
2. Greek mathematics before Euclid 
 
 

(Burton, 3.1 – 3.4, 10.1) 
 
 
It is fairly easy to summarize the overall mathematical legacy that Greek civilization has 
left us:   
 

Their work transformed mathematics from a largely empirical 
collection of techniques into a subject with a coherent theme of 
organization, based mainly upon deductive logic.   

 

Logic definitely played a role in Egyptian and Babylonian mathematics, as it also did in 
the mathematics of other ancient civilizations, simply because problem solving involves 
logical reasoning.  The crucial feature of Greek mathematics was that logic was used not 
only to solve specific types of problems, but also to organize the subject. 
 

Perhaps the best known consequence of the Greek approach to mathematics is the very 
strong emphasis on justifying results by means of logical proofs.   One important 
advantage of proving mathematical statements is that it dramatically increases the 
reliability and accuracy of the subject, and it emphasizes the universality of the subject’s 
conclusions.  These features have in turn greatly enhanced the usefulness of 
mathematics in other areas of knowledge. 
 

Since deductive logic did not play such a central role in the mathematics of certain other 
major cultures, it is natural to ask how, why and when Greek mathematics became so 

logically structured.   Various reasons for this have been advanced, and they include ( i ) 
more widespread access to education and learning, ( i i )  greater opportunities for 

independent thought and questioning so – called conventional wisdom, ( i i i )  more 

emphasis on the intellectual sides of other subjects such as the arts, and ( i v ) more 
flexibility in approaches to religious beliefs.  There are relationships among these 
factors, and at least some of them have also been present in later civilizations where 
mathematics flourished, including the modern world. 

  
Logic and proof in mathematics 

 
Before discussing historical material, it seems worthwhile to spend a little more time 
discussing the impact of the Greek approach to mathematics as a subject to be studied 
using the rules of logic.   This is particularly important because many often repeated 
quotations about the nature of mathematics and the role of logic are either confusing or 
potentially misleading, even to many persons who are quite proficient mathematically. 
 
Inductive versus deductive reasoning.  Earlier civilizations appear to have reached 
conclusions about mathematical rules by observation and experience, a process that is 
known as inductive reasoning and is described in the following online reference:  

 

http://changingminds.org/disciplines/argument/types_reasoning/induction.htm 
 

This process still plays an important role in modern attempts to understand nature, but it 
has an obvious crucial weakness:   A skeptic could always ask if there might be some 
example for which the alleged rule does not work; in particular, if one is claiming that a 



certain rule holds in an infinite class of cases, knowledge of its validity in finitely many 
cases need not yield any information on the remaining infinite number of cases.  
 

Some very convincing examples of this sort are given by a number – theoretic question 

that goes back nearly two thousand years:  If p is a prime, determine whether there are 

integers m and n such that 
 

m 

2
   =   p ⋅⋅⋅⋅ n 

2
 + 1 .   

 

This identity is known as Pell’s equation; as suggested above, this equation had been 
recognized much earlier by Greek mathematicians, and several Chinese and Indian 
mathematicians had studied it extensively during the thousand years before the work of 

J. Pell (1611 – 1685) in the 17th century.  Here is a MacTutor reference:  
 

http://www–groups.dcs.st–and.ac.uk/~history/HistTopics/Pell.html 
 

For small values of  p  one can find solutions directly by  setting  n  =  1, 2, …  and 

checking whether  p ⋅⋅⋅⋅ n 

2
 + 1   is a perfect square.   Here are a few examples:  

 

p  =   2:   (n, m)  =  (2, 3) 

p  =   3:   (n, m)  =  (1, 2) 

p  =   5:   (n, m)  =  (4, 9) 

p  =   7:   (n, m)  =  (3, 8) 

p  =   11:   (n, m)  =  (3, 10) 
 

In fact, one can prove that this equation always has a solution where p is a prime and  

m and n are both positive integers.   For example, see page 35 of the following 
reference: 
 

http://www2.math.ou.edu/~kmartin/nti/chap5.pdf 
 

However, even for relatively small values of  p  a minimal solution to this  equation can 
involve integers which are so large that one might conclude that there are no solutions.  

In particular, if we take p =  991  and compute  991 ⋅⋅⋅⋅ n 

2
 + 1  for a even a few million 

values of n, it would be easy to conclude that  991 ⋅⋅⋅⋅ n 

2
 + 1   will never be a perfect 

square; in fact there are no positive integer solutions until one reaches the case   
 

n    =   12 055 735 790 331 359 447 442 538 767    ~   1.2 ×××× 10
29

 
 

and for this value of n the expression does yield a perfect square.  An even more 
striking example appears in J. Rotman’s undergraduate text on writing mathematical 

proofs:   The smallest positive integer n such that 
 

1000099 ⋅⋅⋅⋅ n 

2
 + 1 

 

is a perfect square has 1115  digits.  Here is a bibliographic reference for this book: 
 

J. Rotman, Journey into mathematics. An introduction to proofs.  
Prentice Hall, Upper Saddle River, NJ, 1998.  ISBN: 0–13–842360–1.  

