DRAWING FOR PROBLEM 3

The problem is to show that $\mathbf{D E}$ and $\mathbf{A C}$ meet at a point which on the segment joining \mathbf{A} to \mathbf{C}; it does not suffice to show that the lines DE and AC have a point in common. As indicated by the drawing, the open segment joining these two points is just the set of all points that are on AC and in the first quadrant (both coordinates positive). Notice that the line DE also appears to meet the line $\mathbf{A B}$ (in fact, they always do so), but these two lines do not meet on the segment joining \mathbf{A} to \mathbf{B}.

Note also that if $\mathbf{q}<\mathbf{0}$ then the lines $\mathbf{D E}$ and $\mathbf{A B}$ meet at a point which on the segment joining \mathbf{A} to \mathbf{B}. Furthermore, in this case if the lines DE and AC have a point in common then this point is not on the segment joining \mathbf{A} to \mathbf{C}.

