NAME: \qquad

Mathematics 153, Spring 2005, Examination 1

Point values are indicated in brackets.

1. [15 points] The sum of unit fractions

$$
r=\frac{1}{7}+\frac{1}{42}
$$

can also be written in the form

$$
\frac{1}{n}+\frac{1}{2 n}
$$

for some value of n. Find the two unit fractions in this expression for r.

SOLUTION.

We need to solve the equation

$$
\frac{1}{n}+\frac{1}{2 n}=\frac{1}{7}+\frac{1}{42}
$$

and if we simplify both sides of the equation this redues to

$$
\frac{3}{2 n}=\frac{1}{6}
$$

This equation is equivalent to $2 n=18$, which means $x=9$. To complete the problem we have to substitute this back into the original equation to show that

$$
\frac{1}{18}+\frac{1}{9}=\frac{1}{6}
$$

2. [25 points] Given an odd prime p prove directly that $6 p$ is never a perfect number. As noted in class, it will suffice to do this when $p \neq 3$.

SOLUTION.

The proper divisors of p are $1,2,3,6, p, 2 p$ and $3 p$. These add up to $6 p+12$, which is greater than $6 p$, and therefore $6 p$ is not a perfect number. -
3. [15 points] Find a positive integer b such that $7^{2}+b^{2}=(b+1)^{2}$. (What is $(b+1)^{2}-b^{2}$?)

SOLUTION.

The key to doing this is to note that $b^{2}+2 b+1=(b+1)^{2}$. In order to solve this equation we need to find the value of b such that $2 b+1=49=7^{2}$. Solving this yields $b=24$, and therefore we have the equation $24^{2}+7^{2}=25^{2}$.
4. [20 points] For each of the following mathematicians, identify the time during which they worked using the following key: $\mathrm{A}=$ before 700 B.C.E., $\mathrm{B}=$ between 700 B.C.E. and 500 B.C.E., $\mathrm{C}=$ between 500 B.C.E. and 400 B.C.E., $\mathrm{D}=$ between 400 B.C.E. and the death of Alexander the Great in 323 B.C.E., $\mathrm{E}=$ between the death of Alexander the Great and 200 B.C.E., $\mathrm{F}=$ after 200 B.C.E. A given letter may be the correct answer more than once.

Euclid ANSWER: E
Eudoxus ANSWER: D
Proclus ANSWER: F
Thales ANSWER: B
Zeno ANSWER: C
5. [25 points] For each of the following mathematical developments, identify when they took place using the following key: $\mathrm{A}=$ before 700 B.C.E., $\mathrm{B}=$ between 700 B.C.E. and 500 B.C.E., C $=$ between 500 B.C.E. and 400 B.C.E., D $=$ between 400 B.C.E. and the death of Alexander the Great in 323 B.C.E., $\mathrm{E}=$ between the death of Alexander the Great and 200 B.C.E., $\mathrm{F}=$ after 200 B.C.E. A given letter may be the correct answer more than once.

Condition of Eudoxus used to work with irrational numbers. ANSWER: D
Deductive proofs introduced into mathematics. ANSWER: B
Extensive results on Pythagorean triples known. ANSWER: A
Hippocrates' results on areas of lunes (crescent shapes). ANSWER: C
Organization of basic Greek mathematics in the Elements. ANSWER: E
Quadratrix of Hippias first used to solve construction problems. ANSWER: C