 

On a more elementary level, consider the following question: 
 

If n is a positive integer, is n 

3
 – n evenly divisible by 6? 

 



One approach to this might be to compute the expression n 

3
 – n for several million 

values of n, check that the result is always divisible by 6 in all these cases and 

conclude that this expression is probably divisible by 6 in all possible cases.  However, 
in this case one can conclude that the result is always true by an argument we shall now 
sketch: Given two consecutive integers, we know that one is even and one is odd.  
Likewise, if we are given three consecutive integers, we can conclude that exactly one of 

them is divisible by 3.  Since  
 

n 

3
  –  n    =    n ⋅⋅⋅⋅ (n + 1) ⋅⋅⋅⋅ (n – 1) 

 

we see that one of the numbers n and n + 1 must be even, and one of the three 

numbers n – 1,  n and n + 1 must be divisible by 3.  These divisibility properties 

combine to show that the entire product is divisible by 2 ⋅⋅⋅⋅ 3  =  6.   
 
One important and potentially confusing point is that the deductive method of proof 
called mathematical induction is NOT an example of inductive reasoning.   Due to the 
extreme importance of this fact, we shall review the reasons for this: An argument by 

mathematical induction starts with a sequence of propositions Pn such that  
 

(1) the initial statement P1 is true,  
 

(2) for all positive integers n, if Pn is true then so is Pn + 1  
 

and concludes that every statement Pn is true.  This principle is actually a form of proof 

by reductio ad absurdum:  If some Pn  is false then there is a least n such that Pn  is 

false.  Since P1 is true, this minimum value of n must be at least 2, and therefore n – 1 

is at least 1.  Since n is the first value for which Pn  is false, it follows that Pn – 1 must be 

true, and therefore by condition (2) it follows that Pn  must be true.  So we have shown 

that the latter is both true and false, which is impossible.  ——  What caused this 
contradiction?  The only thing that could be responsible for the logical contradiction is 

the assumption that some Pm is false.   Therefore there can be no such m,  and hence 

each Pn must be true. 
 

The accuracy of mathematical results.  In an earlier paragraph there was a statement 
that proofs greatly increase the reliability of mathematics.  One frequently sees stronger 
assertions that proofs ensure the absolute truth of mathematics.  It will be useful to 
examine the reasons behind these differing but closely related viewpoints. 
 

Perhaps the easiest place to begin is with the question, “What is a geometrical point ?”  
Mathematically speaking, it has no length, no width and no height.  However, it is clear 
that no actual, observable object has these properties, for it must have measurable 
dimensions in order to be observed.   The mathematical concept of a point is essentially 
a theoretical abstraction that turns out to be extremely useful for studying the 
spatial properties of the world in which we live.   This and other considerations suggest 
the following way of viewing the situation:  Just like other sciences, mathematics can be 
viewed formally as a theory about some aspects of the world in which we live.  Most of 

these aspects involve physical quantities or objects – concepts that are also basic to 
other natural sciences. 
 

If we think of mathematics as dealing only with its own abstract concepts, then one can 



argue that it yields universal truths.  However, if we think of mathematics as providing 
information about the actual world of our experience, then a mathematical theory must 
be viewed as an idealization.  As such, it is more accurate to say that the results of 
mathematics provide extremely reliable information and a degree of precision that is 
arguably unmatched in other areas of knowledge.  The following quotation from Albert 

Einstein (1879 – 1955) summarizes this viewpoint quite well: 
 

As far as the laws of mathematics refer to reality, they are not certain; and as far 
as they are certain, they do not refer to reality.  

 

Given the extent to which Einstein used very advanced mathematics in his work on 
theoretical physics, it should be clear that this comment did not represent a disdain for 
mathematics on his part, and in order to add balance and perspective we shall also 
include some quotations from Einstein supporting this viewpoint: 

 

One reason why mathematics enjoys special esteem, above all other sciences, is 
that its laws are absolutely certain and indisputable, while those of other sciences 
are to some extent debatable and in constant danger of being overthrown by 
newly discovered facts.  

 

But there is another reason for the high repute of mathematics:   It is mathematics 
that offers the exact natural sciences a certain measure of security which, without 
mathematics, they could not attain.  

 

This reflects the high degree of reliability that mathematics possesses due to its rigorous 
logical structure.   
 

The place of logic in mathematics.    Despite the importance of logic and proof in 
mathematics as we know the subject, it is important to remember that all the formalism is 

a means to various ends rather than an all – encompassing end in itself.  Just like other 
subjects, mathematical discovery follows the pattern described by Immanuel Kant (1724 

– 1804) in his Critique of Pure Reason: 
 

All our knowledge begins with the senses, proceeds then to the understanding, 
and ends with reason.  

 

In particular, the discovery process in mathematics uses experience and intuition to 
develop concepts and ideas, and the validity of the latter is determined by means of 

deductive logic.   The following quote from Hermann Weyl (1885 – 1955) summarizes 
this use of logic to confirm the reliability of mathematical conclusions:   
 

Logic is the hygiene the mathematician practices to keep his ideas healthy and 
strong. 

