UPDATED GENERAL INFORMATION — MAY 11, 2019

Study problems for the second quiz

- 1. Express 5/13 as a (finite) continued fraction.
- 2. Find infinitely many distinct solutions for the equation

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{xy}$$

where x and y are positive rational numbers.

3. Find infinitely many distinct solutions for the equation

$$x + y = \frac{x}{y}$$

where x and y are positive rational numbers.

- **4.** Suppose that we are given two positive integers A and B. Under what conditions does the system of Diophantine equations x + y = A, $x^2 + y^2 = B$ have a solution such that x and y are both positive rational numbers?
- 5. Use the Pappus centroid theorem for surface areas to find the lateral surface area for the cone of revolution formed by rotating the line segment y = mx, where m > 0 and $0 \le x \le b$, about the x-axis.
- **6.** Describe the set of all integral solutions for the system of congruences

$$x \equiv 1 \ (2), \qquad x \equiv 2 \ (3), \qquad x \equiv 3 \ (5), \qquad x \equiv 5 \ (7) \ .$$

Express the answer in the form x = mk + b where k is an arbitrary integer and the constants m and b have specific values.