UPDATED GENERAL INFORMATION - APRIL 19, 2019

The first quiz

This will take place on Thursday, April 25, and it will cover material from Units 1 and 2. Here are some practice problems. Solutions will be forthcoming.

1. Find an Egyptian fraction expression for $\frac{5}{13}$.
2. Find a sexagesimal approximation to $\frac{5}{13}$ of the form $a^{\prime} b^{\prime \prime} c^{\prime \prime \prime}$ where a, b, c are integers between 0 and 59; in modern notation, this is a fraction of the form $a \cdot 60^{-1}+b \cdot 60^{-2}+c \cdot 60^{-3}$.
3. Prove that 45 is not a perfect number and not part of an amicable pair.
4. Same problem for p^{3} if $p>3$ is prime. [Hints: If d is a positive integer which evenly divides the odd integer q and $d \neq q$, why do we know that either $d \leq \sqrt{q}$ or else $q / d \leq \sqrt{q}$? Why does this yield an upper bound on the number of positive integers evenly dividing q ? To estimate the sum of the proper divisors of q, combine this with the fact that if q is odd and d is a proper divisor of q, then $d \leq q / 3$.]
5. The octagonal numbers satisfy the following identities for $n \geq 2$:

$$
\text { Oct }_{2}=8, \quad \text { Oct }_{n+1}=\text { Oct }_{n}+6 n+1
$$

Prove by induction that $\operatorname{Oct}_{n}=3 n^{2}-2 n$ for all $n \geq 2$.
6. Prove that $105 p$ is not a perfect number if $p \geq 11$ is prime.