 

In everyday life, different standards of hygiene are appropriate for different purposes.  
For example, the extremely tight standards of hygiene necessary for manufacturing 
computer chips are clearly different from the standards that are reasonable for selling 
computers.  The same general principle applies to logical standards for the study and 
uses of mathematics.  
 

In a similar vein, although the technical language of mathematics is a very effective 
framework for ensuring the logical reliability of the subject, it does not always reflect the 
perspectives of some users of mathematics in other disciplines.  Some issues along 
these lines are discussed in the following article: 



 
G. B. Folland.  Speaking with the natives:  Reflections on mathematical 
communication.  Notices of the American Mathematical Society Vol. 57 (2010),  

pp. 1121 – 1124.  Available online at  

http://www.ams.org/notices/201009/rtx100901121p.pdf.  
 
 

The role of definitions in formal logic.   In logical arguments it is important to be 
careful and consistent when stating definitions.  This contrasts with everyday usage, 
where it is often convenient to be somewhat imprecise in one way or another.  For 
example, if one looks up a definition in a standard dictionary and then looks up the 
definitions of the words used to define the original word and so forth, frequently one 
comes back to the original word itself, and thus from a strictly logical viewpoint the 
original definition essentially goes around in a circle.  Often such rigorous definitions of 
words in mathematics have implications that are contrary to standard usage; the 

following quotation from the 20th century English mathematician J. E. Littlewood (1885 – 
1977) illustrates this phenomenon very clearly:  
 

A linguist would be shocked to learn that if a set is not closed this does not mean 
that it is open, or again that “E is dense in E” does not mean the same thing as 
“E is dense in itself.” 

 

The rigidity of mathematical definitions is described very accurately in a well known 

quotation of C. L. Dodgson (better known as Lewis Carroll, 1832 – 1898) that appears in 
his classic book, Through the Looking Glass (Alice in Wonderland): 
 

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means 

just what I choose it to mean – neither more nor less.”  
 

There will be further comments on logical definitions later in this unit. 
 

The evolution of logical standards over time.   Very few things in this world emerge 
instantly in a fully developed form and remain completely unchanged with the passage of 
time.  The logical standards for mathematical proofs are no exception to this.  Ancient 
Greek and Roman writings contain some information on the development of logic and 
mathematical proofs in Greek civilization.  Some aspects of this process in Greek 
mathematics will be discussed later in these notes, and we shall also discuss the 
changing standards for mathematical proofs at various points in subsequent units.  This 
continuing refinement of logical standards is frequently related to advances within 
mathematics itself.   When mathematicians and others make new discoveries in the 
subject and check the logical support for these discoveries, occasionally it is apparent 

that existing criteria for valid proofs require a careful re – examination.   Often such work 
is absolutely necessary to ensure the accuracy of new discoveries.  In some cases such 
refinements of logical standards raise questions about earlier proofs, but in practice 
mathematicians are able to address such questions effectively with relatively minor 
adjustments to previous arguments. 
 

During the past 30 to 40 years, some uses of computers in mathematical proofs have 
raised unprecedented concerns.  Perhaps the earliest example to generate widespread 

attention was the original proof of the Four Color Theorem by K. Appel (1934 – 2013) 

and W. Haken (1928 – ) in the middle of the nineteen seventies.  The most intuitive 
formulation of this result is that four colors suffice to color a “good” map on the plane 
(each country consists of a single connected piece, and no boundary point lies on the 
boundaries of more than three countries; in particular, this eliminates phenomena like 



the four corners point in the U. S. where Colorado, Utah, Arizona and New Mexico all 

meet — as in the picture below, one can always modify boundaries very slightly to 

achieve this regularity condition, and this can even be done more carefully without 
changing the areas of any of the regions).   

 

 
 

 

The original Appel – Haken proof used a computer to analyze thousands of examples of 
specific maps, and questions arose about the reliability of such a program.  One widely 
held view reflects a basic principle of the Scientific Method regarding experimental 
results:  In order to verify their validity, someone else should be able to reproduce 
the results independently.  For computer assisted proofs, this means running another 
computer test on a different machine using independently written programs.  In fact, 
tests of this sort were done for the Four Color Theorem with positive results.  For further 

information on this result, see the discussion on pages 748 – 750 of Burton and the 
online article http://en.wikipedia.org/wiki/Four_color_theorem .   
 
There is a more detailed but relatively informal discussion of mathematical proofs and 
their basic techniques in the following online document: 
 

http://math.ucr.edu/~res/math133-2018/mathproofs.pdf   

 
Comment on the term “Greek mathematics” 

 
When discussing any aspect of ancient Greek culture, it is important to remember that 
the latter became a dominant intellectual framework over increasingly wide geographic 

areas as time progressed.  Particularly in the Hellenistic period — which is conveniently 
viewed as beginning with the conquests of Alexander the Great and the founding of 

Alexandria — it includes contributions from many different geographical areas and 
nationalities in Southern and Eastern Europe, Western Asia, and Northern Africa.  The 
justifications for the term “Greek mathematics” are the cultural foundations of the work 
and the fact that Greek was the usual language in which the work was written.    

