9.A. Regular heptagons and cubic polynomials

In the main notes for this unit we mentioned that F. Viète had given a method for constructing a regular 7 -sided polygon (a Heptagon) based upon the fact that $\cos (360 / 7)^{\circ}$ is the root of a cubic polynomial with integral coefficients. We shall explain this further here.

To simplify the formulas we shall denote $(360 / 7)^{\circ}$ by Θ.
If $\xi=\cos \Theta+i \sin \Theta$ then using the polar forms of complex numbers one sees that

$$
\xi^{7}=\cos 7 \Theta+i \sin 7 \Theta=1
$$

and hence ξ is a root of the polynomial

$$
X^{7}-1=(X-1) \cdot\left(X^{6}+X^{5}+X^{4}+X^{3}+X^{2}+X+1\right)
$$

and since $\xi \neq 1$ it follows that ξ must be a root of the second factor. Similarly, one sees that the conjugate $\bar{\xi}=\cos \Theta-i \sin \Theta$ must also be a root of the same polynomial. Adding these we obtain the equation

$$
(\xi+\bar{\xi})^{6}+(\xi+\bar{\xi})^{5}+(\xi+\bar{\xi})^{4}+(\xi+\bar{\xi})^{3}+(\xi+\bar{\xi})^{2}+(\xi+\bar{\xi})+2=0
$$

and if we combine these with the identity

$$
(\xi+\bar{\xi})^{k}=2 \cos k \Theta
$$

we obtain the identity

$$
2 \cos 6 \Theta+2 \cos 5 \Theta+2 \cos 4 \Theta+2 \cos 3 \Theta+2 \cos 2 \Theta+2 \cos \Theta+2=0
$$

Since $7 \Theta=360^{\circ}$ it follows that $\cos k \Theta=\cos (7-k) \Theta$, and therefore we have

$$
\cos 6 \Theta=\cos \Theta \quad, \quad \cos 5 \Theta=\cos 2 \Theta \quad, \quad \cos 3 \Theta=\cos 4 \Theta
$$

If we use these equations to simplify the left hand side divide the main equation by 2 we obtain the identity

$$
2 \cos 3 \Theta+2 \cos 2 \Theta+2 \cos \Theta+1=0
$$

We can now use the facts that $(i) \cos 2 x$ is a quadratic polynomial in $\cos x$ with integral coefficients, (ii) $\cos 3 x$ is a cubic polynomial in $\cos x$ with integral coefficients, to conclude that $\cos \Theta$ satisfies a cubic polynomial with integral coefficients. In fact, one can substitute using the identities

$$
\cos 2 x=2 \cos ^{2} x-1 \quad, \quad \cos 3 x=4 \cos ^{3} x-3 \cos x
$$

to write down this cubic polynomial explicitly:

$$
8 \cos ^{3} \Theta+4 \cos ^{2} \Theta+4 \cos \Theta-1=0
$$

If we write $u=2 \cos \Theta$ then this reduces to the monic cubic polynomial $u^{3}+u^{2}-2 u-1=0$. One geometric way of finding a root of this equation is to make a linear change of variables to eliminate the quadratic term and then use Omar Khayyam's method for finding a root of the new polynomial using a circle and some other conic (either a hyperbola or a parabola).

