SOLUTIONS TO EXERCISES FROM aabUpdate09.153.s19.pdf

1. (a) If p is a prime and $0<k<p$ explain why the binomial coefficient

$$
\binom{p}{k}=\frac{p!}{(k!(p-k)!}
$$

is divisible by p. [Hint: Look for factors of p in the numerator and denominator.]
SOLUTION.

Since $p!/(p-k)!=(p-k+1) \cdot \ldots(p-1) p$ and the binomial coefficient is an integer, we know that k ! divides this number with zero remainder. Furthermore, if we write $p!/(p-k)$! $=q p$ where q is the product of the first $(k-1)$ factors of the product expression, then q is relatively prime to p because all its prime factors are strictly less than p, and similarly for $k!$. By Unique Factorization this means that k ! must divide q with zero remainder and hence the binomial coefficient has the form

$$
p \cdot \frac{q}{k!}
$$

which means itis divisible by p.■
(b) Suppose that a and b are integers such that $a \equiv b \bmod (p)$. Show that $a^{p} \equiv b^{p} \bmod \left(p^{2}\right)$. [Hint: : Write $b=a+k p$.]

SOLUTION.

The Binomial Theorem implies that

$$
b^{p}=(a+k p)^{p}=\sum_{r=0}^{p}\binom{p}{r} a^{p-r}(k p)^{r}
$$

so we need to show that for each $r \geq 1$ the $r^{\text {th }}$ term in the right hand summation is divisible by p^{2}.
If $1 \leq r<p$ this follows because the binomial coefficient and $(k p)^{2}$ are each divisible by p and hence their product is divisible by p^{2}. In the remaining case $r=p$ the summand is $(k p)^{p}$, and this is divisible by p^{2} because $p \geq 2$.■
2. (a) Suppose that $n>1$ is an integer and r is another integer such that $r \not \equiv 0,1 \bmod (n)$ and $r^{2} \equiv r \bmod (n)$. Prove that n is not prime. [Hint: Use the fact that if n and r are relatively prime then there is some integer q such that $q r \equiv 1 \bmod (n)$.]

SOLUTION.

Follow the hint. Suppose to the contrary that n is prime. Since $r \not \equiv 0 \bmod (n)$ this means that there is some integer q such that $q r \equiv 1 \bmod (n)$. If we multiply both sides of the congruence in the first sentence in the problem by q, we obtain the congruences

$$
1 \equiv q r \equiv q r^{2} \equiv 1 \cdot r \bmod (n)
$$

which contradicts our assumption that $r \not \equiv 0,1 \bmod (n)$. The source of the problem is our assumption that n is prime, and therefore we conclude that n cannot be a prime number.

Simple example. Take $n=6$ and $r=3$, so that $9=3^{2} \equiv 3 \bmod (6)$.
(b) Give an example of integers a and n such that $a^{n} \not \equiv a \bmod (n)$. Note that by the Little Fermat Theorem n cannot be a prime number.

SOLUTION.

Let's see what happens if $n=6$. The congruence clearly holds if $a=0,1$, so let's try $a=2$. In this case $2^{6}=64 \equiv 4 \bmod (6)$..
3. (a) Let $n>1$ be an integer. Explain why $k^{2} \equiv(n-k)^{2} \bmod (n)$ for all k.

SOLUTION.
By the Binomial Theorem $(n-k)^{2}=n^{2}-2 n k+k^{2}$, which is congruent to $k^{2} \bmod n . ■$
(b) Find all integers a such that $0 \leq a \leq 10$ and $a \equiv b^{2} \bmod (11)$ for some integer b. [Hint: Part (a) may help reduce the amount of calculation needed.]

SOLUTION.