 
The time periods of Greek mathematics 

 
The historical period for the Greek school of mathematics probably began no later than 
600 B.C.E., and it continued until shortly after 400 A.D..   Not surprisingly, the methods, 
emphases and problems changed over this long stretch of time, and for many purposes 
it is useful to split the history into several distinct eras: 
 



The  Ionian Period (c. 600 B.C.E. – c.  450 B.C.E., so named because much of 
the activity took place in the Ionian Islands and the western part of Asia minor).    
This period began with the establishment of mathematics as a subject in its own 
right and continued with numerous contributions; by the end of this period, 
questions about irrational numbers had become a major issue.       

 

The  Athenian Period (c. 450 B.C.E. – c.  300 B.C.E., so named because 
Athens was a center of activity during this time).    During this period the 
difficulties with irrationals were managed with a geometric approach to algebraic 
issues, and the basic framework of the subject took a more definitive form.       

 

The  Hellenistic Period (c. 300 B.C.E. – c.  150 A.D.).    This period begins with 
the spread of Greek culture following the conquests of Alexander the Great.  
During the first few centuries of this period Greek mathematics made its most 
important and profound contributions.  Towards the end there was considerably 
less progress and less focus on traditional geometrical questions.       

 

The  Post – Hellenistic  Period (c. 150 A.D. – c.  400 A.D.).    There was a 
further decline in activity, with progress only in a few directions.   These included 
mathematical tools needed for astronomy, the organization and preservation of 
Greek mathematical achievements along with a numerous elaborations, and 
some work on number theory that had few if any precedents in Greek 
mathematics.       

 
The beginnings of Greek mathematics 

 
The early period of Greek mathematics began well over a thousand years after the 
period during which most surviving documents from Egyptian and Babylonian 
mathematics were written.  However, in contrast to the primary sources we have for 
these cultures, our information about the earliest Greek mathematics comes from 

secondary sources.   The writings of Proclus Diadochus (410 – 485 A.D.) are 
particularly useful about this period, and they make numerous references to a lost 
history of mathematics that was written by a student of Aristotle named Eudemus of 

Rhodes (350 – 290 B.C.E.) about 325 B.C.E. .  There is an extensive and informative 
discussion of historical sources for Greek mathematics in Chapter 2 of the textbook by 
Hodgkin. 
 

What, then, can we say about the beginnings of Greek mathematics?  We can conclude 
that Greek civilization learned a great deal about Egyptian and Babylonian mathematics 
through direct contacts which included visits to these lands by Greek scholars during the 
6th century B.C.E..   We can also conclude that during this period the Greeks began to 

organize the subject using deductive logic — a development that has had an obvious an 
enormous impact both on mathematics and on other areas of human knowledge.  We 
can also conclude that certain individuals like Thales of Miletus and Pythagoras of 
Samos played prominent roles in the development of the subject, both through their own 
achievements and through the schools of study which they led.  We can also safely 
conclude that certain results were known during the 6th century B.C.E..  However, we 
cannot be certain that all the biographical stories about these early mathematicians are 
accurate, and there is a considerable uncertainty about the proper attribution of results, 
quotations, and specific achievements to individuals.  Our discussions of the earliest 



Greek mathematicians should be viewed in this light.  In particular, it is probably better to 
view the progress during this period very reliably as the legacy of a culture and less 
reliably as the legacy of specific individuals who became legendary figures. 
 

Thales of Miletus (c. 624 – 548 B.C.E.) is the first individual to be credited with specific 
mathematical discoveries and contributions (Miletus was near the south end of the west 
coast of Asia Minor).   He was one of the renowned Seven Sages in ancient Greek 
tradition and Plato’s Protagoras (the others on his list were Pittacus of Mytilene, Bias of 
Priene, Solon of Athens, Cleobulus of Lindus, Myson of Chen, and Chilon of Sparta; see 
http://www.infoplease.com/ce6/history/A0844573.html ).  
 
Several basic theorems in geometry are attributed to Thales.  The Vertical Angle 
Theorem (file page 7 of http://math.ucr.edu/~res/math133-2018/geometrynotes02b.pdf) is 
one example, and another is that an angle inscribed in a semicircle is a right angle (see 
http://math.ucr.edu/~res/math153-2019/circleright.pdf; for an alternative proof see 
http://math.ucr.edu/~res/math153-2019/circleright2.pdf).   Regardless of whether the 
classical attributions of various proofs to Thales are correct (see page 87 of Burton), it 
seems clear that he contributed to the organization of mathematical knowledge on 
logical rather than on empirical grounds. Thales is also credited with using basic ideas 
about similar triangles to make indirect measurements in situations where direct 

measurements were difficult or impossible.  Two examples, mentioned on pages 87 – 
89 of Burton, are measuring the height of the Great Pyramid by means of shadows and 
finding the distance from a boat to the shoreline.  
 

