Mathematics 153, Spring 2016, Examination 1

Answer Key

1. [25 points] (i) If n is a positive integer, show that

$$
\frac{1}{n+1}<\frac{3}{3 n+2}<\frac{1}{n}
$$

(ii) Use the Greedy Algorithm to find an Egyptian unit fraction expression for $3 /(3 n+2)$.
(iii) Write the Babylonian fraction $3^{\prime} 20^{\prime \prime}$ in a standard form a / b where a and b are positive integers.

SOLUTION

(i) For each inequality use the fact that if $a, b, c, d>0$ then $(a / b)<(c / d)$ if and only if $a d<b c$. In the first case this test yields the inequality $3 n+2<3(n+1)=3 n+3$, and in the second it yields $3 n<3 n+2$.
(ii) By (i) the first step of the Greedy Algorithm yields the term $1 /(n+1)$, and we then have

$$
\frac{3}{3 n+2}-\frac{1}{n+1}=\frac{1}{(3 n+2)(n+1)} \quad \text { so that } \quad \frac{3}{3 n+2}=\frac{1}{n+1}+\frac{1}{(3 n+2)(n+1)}
$$

(iii) In standard form the fraction is

$$
\frac{3}{60}+\frac{20}{60^{2}}=\frac{(3 \cdot 60)+20}{60^{2}}=\frac{200}{3600}
$$

which simplifies to $1 / 18$.■
2. [20 points] Let p be an odd prime. Prove that $28 p$ is not a perfect number.

SOLUTION

The proper divisors of $28 p$ are $1,2,4,7,14,28, p, 2 p, 4 p, 7 p$ and $14 p$. The sum of these numbers is $56+28 p$, which is strictly greater than $28 p$.
3. [25 points] Let A, C and B be the points in the coordinate plane given by $(a, 0)$, $(0,0)$ and $(0, b)$ where $a, b>0$, and let $X=(p, q)$ be a point in the open first quadrant, so that $p, q>0$. Given that the lines $C X$ and $A B$ are defined by the equations $b x+a y=a b$ and $p y-q x=0$, show that they meet at a point (u, v) such that $u, v>0$. [Note: The final page of the exam states Cramer's Rule for solving a system of two linear equations in two unknowns with determinants.]

SOLUTION

We shall solve the system directly as follows: Begin by multiplying the first equation by p to obtain $p b x+a p y=p a b$, then substitute using the equation $p y=q x$ to obtain $p b x+q a x=p a b$, so that

$$
x=\frac{p a b}{p b+q a}, \quad y=\frac{q a b}{p b+q a} .
$$

Notice that both coordinates are positive because (i) the numerators are products of positive numbers, $(i i)$ the denominators are sums of products of positive numbers.■

FOOTNOTE. Problem 3 is a special case of another result which is tacitly assumed in Euclid's Elements called the Crossbar Theorem: Given $\angle A B C$ and a point X in its interior, there is a point where the ray $[B X$ meets the open segment $(A C)$.
4. [30 points] For each of the following, state whether it was discovered or developed in the time period up to and including the writing of Euclid's Elements or if it was discovered or developed after that time. Six correct responses will earn full credit, and additional correct responses will earn extra credit.
--_ Areas of certain regions bounded by a line and a parabola.
--_ Areas of certain regions bounded by two nonconcentric circular arcs.
--_ Axioms related to the two sides of a line in the plane.
--_- Axioms related to the uniqueness of parallel lines.
--_- Existence of irrational numbers.
--_ Ratio of the volume of a cylinder to that of an inscribed sphere.
--_ Reflection property for parabolas.
--_ Relation between the measure of an angle inscribed in a circle and that of its intercepted arc.
___-_ Use of intersecting parabolas to construct a segment of length $\sqrt[3]{2}$.
---_ Use of unmarked straightedge and compass to bisect an angle.
--_ Zeno's paradoxes.

SOLUTION

After the time of the writing of the Elements [by Archimedes]
Up to and including the time of the writing of the Elements [by Hippocrates of Chios]
After the time of the writing of the Elements [in the $19^{\text {th }}$ century]
Up to and including the time of the writing of the Elements [in the Elements]
Up to and including the time of the writing of the Elements [by the Pythagoreans]
After the time of the writing of the Elements [by Archimedes]
After the time of the writing of the Elements [by Apollonius]
Up to and including the time of the writing of the Elements [in the Elements]
Up to and including the time of the writing of the Elements [by Manaechmus]
Up to and including the time of the writing of the Elements [in the Elements]
Up to and including the time of the writing of the Elements