We need only find the classes of $b^{2} \bmod (11)$ where $0 \leq b \leq 10$, and by the first part we actually only need to do this for $0 \leq b \leq 5$ since the latter implies $6 \leq(11-b) \leq 11$. - Clearly the classes of $0^{2}, 1^{2}, 2^{2}, 3^{2}$ are $0,1,4,9 \bmod 11$, and similarly we have $5 \equiv 4^{2} \bmod (11)$ and $3 \equiv 5^{2} \bmod (11)$. Therefore the possibilities for b are $0,1,3,4,5,9 \bmod 11$.
(c) Find all integers a such that $0 \leq a \leq 12$ and $a \equiv b^{2} \bmod (13)$ for some integer b.

SOLUTION.

In this case we need only find the classes of $b^{2} \bmod (13)$ where $0 \leq b \leq 6$. - Clearly the classes of $0^{2}, 1^{2}, 2^{2}, 3^{2}$ are $0,1,4,9 \bmod 13$, and similarly we have $3 \equiv 4^{2} \bmod (11)$, and $12 \equiv 5^{2} \bmod (13)$ $10 \equiv 6^{2} \bmod (11)$. Therefore the possibilities for b are $0,1,3,4,9,10,12 \bmod 13$.

The next two problems involve some numerical issues which arise from the Cubic Formula in Chapter 9 of the course notes.
4. The Cubic Formula shows that one root of the polynomial $x^{3}-3 x+1=0$ has the form

$$
\sqrt[3]{\cos (2 \pi / 3)+i \sin (2 \pi / 3)}+\sqrt[3]{\cos (2 \pi / 3)-i \sin (2 \pi / 3)} .
$$

Express this as a real number; your answer should have the form $K \cos \theta$ for explicit values of K and θ. [Hint: $\quad e^{i \alpha}=\cos \alpha+i \sin \alpha$.]

SOLUTION.

The polar form of a complex number $r e^{i \alpha}$ is convenient for taking $n^{\text {th }}$ roots. In particular, one cube root of this number is given by $r^{1 / 3} e^{i \alpha / 3}$. Therefore the sum of the two cube roots simplifies to

$$
\cos (2 \pi / 9)+i \sin (2 \pi / 9)+\cos (2 \pi / 9)-i \sin (2 \pi / 9)
$$

which of course is equal to $2 \cos (2 \pi / 9)$.
5. The Cubic Formula shows that one root of the polynomial $x^{3}+x^{2}-2=0$ has the form

$$
\frac{1}{3}(\sqrt[3]{26+15 \sqrt{3}}+\sqrt[3]{26-15 \sqrt{3}}-1)
$$

Using Bombelli's methods, show that this expression is a positive integer (in fact, an extremely familiar value). The crucial step is to express the expressions under the cube root signs as $a \pm b \sqrt{3}$ for two single digit integers a and b.

SOLUTION.

Follow the hint in the final sentence and try to write $26+15 \sqrt{3}=(a+b \sqrt{3})^{3}$ for suitable a and b. Expanding the right hand side yields

$$
a^{3}+3 a^{2} b \sqrt{3}+3 a\left(3 b^{2}\right)+9 b^{3} \sqrt{3}
$$

and if we equate coefficients we obtain the equations $a^{3}+9 b^{2}=26$ and $3 a^{2} b+9 b^{3}=15$.
Generally systems of equations like the preceding do not yield much information, but the final sentence helps because it asks for solutions where a and b are single digit integers. Let's start by looking for solutions where both integers are positive. Then the second equation implies that b must be equal to 1 , which in turn implies that a must be equal to 2 . We should now check that $26 \pm 15 \sqrt{3}=(2 \pm \sqrt{3})^{3}$, but the latter are routine exercises.

Finally, if we substitute this into the Cubic Formula expression we see that the latter simplifies to

$$
\frac{1}{3}((2+\sqrt{3})+(2-\sqrt{3})-1)
$$

which in turn simplifies to 1 . To check the accuracy of our calculations we should verify that 1 is a root of the original cubic polynomial, but this is very easy to do.

