
4.C. Continued fraction expansions

Given two positive numbers a and b, we define the simple reciprocal sum expression RS(a, b)
by the formula

RS(a, b) =
1

a + b
.

The theory of continued fraction expansions depends upon the following simple observation:

THEOREM. Let x be a real number such that 0 < x < 1. Then x = RS(a, b) where a is a

positive integer and 0 ≤ b < 1. If x is rational then so is b.

The derivation of this result is simple, for we know that (1/x) > 1, and hence

1

x
= a + b

where a is a positive integer and 0 ≤ b ≤ 1; note that if x is rational then so is b.

If x = RS(a, b) as above and b > 0, then we can iterate this process, for then b = RS(a′, b′)
where a′ is a positive integer and 0 ≤ b′ < 1, so that

x = RS
(

a,RS(a′, b′)
)

=
1

a + 1

a′+b′

.

Once again, if b′ > 0 we can apply the same consturction to b′.

We shall restrict attention here to rational numbers x such that 0 < x < 1; the irrational case
(which is important mathematically) is discussed in the reference for continued fractions listed in
history04Z.pdf.

PROPOSITION. Let x0 be a rational number such that 0 < x0 < 1, so that x0 = RS(n1, x1),
where n1 is a positive integer and 0 ≤ x1 < 1 is rational. If we are given a pair of sequences {ni}
and {xi} for i ≤ k such that each ni is a positive integer and 0 < xi < 1, define nk+1 and xk+1

such that xk = RS(nk+1, xk+1) as before, and terminate the sequence at this point if and only if

xk+1 = 0. Then there is some positive integer m such that the sequence terminates at step m; in

other words, eventually one has xm = 0.

This proposition implies that every rational number x between 0 and 1 has a finite continued
fraction expansion. Specifically, given x0 satisfying 0 < x0 < 1 consider the sequences of numbers
{xk}, {nk}, {yk} defined recursively by the conditions

(i) n0 = 0 and y0 = 1/x0,

(ii) if yk is defined with yk > 1 and yk = RS(nk+1, xk+1) as in the first theorem (so that
nk+1 is a positive integer and 0 ≤ xk+1 < 1), then yk+1 = 1/xk+1 if xk+1 > 0, and no
further terms in any of the sequences are defined if xk+1 = 0.

Then the conclusion is that for some m ≥ 1 we get xm+1 = 0, and for 0 ≤ j ≤ m − 1 we have

yj = nj+1 +
1

yj+1

.

Notice that at the final step, where xm+1 = 0, we simply have ym = nm+1.
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Proof of the proposition. This turns out to be a fairly direct consequence of the Euclidean
long division result for positive integers: If 0 < a ≤ b where a and b are integers then b = aq + r
where q is a positive integer and 0 ≤ r < p. Suppose now that we are given a positive rational
number

x =
a

b
< 1

and consider its reciprocal
1

x
=

b

a
= q +

r

a
.

If x = xj in one of the sequences described above, then nj+1 = q and xj+1 = r/a. Assume now, as
we obviously may, that a and b have no common integral factors other than ± 1, so that a and b
are uniquely determined by x. There are now two possibilities; either r = 0 in which case xj+1 = 0,
or else 0 < r < a in which case 0 < xj+1 < 1 and we may rewrite it in reduced terms as r′/a′,
where r′d = r and a′d = a for some positive integer d (possibly d = 1). In this second case the
numerator of the least terms representation of the positive rational number xj+1 is strictly less
than the numerator of xj . Therefore, if xj+1, · · · , xj+p are definable with each one positive then
the sequence of reduced terms numerators a = uj , uj+1, · · · uj+p must be strictly decreasing, and
this means that p < a.

In particular, if we start out with x0 = a/b, then it follows that xj must be zero for some j ≤ a
and the recursive process must terminate.

Finding continued fraction expressions. This is extremely routine and best illustrated
with a couple of examples. We shall use x0 = k/5 for k = 2, 3, 4 (the continued fraction expansion
for 1/n is always just 1/n).

If x0 = 2

5
, then y0 = 5

2
= 2 + 1

2
, so

2

5
=

1

2 + 1

2

.

If x0 = 3

5
, then y0 = 5

3
= 1 + 2

3
, so that x1 = 2

3
and y1 = 3

2
= 1 + 1

2
. Therefore

3

5
=

1

1 + 2

3

=
1

1 + 1
3

2

=

1

1 + 1

1+ 1

2

.

Finally, if x0 = 4

5
, then y0 = 5

4
= 1 + 1

4
, so

4

5
=

1

1 + 1

4

.

Clearly we can reverse this process. For example, suppose that we want to fine the rational number
x0 for which the continued fraction expression is given by n1 = 1, n2 = 2, n3 = 3. To find this
number, we note that 3 = n3 = y2, so that x2 = 1

3
, and hence y1 = n2 + x2 = 2 + 1

3
= 7

3
, so that

x1 = 3

7
, and similarly y0 = n1 + x1 = 1 + 3

7
= 10

7
, so that finally x0 = 7

10
.

We can do this algorithmically as follows: Suppose that xk = ak/bk. Then we have

xk−1 =
1

nk + ak

bk

=
bk

nkbk + ak

so we have the reverse recursive formulas ak−1 = bk and bk−1 = nkbk + ak. The reverse recursive
process begins with xm−1 = 1/nm.
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