We have already mentioned that Babylonian mathematicians were acquainted with the 
formula we know as the Pythagorean Theorem, and although it seems clear that the 
Pythagorean school knew the result quite well, there is no firm evidence whether or not 
they actually found a proof of this result; in fact, the popular story about sacrificing an 
animal in honor of the discovery is totally inconsistent with Pythagorean philosophy, and 

as such it has little credibility.  However, Pythagoras of Samos (c. 580 – 500 B.C.E.) 
and his school had a major impact on the development of mathematics that we shall now 
discuss (Samos is an island off the west coast of Asia Minor towards the south; since 
Pythagoras taught and lived in southern Italy near Crotona, which is a city in Calabria, 
he is also known as Pythagoras of Crotona).  Given that the Pythagorean School was 
extremely reclusive, it is particularly difficult to make any attributions of their work to 
specific individuals. 
 

One major contribution of the Pythagorean School was their adoption of mathematics as 
a fundamental area of human knowledge.   In fact, classical Greek writings indicate that 

mathematics was their foundation for an all – encompassing perspective of the world, 
including politics, religion, and philosophy.  Their program of study consisted of number 
theory, music, geometry and astronomy.  Some examples of their teachings in these 
areas are described on page 93 of Burton.   Here are a few online references for further 
information regarding their theory of musical harmonics; the first two somewhat detailed 
but still fairly accessible (with interactive audio examples), while the third goes into a 
great deal of detail on the subject and compares the Pythagorean musical scale with 
later versions. 

http://en.wikipedia.org/wiki/Pythagorean_tuning 
 

http://members.cox.net/mathmistakes/music.htm 
 

http://www.friesian.com/music.htm 
 



The Pythagoreans were intensely interested in properties of numbers, and many of their 
speculations on philosophical properties of numbers reflect a strong tendency towards 
mysticism.  However, this fascination with numbers led to the discovery of many 
interesting and important relationships, including some that are still sources of unsolved 
problems.   
 

Although there are questions whether the Pythagorean school actually gave a proof for 
the result we call the Pythagorean Theorem, it is clear that their studies of this result 

yielded some important advances.  Certainly the most far – reaching was the discovery 

that the square root of 2 is not rational (however, some colorful stories about this 
discovery are highly questionable); see pages 109 – 110 of Burton for a proof of this 
result.  Subsequently others recognized additional examples of irrational square roots, 

and Theaetetus (c. 417 – 369 B.C.E.) proved the definitive result:  The square root of a 

positive integer n is never rational unless n is a perfect square.   
 

The existence of such irrational numbers had an enormous impact on the development 
of ancient Greek mathematics, and apparently it is largely responsible for the Greek 
emphasis on geometrical rather than algebraic methods.   In particular, Greek 
mathematics made a clear distinction between “numbers” which were ratios of positive 

integers and geometrically measurable magnitudes that included quantities like sqrt (2).   
The relation between these two concepts continued to be a source of difficulties for 

Greek mathematics until much later work by Eudoxus of Cnidus (408 – 355 B.C.E.) that 
we shall discuss in the next unit on Euclid’s Elements (Cnidus, now Knidos, is near the 
extreme southwest tip of Asia minor).   
 

Burton discusses several other aspects of numbers that the Pythagoreans reportedly 
studied.  Two specific contributions involve the concepts of perfect numbers and 
amicable pairs; an Addendum to this unit (2E) discusses still other types of numbers of 
interest to the Pythagoreans (namely, polygonal numbers).   
 
Perfect numbers.  The definitions require a few preliminaries:  Given two positive 

integers b and c, we say that b evenly divides c provided c is an integral multiple of b, 

and that b is a proper divisor of c if b is strictly less than c.  In these terms, a positive 

integer n is said to be a perfect number if it is equal to the sum of its proper divisors.   

The first two perfect numbers are 6 = 1 + 2 + 3 and 28  =  1 + 2 + 4 + 7 + 14 .  
Euclid’s Elements contains the following general method for constructing perfect 

numbers:  If 2 

p – 1 is prime, then  2 

p
 

–
 

1 
⋅⋅⋅⋅

 (2 

p – 1)  is a perfect number.   
 

A proof of this result appears on pages 504 – 505 of Burton, and as noted there a result 

of L. Euler (1707 – 1783) shows that every even perfect number has this form (for a 
proof see http://primes.utm.edu/notes/proofs/EvenPerfect.html).  It is not known whether 
odd perfect numbers exist; results to date show that there are no odd perfect numbers 

less than 10 

15000
.  Here is a reference: 

 

P. Ochem and Rao, M. Odd Perfect Numbers Are Greater than 10
15000

. 
Math. Comput. 81 (2012), 1869 – 1877. 

 

The description of even perfect numbers leads naturally to the following question:  For 

which integers p is 2 

p – 1 a prime number?  Simple algebra shows this can only 

happen if p is prime, but in 1536 Hudalricus Regius showed that the integer 2
11 – 1  = 

2047 is equal to 23 ∙ 89, and in fact there are many primes p for which 2 

p – 1 is not 



prime.  A prime number of this form is called a Mersenne prime in recognition of the 

influence which M. Mersenne (1588 – 1648) had on the study of such numbers.   
Section 10.1 of Burton contains a detailed discussion on the important role Mersenne 
played in furthering communication among 17th century mathematicians as well as 
additional information on perfect numbers and Mersenne primes. 
 

