Mathematics 153, Spring 2019, Examination 1

Answer Key
(modifications to problems inserted)

1. [20 points] The Greedy Algoritm for finding the Egyptian fraction expression of $\frac{4}{7}$ yields $\frac{1}{2}+\frac{1}{14}$, but there is also an expression of the form

$$
\frac{1}{7}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

where a, b and c are distinct positive integers. Find one possibility for a, b and c.

SOLUTION

Rewrite the desired equation in the form

$$
\frac{3}{7}=\frac{4}{7}-\frac{1}{7}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

and find the denominators using the Greedy Algorithm. The largest unit fraction less than $\frac{3}{7}$ is $\frac{1}{3}$, so $a=3$. For the next step consider

$$
\frac{3}{7}-\frac{1}{3}=\frac{2}{21}
$$

and notice that $\frac{1}{11}$ is the largest unit fraction less than the right hand side. Therefore $b=11$. Finally we have

$$
\frac{2}{21}-\frac{1}{11}=\frac{1}{231}
$$

so that $c=231$. Hence the desired Egyptian fraction expansion is

$$
\frac{1}{7}+\frac{1}{3}+\frac{1}{11}+\frac{1}{231}
$$

2. [25 points] (a) Suppose that we are given an odd number $2 m-1$ where $m \geq 2$. Show that

$$
(a, b, c)=\left(2 m-1,2 m^{2}-2 m, 2 m^{2}-2 m+1\right)
$$

is a Pythagorean triple.
(b) Find a Pythagorean triple $(9, p, q)$ which is not $(9,12,15)=(3 \cdot 3,3 \cdot 4,3 \cdot 5)$.

SOLUTION

(a) Expand and simplify $(2 m-1)^{2}+\left(2 m^{2}-2 m\right)^{2}$:

$$
\left(4 m^{2}-4 m+1\right)+\left(4 m^{4}-8 m^{3}+4 m^{2}\right)=4 m^{4}-8 m^{3}+8 m^{2}-4 m+1
$$

Now use the identity $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c$ to expand the right hand side:

$$
4 m^{4}+4 m^{2}+1-8 m^{3}+4 m^{2}-4 m=4 m^{4}-8 m^{3}+8 m^{2}-4 m+1
$$

The two expressions on the right are equal, and therefore we have a Pythagorean triple..
(b) We want $2 m-1=4$ so that $m=5$. Therefore $2 m^{2}-2 m=40$ and $2 m^{2}-2 m+1=$ 41 , yielding the Pythagorean triple $(9,40,41)$, which is clearly not $(9,12,15)$
3. [25 points] Let A, B and C be the points in the coordinate plane given by $(0,1)$, $(-2,0)$ and $(1,0)$, let $E=(q, 0)$ be a point on the line segment joining B to C, and let D be the point $(0,-1)$. By Pasch's "Postulate" we know that the line $D E$ meets one of the sides $[A B]$ or $[A C]$ in a second point. Prove that the second alternative holds if $q>0$. [Note: To show that the common point of $D E$ and $A C$ lies on the closed segment [$A C$] it is enough to check that its second coordinate is between 0 and 1 . Also, one equation for line $A C$ is $x+y=1$. A sketch will probably be helpful.]

SOLUTION

See the accompanying file for a drawing.
We must first find an equation $y=m x+b$ defining the line $D E$ using the points $D=(0,-1)$ and $E=(q, 0)$ in the problem. For example, if we substitute the values of D and E for (x, y), we find that the equation is

$$
y=\frac{x}{q}-1 .
$$

We now need to find the point where this line meets the line $y=1-x$. If we solve this system of two equations in two unknowns we find that

$$
x=\frac{2 q}{q+1}, \quad y=\frac{1-q}{q+1} .
$$

Since $0<q<1$ we have $0<2 q<q+1$ and $0<1-q<1$, and therefore by the hint the point (x, y) lies on the line segment joining $A=(0,1)$, to $C=(1,0)$.
4. [30 points] Answer each of the following questions. If your answers are incorrect but supporting reasons are included, there is a chance of partial credit.
(a) Determine which of these happened first: A valid theory for studying proportional line segments such that the ratios of their lengths is irrational or the definition and study of polygonal numbers.
(b) Determine which of these happened first: The computation for the area of the circle or the computation of the area of certain crescent regions (lunes) bounded by two circular arcs.
(c) Determine which of these happened first: Valid methods for working with the two sides of a line in the plane or a valid construction for angle bisectors.
(d) Determine which of these happened first: The empirical discovery of the Pythagorean Theorem or the formulation of Zeno's paradoxes.
(e) Determine which of these is associated to Archimedes and which to Apollonius: The determination of normals to an ellipse through an external point or a study of the spiral with parametric polar coordinate equation $r=\theta$.
(f) Which of Socrates or Aristotle had more of an impact on the development of Greek mathematics?

SOLUTION

(a) Polygonal numbers, studied by the Pythagoreans, came before the theory of irrational proportions developed by Eudoxus and Euclid 200 years later.
(b) The areas of certain crescent regions were studied by Hippocrates of Chios in the fifth century B.C.E. and Eudoxus proved the area formula for a circular region a century later.
(c) Greek geometers knew how to bisect an angle by straightedge and compass 2500 years ago, but mathematically sound methods for studying the two half-planes dtermined by line were not developed until the nineteenth century.t
(d) Mesopotamian (and problably Egyptian) scholars knew about the Pythagorean theorem 4000 years ago, and Zeno lived during the fifth century B.C.E. (about 2500 years ago).
(e) Archimedes studied the spiral curve with polar equation $r=\theta$, and Apollonius solve the problem of finding all normals to an ellipse through an external point.m.
(f) Socrates had no direct impact on mathematics, but Aristotle's work on logic helped set a definitive framework for mathematical reasoning.-

