5.C. Geometric approaches to Diophantine equations

Our purpose here is to analyze a problem from Book IV of Diophantus' work, Arithmetica. As is often the case, the problem was originally stated more specifically with some explicit numbers.
THEOREM. Let $a>2$ be a positive rational number. Then there are positive rational numbers x and y such that $y(a-y)=x^{3}-x$.

Proof. Let Γ be the set of all points (x, y) in the coordinate plane such that x and y are rational and $y(a-y)=x^{3}-x$. Then $(-1,0) \in \Gamma$, and we shall find a point with the desired properties by considering the intersections of Γ with lines through $(-1,0)$.

More precisely, we shall consider lines with equations of the form $x=t y-1$ for some rational value of t. Each of these lines meets Γ at $(-1,0)$, and for some choice of t we want to find a second point in this intersection such that both coordinates x, y are positive rational numbers with $0<y<a$. One condition for a point (x, y) to lie on Γ and the line is

$$
y(a-y)=(t y-1)^{3}-(t y-1)=t^{3} y^{3}-3 t^{2} y^{2}+2 t y
$$

If we divide both sides of this equation by y, we obtain a quadratic equation in y, and if we fix t then we can solve this to find the y-coordinates for all points on the curve. We need to find a value of t for such that x and y are positive rational numbers with $0<y<a$.

The equation for y can be rewritten in the form

$$
0=t^{3} y^{3}-\left(3 t^{2}-1\right) y^{2}+(2 t-a) y
$$

and if we choose $t=a / 2$ so that the first degree terms vanishes, then we are left with the equation

$$
0=\frac{a^{3}}{8} y^{3}-\left(\frac{3 a^{2}}{4}-1\right) y^{2}
$$

and since a is rational it follows that all roots of this equation are also rational.
Clearly the unique nonzero solution to the preceding equation is

$$
y=\frac{2\left(3 a^{2}-4\right)}{a^{3}}=\frac{6 a^{2}-8}{a^{3}} .
$$

which is positive because its numerator is positive when $a^{2}>\frac{4}{3}$ and we know that $a^{2}>4$. To prove that $y<a$, note that this is translates to

$$
\frac{6 a^{2}-8}{a^{3}}<a \text { or equivalently } 6 a^{2}-8<a^{4}
$$

and $a^{4}-6 a^{2}+8$ is positive if $a^{2}>4$; since a is positive this is equivalent to $a>2$.
It follows that $x=t y-1$ is given by

$$
\frac{a}{2}\left(\frac{6 a^{2}-8}{a^{3}}\right)-1=\frac{3 a^{2}-4}{a^{2}}-1
$$

so that $x>0$ (what we want) if and only if $3-4 a^{-2}>1$. The latter inequality is equivalent to $a^{2}>2$, and since we are assuming that $a>2$ we can also conclude that $x>0$.■

Special case. If we choose $a=6$ as Diophantus does, then we obtain the solution

$$
(x, y)=\left(\frac{136}{27}, \frac{26}{27}\right) .
$$

Integer solutions

One can also ask if the equation has integral solutions, and if we take Diophantus' choice of $a=6$ the answer is affirmative. In fact, one has the following solutions in this case, but note that in each example either x or y is negative:

$$
(x, y)=(-9,30), \quad(-9,-24), \quad(-35,210), \quad(-34,-204), \quad(-37,228), \quad(-37,-222)
$$

The following book discusses of this and other problems in Diophantus' Arithmetica at the undergraduate level:
I. G. Basmakova, Diophantus and Diophantine Equations (Transl. by A. Shenitzer, with an Addendum by J. H. Silverman), Mathematical Association of America Dolciani Expositions No. 20. Mathematical Association of America, Washington, DC, 1997.

