{i} t_{i, j}\right) \mathbf{x}_{j}
$$

We claim that the sum of the coefficients in the right hand expression is equal to 1 ; this will prove that the vector in question belongs to Conv (X), which is what we want to prove. This may be verified as follows:

$$
\sum_{j}\left(\sum_{i} s_{i} t_{i, j}\right)=\sum_{i} s_{i}\left(\sum_{j} t_{i, j}\right)=\sum_{i} s_{i} \cdot 1=1
$$

As noted above, this shows that Conv (X) is closed under taking convex combinations and hence is convex.-

Finally, the following result is often very useful for studying the effects of affine transformations on geometrical figures, especially when combined with Theorem 6.

THEOREM 9. If $X \subset \mathbb{R}^{n}$ and F is an affine transformation of \mathbb{R}^{n}, then F maps $\operatorname{Conv}(X)$ onto $\operatorname{Conv}(F[X])$.
Proof. We shall first show that F maps $\operatorname{Conv}(X)$ into $\operatorname{Conv}(F[X])$. To see this, note that $\mathbf{v} \in \operatorname{Conv}(X)$ implies that $\mathbf{v}=\sum_{j} t_{j} \mathbf{x}_{j}$ where $\mathbf{x}_{0}, \cdots, \mathbf{x}_{m} \in X$ and $t_{0}, \cdots, t_{m} \in \mathbb{R}$ satisfy $t_{j} \geq 0$ and $\sum_{j} t_{j}=1$, and since F is an affine transformation we have

$$
F\left(\sum_{j} t_{j} \mathbf{x}_{j}\right)=\sum_{j} t_{j} F\left(\mathbf{x}_{j}\right) \in \operatorname{Conv}(F[X]) .
$$

To see that every point in $\operatorname{Conv}(F[X])$ comes from a point in $\operatorname{Conv}(X)$, note that a point \mathbf{y} in $\operatorname{Conv}(F[X])$ has the form $\sum_{j} t_{j} F\left(\mathbf{x}_{j}\right)$ for suitable t_{j} and \mathbf{x}_{j}, and by Lemma 1 this expression is equal to $F\left(\sum_{j} t_{j} \mathbf{x}_{j}\right)$; since the expression inside the parentheses lies in Conv (X), it follows that $\mathbf{y} \in F[\operatorname{Conv}(X)]$ as required..

