5.A. Some problems from Diophantus' Arithmetica

Our purpose here is to look more closely at several problems from Diophantus' Arithmetica which are discussed on pages 220-223 of Burton.

Book I, Problem 17. The general form of this problem is to find x, y, z, w which solve the following system, in which A, B, C, D are arbitrary positive rational numbers.

$$
\begin{aligned}
& x+y+z=A \\
& x+y+w=B \\
& x+y+w=C \\
& y+z+w=D
\end{aligned}
$$

One key step in the solution is to consider the sum S of the four unknowns. If we add all four of the given equations together, we find that the left hand side is equal to $3 S$ while the right hand side is equal to $A+B+C+D$, and therefore we have $S=\frac{1}{3}(A+B+C+D)$. If we subtract each of the four given equations from $x+y+z+w=S$, we obtain the following new system:

$$
\begin{aligned}
& S-w=A \\
& S-z=B \\
& S-y=C \\
& S-x=D
\end{aligned}
$$

Therefore we have $x=S-D, y=S-C, z=S-B$, and $w=S-A$. To complete the discussion we need to investigate the conditions under which all four of these values are positive. If we reorder the numbers A, B, C, D as $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ so that $A^{\prime} \leq B^{\prime} \leq C^{\prime} \leq D^{\prime}$, then $S-D^{\prime}$ is the minimum of the values x, y, z, w, so we want this to be positive. In other words, we need

$$
0<\frac{S}{3}-D^{\prime}=\frac{A^{\prime}+B^{\prime}+C^{\prime}-2 D^{\prime}}{3}
$$

so that the condition on the four given numbers is $A^{\prime}+B^{\prime}+C^{\prime}>2 D^{\prime}$. This holds for the specific values of $20,22,24,27$ in Burton.t

Book II, Problem 20. The general problem is to find two positive rational numbers x and y so that both $x^{2}+y$ and $y^{2}+x$ are rational squares. - As is frequently the case in Diophantus' methods, it is useful to restrict our attention to choices of x and y which satisfy some well-chosen constraint. In this case, if we let $y=2 c x+c^{2}$, then we have $x^{2}+y=(x+c)^{2}$. It follows that $y^{2}+x=\left(2 c x+c^{2}\right)^{2}+x=4 c^{2} x^{2}+\left(4 c^{3}+1\right) x+c^{4}$, and the next step is to see if we can find some d such that the right hand side equals $(2 c x-d)^{2}$. Since $(2 c x-d)=4 c^{2} x^{2} k-4 d c x+d^{2}$, this means that d must satisfy the equation $\left(4 c^{3}+1\right) x+c^{4}=d^{2}-4 c d x+d^{2}$, or equivalently

$$
\left(4 c^{3}+4 c d+1\right) x=d^{2}-c^{4} .
$$

Again working backwards, if we are given positive rational numbers c and d such that $d>c^{2}$ and $4 c^{3}+4 c d+1>0$, then we obtain values of x and $y=2 c x+c^{2}$ which satisfy the desired conditions. Now the first inequality implies the second, so for each choice of c and d such that $d>c^{2}$ we obtain suitable values of x and y. Note that there are infinitely many different choices of x and y which satisfy the conditions in the problem.

The discussion in Burton concentrates on the special case where $d=2$ and $c=1$.

Book II, Problem 13. The problem is to find a positive rational number x such that both $x-c$ and $x-d$ are squares of positive rational numbers, where c and d are two fixed positive rational numbers such that $c<d$.

We want to find a, b, x such that $x-c=a^{2}$ and $x-d=b^{2}$. Since $0<c<d$, it follows that $a^{2}>b^{2}$. The desired values a, b must satisfy $a^{2}-b^{2}=d-c$, where the right hand side is a fixed quantity. Let p and q be arbitrary positive rational numbers such that $p<q$ and $p q=d-c$. We then need to find a and b such that $p q=d-c=a^{2}-b^{2}=(a+b)(a-b)$, and in particular we shall see if it is possible to choose a and b such that $p=a-b$ and $q=a+b$. The latter equations imply that $a=\frac{1}{2}(p+q)$ and $b=\frac{1}{2}(q-p)$. Finally, if we set $x=c+a^{2}$ for this choice of a, then it also follows that $x-d=b^{2}$ (since $a^{2}-b^{2}=d-c$). Note that for a given choice of c and d there are always infinitely many values of x which have the desired properties.

Book III, Problem 21. The problem is to write a positive rational numbers C as a sum $x+y$ of two positive rational numbers such that there is some third positive rational number z for which both $x+z^{2}$ and $y+z^{2}$ are (rational) squares.

In this problem one starts with a change of variables $z=u+1$, so that $z^{2}=u^{2}+2 u+1$. If p and q are arbitrary rational numbers greater than 1 , then we have

$$
(z+p)^{2}=z^{2}+(2 p-1) u+\left(p^{2}-1\right), \quad(z+q)^{2}=z^{2}+(2 q-1) u+\left(q^{2}-1\right)
$$

and consequently if we choose x and y so that $x+y=C$ and

$$
x=(2 p-1) u+\left(p^{2}-1\right), \quad y=(2 q-1) u+\left(q^{2}-1\right)
$$

then we are done if we can solve for u (this will yield z). But if we add the last two equations together we obtain $C=(2 p+2 q-2) u+\left(p^{2}+q^{2}-2\right)$, which yields the solution

$$
u=\frac{C+2-p^{2}-q^{2}}{2 p+2 q-2}
$$

There are plenty of choices for p and q such that this expression is positive; all we need to do is choose p and q such that $p^{2}+q^{2}<C+2$. Since C is positive, there are infinitely many ways of choosing $p, q>1$ so that this condition holds.

