
5.B. Sums and differences of cubes

In the main notes for this unit we mentioned a result in Diophantus’ writings involving sums
and differences of cubes. Specifically, the result states that

if a and b are positive rational numbers such that a > b (hence a3 > b3), then there are positive
rational numbers c and d such that

a3 − b3 = c3 + d3 .

Since it is not particularly easy to find a proof of this result in undergraduate level texts, we shall
give one here.

PRELIMINARY REDUCTION. The following is extremely useful for simplifying the algebra in the
proof.

If the result is true when a = r > 1 and b = 1, then it is true for all a and b such that
a/b = r.

If we set c = a/b, then c > 1. If we know that c3 − 1 = u3 + v3 for suitable rational numbers u and
v, it follows that

a3 − b3 = (bu)3 + (bv)3

and thus the special case implies the general case.

PROOF WHEN a > 3
√

2 AND b = 1. We would like to find rational numbers t and n such that

(a − t)3 + (nt − 1)3 = a3 − 1

where both a− t and nt− 1 are positive. If we expand the left hand side of the displayed equation
we obtain

a3 − 3a2t + 3at2 − t3 + n3t3 − 3n2t2 + 3nt − 1

and if we subtract a3 − 1 from both sides of the displayed equation we then obtain the following
equation in n and t:

(n3 − 1)t3 + (3a − 3n2)t2 + (3n − 3a2)t = 0

This is a polynomial in n and t; the trick to solving it here will be to look for solutions in which
the coefficient of t is equal to zero; in other words, we are interested in solutions for which n = a2.
In this case the equation reduces to

(a6 − 1)t3 + (3a − 3a4)t2 = 0

and the roots of this polynomial are zero and

t =
3a4 − 3a

a6 − 1
=

3a

a3 + 1
.

Note that the right hand side is nonzero because a > 1.
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Conversely, direct substitution and retracing the algebra in the previous paragraph show that

(a − t)3 + (a2t − 1)3 = a3 − 1

so the only remaining issue is to determine whether a − t and a2t − 1 are both positive.

By the preceding formula for t we have

a − t =
a4 − 2a

a3 + 1

and the right hand side is clearly positive if a > 3
√

2. On the other hand, we also have

a2t − 1 =
2a3 − 1

a3 + 1

and this is positive provided a > 1. Therefore we have proven Diophantus’ result when a > 3
√

2.

WHAT HAPPENS WHEN 1 < a < 3
√

2 AND b = 1. In this case we still have the equation

(a − t)3 + (a2t − 1)3 = a3 − 1

but now (a − t) is negative while (a2t − 1) is positive. If we take

c =
a2t − 1

t − a

then the numerator and denominator of c are positive and it follows that

a3 − 1 = (t − a)3
(

c3 − 1
)

so that c3 − 1 is positive. In fact, if we somehow know that c > 3
√

2, then by the previously settled
case we may write c3 − 1 = p3 + q3 for suitable positive rational numbers p and q, and it will then
follow that

a3 − 1 = [(t − a)p]3 + [(t − a)q]3

proving the result in such cases. We shall use this idea to set up an induction argument. The
crucial question involves the behavior of the function

c(a) =
a2t − 1

t − a
=

2a3 − 1

a(2 − a3)

when 1 < a < 3
√

2. Specifically, here is the main step:

CLAIM. There is a strictly decreasing sequence of real numbers

3
√

2 = x0 > x1 · · · > 1

such that the limit of the sequence is equal to 1 and for all k > 0 we have

xk ≤ a <
3
√

2 =⇒ xk−1 < c(a) .

Suppose that the claim is true. We have seen that Diophantus’ result is true for a ≥ x0, and
the preceding discussion shows that if the result is true for a ≥ x0 then it is also true for a ≥ x1.
Proceeding similarly, we see that if the result is true for a ≥ xk−1 then it is true for a ≥ xk, and
therefore by induction it will follow that the result is true when a ≥ xn for some nonnegative integer
n. Since the sequence is decreasing and its limit is equal to 1, we know that for each a > 1 there is
some n such that a > xn, and thus it will follow that Diophantus’ result will be true for all a > 1.
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PROOF OF THE CLAIM. We shall prove the claim by using results from calculus to study the
behavior of the function c(a) on the half open interval [0, 3

√
2). Note first that this function is

positive valued on the given interval with a(1) = 1, and the line x = 3
√

2 is a vertical asymptote
at the right hand point of the interval under consideration. Standard formulas from calculus
immediately yield the following formula for c′(a):

c′(a) =
(2a − a4)6a3 − (2a3 − 1)(2 − 4a3)

a2(2 − a3)2
=

6a4

a2(2 − a3
−

(2a3 − 1)2

a2(2 − a3)

and since a4 > a3 when a > 1 the right hand side implies

c′(a) >
6a3

a2(2 − a3)
−

4a3 − 2

a2(2 − a3)
=

2a3

a2(2 − a3)
+

2

a2(2 − a3)
=

2a

(2 − a3)
+

2

a2(2 − a3)
.

Note that this expression is always positive if 1 ≤ a < 3
√

2. The first summand of the right hand
side is increasing for these values of a because it is a product of two functions that are increasing
over this interval. Furthermore, the second summand is also increasing because the derivative of
the denominator is negative for a ≥ 1 (hence the denominator is strictly decreasing, which means
the function itself is strictly increasing). The value of the right hand side is equal to 2 if a = 1,
and therefore we conclude that c′(a) ≥ 2 for 1 ≤ a < 3

√
2. By the Mean Value Theorem, for these

values of a we have c(a) − 1 ≥ 2 · (a− 1). In particular, if we define xn recursively by x0 = 3
√

2
and

xn+1 =
1 + xn

2

then it follows that 1 < xn+1 < xn for all n and also

c(xn+1) − 1 ≥ 2 · (xn+1 − 1) = xn − 1

so that c(xn+1) ≥ xn, and since c is strictly increasing it follows that t > xn+1 implies c(t) > xn.

It only remains to show that limn→∞ xn = 1. This will follow immediately if we can show
that

xn =

(

1

2

)n

·
(

3
√

2 − 1
)

+ 1

for all n. By definition this is true for n = 0. Suppose now that the formula is true for xn; we need
to show that it is also true for xn+1. Using the recursive definition we have

xn+1 =
1

2
· (1 + xn) =

1

2
+

(

1

2

)n+1

·
(

3
√

2 − 1
)

+
1

2
=

(

1

2

)n+1

·
(

3
√

2 − 1
)

+ 1

and hence the formula is valid for xn+1. This completes the proof of the claim, and by previous
comments it also completes the proof of Diophantus’ result.
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