Vector proofs of elementary results in geometry

Our goal is to prove the following classical result in Euclidean geometry:
THEOREM. Suppose that $\angle A C B$ in the coordinate plane is inscribed in a semicircle; in other words, if X is the midpoint of the segment $[A B]$ then all three points A, B, C are equidistant from X. Then $\angle A C B$ is a right angle.

See the file semicircle.pdf for a drawing.
Proof. We shall view the points in the coordinate plane as vectors and relabel them as $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{x}. Since \mathbf{x} is the midpoint of \mathbf{a} and \mathbf{b} it follows that $\mathbf{a}-\mathbf{x}=-(\mathbf{b}-\mathbf{x})$. Let

$$
r=|\mathbf{a}-\mathbf{x}|=|\mathbf{b}-\mathbf{x}|=|\mathbf{c}-\mathbf{x}| .
$$

In vector language, the conclusion of the theorem is that $\mathbf{a}-\mathbf{c}$ and $\mathbf{b}-\mathbf{c}$ are perpendicular, or equivalently that

$$
(\mathbf{a}-\mathbf{c}) \cdot(\mathbf{b}-\mathbf{c})=0
$$

Define new vectors

$$
\mathbf{a}^{\prime}=\mathbf{a}-\mathbf{x}, \quad \mathbf{b}^{\prime}=\mathbf{b}-\mathbf{x}, \quad \mathbf{c}^{\prime}=\mathbf{c}-\mathbf{x}
$$

It follows from the definitions that $\mathbf{a}^{\prime}=-\mathbf{b}^{\prime}$, and all three vectors $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ have length r. Furthermore, we also have

$$
\mathbf{a}^{\prime}-\mathbf{c}^{\prime}=\mathbf{a}-\mathbf{c}, \quad \mathbf{b}^{\prime}-\mathbf{c}^{\prime}=\mathbf{b}-\mathbf{c}
$$

and therefore the conclusion of the theorem translates into the condition

$$
\left(\mathbf{a}^{\prime}-\mathbf{c}^{\prime}\right) \cdot\left(\mathbf{b}^{\prime}-\mathbf{c}^{\prime}\right)=0
$$

Since $\mathbf{a}^{\prime}=-\mathbf{b}^{\prime}$, we may rewrite the expression on the left hand side as

$$
\left(-\mathbf{b}^{\prime}-\mathbf{c}^{\prime}\right) \cdot\left(\mathbf{b}^{\prime}-\mathbf{c}^{\prime}\right)=-\left(\mathbf{b}^{\prime}+\mathbf{c}^{\prime}\right) \cdot\left(\mathbf{b}^{\prime}-\mathbf{c}^{\prime}\right)=-\left(\left|\mathbf{b}^{\prime}\right|^{2}-\left|\mathbf{c}^{\prime}\right|^{2}\right)
$$

Since \mathbf{b}^{\prime} and \mathbf{c}^{\prime} both have length r, it follows that this expression equals zero, which is what we needed to show in order to prove the theorem.

