NAME:

Mathematics 153, Spring 2005, Examination 2

Point values are indicated in brackets.

1. [20 points] (i) Let a and b be positive integers, and let d be the greatest common divisor of a and b. Prove that d divides every integer of the form $s a+t b$ where s and t are integers.

SOLUTION.

If d divides both numbers then $a=u d$ and $b=v d$ for some integers u and v. Therefore

$$
s a+t b=s u d+t v d=(s u+t v) \cdot d
$$

so that d also divides $s a+t b . ■$
(ii) Using the preceding part of the problem, show that two consecutive odd integers are relatively prime. [Hints: Why is d an odd integer? What is the difference between two consecutive odd integers?]

SOLUTION.

Suppose that d is the greatest common divisor of the numbers, and write them as $2 k+1$ and $2 k+3$. If d divides both, then d divides their difference which is 2 . But if d divides either then d must be odd. Since the only odd positive integer dividing 2 is 1 , it follows that $d=1$ and the original pair of odd integers is relatively prime..
2. [25 points] Suppose that n is an integer.
(i) If n has the form $3 q+r$ where $r=1$ or 2 , show that $n^{2}=3 k+1$ for some integer k.

SOLUTION.

If $n=3 q+1$ then $n^{2}=9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1$, and if $n=3 q+2$ then $n^{2}=9 q^{2}+12 q+4=$ $3\left(3 q^{2}+6 q+1\right)+1$.
(ii) Prove that the equation $x^{2}=3 y+2$ has no solution such that x and y are both integers. [Hint: Suppose $x=3 q+r$ where r is 0,1 or 2 . Show that $x^{2}=3 k+s$ where $s=0$ or 1.]

SOLUTION.

The first part shows that there are no solutions of the form $3 q+r$ where $r=1$ or 2 . The only other possibility would be solutions of the form $3 q$. But $(3 q)^{2}=9 q^{2}$ is divisible by 3 and thus cannot have the form $3 y+2$ either. Since every integer has the form $3 q+r$ where r is 0,1 or 3 , it follows that the square of an integer x never has the form $3 y+2$.
3. [20 points] Suppose we are given a circle C in the coordinate plane with center $(0,2 a)$ and radius a. Let S be the surface of revolution obtained by rotating C about the x-axis and let T be the solid of revolution formed by rotating the region bounded by C about the x-axis. Find the surface area of S and the volume of T using the Pappus Centroid Theorem.

SOLUTION.

Note first that the centroid of the circle is $(0,2 a)$, so that the distance from the centroid to the x-axis is $2 a$ and the distance traveled by the centroid when rotated about the x-axis is $4 \pi a$. Let D be the disk that C bounds. Then by the Pappus Centroid Theorem(s) we have the following:

$$
\begin{aligned}
& \operatorname{area}(S)=\operatorname{length}(C) \cdot 4 \pi a=(2 \pi a) \cdot(4 \pi a)=8 \pi^{2} a^{2} \\
& \operatorname{volume}(T)=\operatorname{area}(D) \cdot 4 \pi a=\left(\pi a^{2}\right) \cdot(4 \pi a)=4 \pi^{2} a^{3}
\end{aligned}
$$

4. [35 points] For each of the topics listed below, match the name of a person who contributed significantly to that topic using the letter key indicated below. No name should be used more than once.
-- Computations of areas and volumes
-- Criterion for finding amicable pairs of numbers
_--- Extensive tables of trigonometric functions
-- Geometric solutions of cubic equations
-- Prime number sieve
_--- Properties of conic sections
_--- Shorthand non-rhetorical notation for algebraic expressions
-- Use of negative numbers
A : Al-Khwarizmi
B : Apollonius
C: Archimedes
D : Aryhbhatta
E: Brahmagupta
F : Claudius Ptolemy
G: Diophantus
H: Eratosthenes
I : Menelaus
J : Omar Khayyam
K : Proclus
L : Thabit ibn Qurra

SOLUTION.

C
L
A or D or F or I
J
H
B or G
E

