4.C. Continued fraction expansions

Given two positive numbers a and b, we define the simple reciprocal sum expression $\mathbf{R S}(a, b)$ by the formula

$$
\mathbf{R S}(a, b)=\frac{1}{a+b}
$$

The theory of continued fraction expansions depends upon the following simple observation:
THEOREM. Let x be a real number such that $0<x<1$. Then $x=\mathbf{R S}(a, b)$ where a is a positive integer and $0 \leq b<1$. If x is rational then so is b.

The derivation of this result is simple, for we know that $(1 / x)>1$, and hence

$$
\frac{1}{x}=a+b
$$

where a is a positive integer and $0 \leq b \leq 1$; note that if x is rational then so is b.
If $x=\mathbf{R S}(a, b)$ as above and $b>0$, then we can iterate this process, for then $b=\mathbf{R S}\left(a^{\prime}, b^{\prime}\right)$ where a^{\prime} is a positive integer and $0 \leq b^{\prime}<1$, so that

$$
x=\mathbf{R S}\left(a, \mathbf{R S}\left(a^{\prime}, b^{\prime}\right)\right)=\frac{1}{a+\frac{1}{a^{\prime}+b^{\prime}}}
$$

Once again, if $b^{\prime}>0$ we can apply the same consturction to b^{\prime}.
We shall restrict attention here to rational numbers x such that $0<x<1$; the irrational case (which is important mathematically) is discussed in the reference for continued fractions listed in history04Z.pdf.

PROPOSITION. Let x_{0} be a rational number such that $0<x_{0}<1$, so that $x_{0}=\mathbf{R S}\left(n_{1}, x_{1}\right)$, where n_{1} is a positive integer and $0 \leq x_{1}<1$ is rational. If we are given a pair of sequences $\left\{n_{i}\right\}$ and $\left\{x_{i}\right\}$ for $i \leq k$ such that each n_{i} is a positive integer and $0<x_{i}<1$, define n_{k+1} and x_{k+1} such that $x_{k}=\mathbf{R S}\left(n_{k+1}, x_{k+1}\right)$ as before, and terminate the sequence at this point if and only if $x_{k+1}=0$. Then there is some positive integer m such that the sequence terminates at step m; in other words, eventually one has $x_{m}=0$.

This proposition implies that every rational number x between 0 and 1 has a finite continued fraction expansion. Specifically, given x_{0} satisfying $0<x_{0}<1$ consider the sequences of numbers $\left\{x_{k}\right\},\left\{n_{k}\right\},\left\{y_{k}\right\}$ defined recursively by the conditions
(i) $\quad n_{0}=0$ and $y_{0}=1 / x_{0}$,
(ii) if y_{k} is defined with $y_{k}>1$ and $y_{k}=\mathbf{R S}\left(n_{k+1}, x_{k+1}\right)$ as in the first theorem (so that n_{k+1} is a positive integer and $0 \leq x_{k+1}<1$), then $y_{k+1}=1 / x_{k+1}$ if $x_{k+1}>0$, and no further terms in any of the sequences are defined if $x_{k+1}=0$.
Then the conclusion is that for some $m \geq 1$ we get $x_{m+1}=0$, and for $0 \leq j \leq m-1$ we have

$$
y_{j}=n_{j+1}+\frac{1}{y_{j+1}}
$$

Notice that at the final step, where $x_{m+1}=0$, we simply have $y_{m}=n_{m+1}$.

Proof of the proposition. This turns out to be a fairly direct consequence of the Euclidean long division result for positive integers: If $0<a \leq b$ where a and b are integers then $b=a q+r$ where q is a positive integer and $0 \leq r<p$. Suppose now that we are given a positive rational number

$$
x=\frac{a}{b}<1
$$

and consider its reciprocal

$$
\frac{1}{x}=\frac{b}{a}=q+\frac{r}{a} .
$$

If $x=x_{j}$ in one of the sequences described above, then $n_{j+1}=q$ and $x_{j+1}=r / a$. Assume now, as we obviously may, that a and b have no common integral factors other than ± 1, so that a and b are uniquely determined by x. There are now two possibilities; either $r=0$ in which case $x_{j+1}=0$, or else $0<r<a$ in which case $0<x_{j+1}<1$ and we may rewrite it in reduced terms as r^{\prime} / a^{\prime}, where $r^{\prime} d=r$ and $a^{\prime} d=a$ for some positive integer d (possibly $d=1$). In this second case the numerator of the least terms representation of the positive rational number x_{j+1} is strictly less than the numerator of x_{j}. Therefore, if x_{j+1}, \cdots, x_{j+p} are definable with each one positive then the sequence of reduced terms numerators $a=u_{j}, u_{j+1}, \cdots u_{j+p}$ must be strictly decreasing, and this means that $p<a$.

In particular, if we start out with $x_{0}=a / b$, then it follows that x_{j} must be zero for some $j \leq a$ and the recursive process must terminate.

Finding continued fraction expressions. This is extremely routine and best illustrated with a couple of examples. We shall use $x_{0}=k / 5$ for $k=2,3,4$ (the continued fraction expansion for $1 / n$ is always just $1 / n$).

$$
\begin{aligned}
& \text { If } x_{0}=\frac{2}{5} \text {, then } y_{0}=\frac{5}{2}=2+\frac{1}{2} \text {, so } \\
& \qquad \frac{2}{5}=\frac{1}{2+\frac{1}{2}} .
\end{aligned}
$$

If $x_{0}=\frac{3}{5}$, then $y_{0}=\frac{5}{3}=1+\frac{2}{3}$, so that $x_{1}=\frac{2}{3}$ and $y_{1}=\frac{3}{2}=1+\frac{1}{2}$. Therefore

$$
\begin{gathered}
\frac{3}{5}=\frac{1}{1+\frac{2}{3}}=\frac{1}{1+\frac{1}{\frac{3}{2}}}= \\
\frac{1}{1+\frac{1}{1+\frac{1}{2}}} .
\end{gathered}
$$

Finally, if $x_{0}=\frac{4}{5}$, then $y_{0}=\frac{5}{4}=1+\frac{1}{4}$, so

$$
\frac{4}{5}=\frac{1}{1+\frac{1}{4}} .
$$

Clearly we can reverse this process. For example, suppose that we want to fine the rational number x_{0} for which the continued fraction expression is given by $n_{1}=1, n_{2}=2, n_{3}=3$. To find this number, we note that $3=n_{3}=y_{2}$, so that $x_{2}=\frac{1}{3}$, and hence $y_{1}=n_{2}+x_{2}=2+\frac{1}{3}=\frac{7}{3}$, so that $x_{1}=\frac{3}{7}$, and similarly $y_{0}=n_{1}+x_{1}=1+\frac{3}{7}=\frac{10}{7}$, so that finally $x_{0}=\frac{7}{10}$.

We can do this algorithmically as follows: Suppose that $x_{k}=a_{k} / b_{k}$. Then we have

$$
x_{k-1}=\frac{1}{n_{k}+\frac{a_{k}}{b_{k}}}=\frac{b_{k}}{n_{k} b_{k}+a_{k}}
$$

so we have the reverse recursive formulas $a_{k-1}=b_{k}$ and $b_{k-1}=n_{k} b_{k}+a_{k}$. The reverse recursive process begins with $x_{m-1}=1 / n_{m}$.