During the past 65 years, computer calculations have expanded the list of known 

Mersenne primes from 17 to 51, with the most recent addition to the list announced at   

the end of 2018.  The largest known Mersenne prime has 24,862,048 digits, and 
further information appears in the following basic source: 

 

http://www.mersenne.org/prime.htm 
 

One outstanding open question is whether there are finitely or infinitely many Mersenne 
primes (see http://en.wikipedia.org/wiki/Mersenne_prime   for further information on this 

and a few other related topics). 
 
Amicable pairs.   A pair of positive integers is said to be an amicable pair if each is 
equal to the sum of the proper divisors of the other.   Although it might not be obvious 

that such pairs exist, the Pythagoreans reportedly knew that  220  and  284  form an 
amicable pair.  Further material on this topic appears on page 510 of Burton.  Fairly 
recent summaries of known results (up to 2007) appear on the following sites: 
 

http://mathworld.wolfram.com/AmicablePair.html 
 

http://amicable.homepage.dk/knwnc2.htm  

 

Final notes:  (1) There is evidence that the amicable pair {17296, 18416} discovered 

by P. Fermat in the 17th century had been known to Thābit ibn Qurra (Al-Ṣābi’ Thābit ibn 

Qurra al-Ḥarrānī, 826 – 901), who gave a general criterion for recognizing amicable 
pairs that is stated on page 510 of Burton.  As noted on that page, we do not have a 
characterization of amicable pairs comparable to the simple criterion for even perfect 
numbers due to Euclid and Euler.  Several basic results on amicable pairs are stated 
and proved in the following online documents: 

 

http://www.maa.org/editorial/euler/How%20Euler%20Did%20It%2025%20amicable%20numbers.pdf 
 

http://mathdl.maa.org/images/upload_library/22/Evans/pp.05-07.pdf 
 

(2) Most history of mathematics books note that in 1866 a 16 – year old student named 

B. Nicolò I. Paganini discovered the previously unknown amicable pair {1184, 1210}.   
We should emphasize that he was NOT the famous 19th century violinist and composer 

with the very similar name of Niccolò Paganini (1782 – 1840). 

 
The “Heroic Age” and its aftermath 

 
This period covers all of the 5th century B.C.E. and most of the following century.   The 
dominant influences during the period were various groups of scholars, particularly in the 
Elean, Sophist and Platonic schools.  Since a great deal of misinformation about these 
schools is presented as factual in popularized writings on culture and philosophy, here 
are some background references which are relatively concise but reasonably accurate: 



 

http://en.wikipedia.org/wiki/Eleatics 
 

http://en.wikipedia.org/wiki/Sophism 
 

http://www.utm.edu/research/iep/s/sophists.htm 
 

http://en.wikipedia.org/wiki/Platonism 
 

http://www.iep.utm.edu/greekphi/  
 

Although the Pythagorean school was not as prominent during this period as it was in 
the preceding century, it continued to exist.  One of its last members was Archytas of 

Tarentum (428 – 347 B.C.E), who was a contemporary of Plato; Eudoxus of Cnidus 
(whom we shall discuss later) was his mathematical student (Tarentum, now Tarento, is 
a city on the coast of the southern Italian province of Apulia).   
 

Probably the best known member of the Elean school was Zeno of Elea (c. 490 – 430 

B.C.E.), whose challenging paradoxes about moving objects have attracted attention 
and generated controversy ever since they were first stated (Elea, now called Velia, is in 
the Campania province of southern Italy).   These problems illustrate the difficulties that 
arise if one is too casual about mixing discrete and continuous physical models, and it 
seems likely that the paradoxes were part of a continuing discussion of empirical versus 
abstract logical observation.   One pardox (“Achilles and the tortoise”) is described on 
page 103 of Burton; it purports to show that the faster Achilles will never overtake the 
slower tortoise.  Clearly the conclusion is physically absurd, but finding the flaw in the 
argument requires ideas unknown to the ancient Greeks.  All of Zeno’s known 
paradoxes involve a sequence of time intervals such that each is half the preceding one, 
and in modern language they implicitly assume that the sum of all these terms diverges.  
Of course, today we know that the sum of the terms is just twice the initial time interval, 
but the study of convergent infinite series began about 1500 years after the paradoxes 
were first stated (specifically, during the 13th century in China and the 14th century in 
Europe). 
 

The work of Hippocrates of Chios (470 – 410 B. C. E., NOT the elebrated physician 

Hippocrates of Kos, 460 – 377 B. C. E.) illustrates the evolution of Greek mathematics 
between the time of the Pythagoreans and the later eras of Plato and Euclid (Chios and 
Kos are islands off the central west and southwest coast of Asia Minor; Chios is also 

known for an unusual rocket war celebration which takes place before Easter – see the 
video https://www.youtube.com/watch?time_continue=10&v=_PijfPZx88I).  Hippocrates 
took important steps towards the systematic development of geometry from an axiomatic 
viewpoint, he was one of the first persons credited with using the technique of proof by 
contradiction (or reductio ad absurdum), and he wrote the first text on the elements of 
geometry more than a century before Euclid’s Elements.   
 

Hippocrates of Chios is also known for his results on computing the areas of certain 
geometric figures called lunes; these are plane regions bounded by a pair of circular 
arcs with different radii.  In the figure below, the (congruent) regions marked with the 
letter C are lunes determined by two circles such that the diameter of one is equal to 

sqrt (2) times the diameter of the other. 
 



 
 

Hippocrates’ determination of the area C bounded by either lune proceeds as follows 

(compare pages 122 – 124 of Burton):  He knew that the area of a semicircular region 
was proportional to the square of the radius.  Therefore the area of the larger semicircle, 

which is 2 (A + B) , must be twice that of the smaller semicircle, which is B + C; 

therefore we have 2 (A + B) =  2 (B + C).  Simple algebra now tells us that A = C.  
Given the irregular shape of the lune, it is not immediately obvious that its area should 
be given by such a simple expression, but the argument shows the lune’s area can be 
expressed very simply.  Of course one can use integral calculus to express the area of 
the lune as a definite integral, and computing the latter turns out to be an interesting and 
somewhat challenging exercise.   Hippocrates’ investigations also yielded simple 
formulas for the areas of certain other types of lunes; additional information on these 
and subsequent results are summarized in the following online document: 
 

http://math.ucr.edu/~res/math153-2019/history02d.pdf  
 

Hippocrates’ proof provides some interesting insights into the level of Greek geometry at 
the time.  First, it indicates that Greek mathematics had attained a fairly good level of 
proficiency in manipulating geometric quantities during this period.  Second, it illustrates 
the usefulness of deductive reasoning to discover information that is not intuitively 
obvious and not likely to be discovered by empirical means.  Third, the argument does 
not really need the explicit computation of the area of the region enclosed by a circle of 

radius r (the usual  AREA  =  π r 
2
) , which probably was not known at the time, but 

instead it uses just a weaker proportionality statement; as such, the proof indicates an 
ability to find ways of working around obstacles to reach the objective.  However, 
Hippocrates’ result is also noteworthy because of its relation to the three “impossible” 
construction problems of antiquity, which had already attracted considerable attention in 
Greek mathematics before Hippocrates’ work.  Informal statements of the three 
problems are well known, but for our purposes it is worthwhile to state them formally. 
 
The three “impossible” classical construction problems.   Using only an unmarked 
straightedge (which is  NOT  a modern ruler with marked off distances!) and a 
collapsible compass, carry out the following constructions: 



 

1. Trisect an arbitrary angle. 
 

2. Find a square whose area is equal to that of a given circle. 
 

3. Find a cube whose volume is twice that of a given cube. 
 

We shall say more about these later (see also pages 124 – 127 of Burton), and an 
explanation of why these problems are impossible to solve is given in a supplement to 
these notes; for now we simply note that Hippocrates’ results on lunes were possibly 
byproducts of efforts to solve the second problem.   
 

The Sophists in ancient Greek civilization were particularly interested in these three 
construction problems.  Competing schools of thought at the time were strongly critical of 
the Sophists for several reasons, but for our purposes these controversies can be 
ignored and we shall concentrate on mathematical achievements.  One of the best 

known Sophists was Hippias of Elis (460 – 400 B. C. E.), who made an early and 
significant contribution to these problems; specifically, the introduction of curves other 
than straight lines and circles (Elis, which corresponds to the present day Greek 

prefecture Ilias, was in southern Greece on the Peloponnesus peninsula).  This curve, 
the quadratrix or trisectrix of Hippias, is discussed from the classical viewpoint on 

pages 130 – 134 of Burton.  Its equation in polar coordinates is   
 

r   =   θ / sin θ 
 

and its equation in Cartesian coordinates is  
 

x   =   y ⋅⋅⋅⋅ cot y. 
 

The discussion on pages 132 – 134 of Burton indicates how this curve can be used to 
trisect angles and find a square whose area equals that of a given circle.  Further 
information on this curve may be found at the online sites listed below.  The second site 
has a link to an animated graphic tracing the motion of an object along the curve which 
corresponds to the classical Greek definition. 

 

http://www-groups.dcs.st-and.ac.uk/~history/Curves/Quadratrix.html 
 

http://xahlee.info/SpecialPlaneCurves_dir/QuadratrixOfHippias_dir/quadratrixOfHippias.html 
 

Classical writers assert that Hippias used the curve to trisect angles and the application 

to squaring circles was completed later by Dinostratus (390 – 320 B.C.E.), but others 
have claimed that this was also known to Hippias.  In any case, beginning in the Heroic 
age, several Greek mathematicians developed many different curves that could be used 
to solve the three classical construction problems, and some of these curves have 
proven to be extremely important in mathematics and its applications to physics; a few 
examples are described in the online references given above.  We shall discuss some of 
these curves in the unit on Greek mathematics after Euclid.   

 
Plato’s mathematical legacy 

 
Finally, we come to the Platonic school.  In any discussion of ancient Greek knowledge 

and thought, it is nearly impossible to avoid mentioning Socrates (c. 469 – 399 B.C.E.), 

Plato (428/427 – 348/347 B.C.E.) and Aristotle (384 – 322 B.C.E.).  Before discussing 



the mathematical aspects of their contributions, we shall give a link to an online history 
(it is a little clumsy to use, but it contains a great deal of information).   

 

http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0009 

 
Although Socrates was uninterested, and perhaps even negative, about mathematics, 
Plato and his students had a major impact on the subject.  Plato himself was not a 
mathematician, but his views had a major influence on the subject in several ways: 
 

(1) He insisted on a more rigorous logical framework for doing mathematics, 
including carefully formulated definitions, axioms, postulates and strict sequential 
development. 

 

(2) His idea of viewing mathematics formally as an idealized model for reality 
became a standard for future thought, up to and including the present. 

 

(3) His insistence on constructions by straightedge and compass became an ideal 
for much future work on the subject even though there was also much work on 
solving the three “impossible” classical construction problems by other methods. 

 

(4) His emphasis on some aspects of solid geometry, particularly on the five regular 
Platonic solids, spurred further interest in this area. 

 

We shall say more about the five regular Platonic solids later, but for the time being we 
describe them briefly.  The most basic are the cube and the tetrahedron; the latter is a 
triangular pyramid whose base and sides are all equilateral triangles.  The centers of the 
six faces of a cube are the vertices of another regular solid called the octahedron, 
which consists of eight equilateral triangles, with each vertex lying on exactly four of 
them (one can also think of this as a pair of pyramids with square bases which are glued 
together along the square bases).   There also is the dodecahedron, which is a 
configuration of regular pentagons having twelve faces where each vertex lies on three 
of the faces, and finally there is the icosahedron, which has twenty equilateral triangles 
and five meeting at each vertex.   Illustrations of all five solids are given in the online file  

http://math.ucr.edu/~res/math153-2019/history03d.pdf .  
 

The specific mathematical contributions of the Platonic school are due to some of Plato’s 
students who pursued mathematics and also to some students of these students.   We 
have already mentioned some contributions of Theaetetus to the study of irrational 
numbers, and in the section on Euclid we shall discuss the contributions of Eudoxus of 
Cnidus.  The latter is also known for his approach to computing the area bounded by a 
circle by using inscribed and circumscribed regular polygons; specifically, the idea was 
that one obtained increasingly better approximations by taking polygons with greater 
numbers of sides, and in the limit the areas enclosed by these polygons became the 
area bounded by the circle.  This method of exhaustion very clearly anticipated the 
methods of integral calculus for finding areas using approximations by more manageable 
figures.   
 

Aristotle’s main contribution was of a somewhat different nature; although he was not a 
mathematician, his work on logic further refined the role of that subject as a formal 
setting for mathematics.   



Systems of linear equations 

 
Although Greek mathematics did not reach the level of algebraic proficiency seen in 
certain other cultures, one noteworthy advance was a result on solving systems of linear 

equations due to Thymaridas of Paros (c. 400 B.C.E. – c. 350 B.C.E.).   The system, 
known as the bloom of Thymaridas, is given by  
 

x + x1 + x2 + ... + xn – 1  =  s 

x + x1  =  m1 

x + x2  =  m2 

… 

x + xn – 1  =  mn – 1 
 

and the solution is  x  =  [(m1 + m2 + ... + mn – 1) – s]/(n – 2). 

 
Addenda to this unit 

 
There are six separate items.  The first (2A) describes a method for computing the area 
of Hippocrates’ lune using integral calculus, the second (2B) discusses the reasons why 
the three classical construction problems cannot be solved by means of an unmarked 
straightedge and a compass, the third (2C) discusses a naïve but incorrect attempt to 
trisect angles, the fourth (2D) contains still more information about areas of lunes, and 
the fifth (2E) gives additional information on polygonal numbers, and the sixth (2F) is 
about  interactions between mathematics and subjects that are either mystical or now 
considered to be pseudoscientific (such as astrology, numerology and the occult side of 
alchemy).  Further information on the topics in (2C) can also be found at the following 
site: 
 

http://www.jimloy.com/geometry/trisect.htm 
 

In particular, the portion called  
 

Part III - Close, But No Banana 
 

specifically discusses further elaborations of the construction in (2C).  The entire Jim Loy 
mathematics site  
 

http://www.jimloy.com/math/math.htm 
 

also treats many other topics that are relevant to high school and lower level college 
mathematics in an accessible and mathematically correct manner, and it is highly 
recommended.  
 

Finally, there is a long history of failed attempts to solve the three classical construction 

problems described in this unit (and the final chapters are probably yet to be written!).  
The following book describes a few noteworthy examples: 
 

U. Dudley, The Trisectors (2
nd

 Ed.).  Mathematical Association of America, 

Washington DC, 1996.  ISBN: 0–883–85514–3.   
 

In the author’s words, “Hardly any mathematical training is necessary to read this book. 
There is a little trigonometry here and there … The worst victim of mathematics anxiety 
can read this book with profit.”   



Two more documents should be mentioned.  The classical construction for an angle 
bisector is given in http://math.ucr.edu/~res/math153-2019/bisection.pdf .  Finally, there 
are also two maps in http://math.ucr.edu/~res/math153-2019/historical-maps1.pdf which 
give the locations for many of the cities mentioned in this chapter. 


