9.B. Ohm's Law and alternating current circuits

In the files impedance.pdf and impedance2.pdf we noted that arithmetic with complex numbers plays an important role in working with alternating current (AC) circuits because the AC counterpart of resistance - namely, impedance - takes values in complex numbers rather than real numbers. One illustration of the resistance/impedance analogy is that Ohm's Law for direct current (DC) computing resistances in parallel circuits

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \frac{1}{R_{n}}
$$

has an analog in which the resistances R and R_{k} are replaced by impedances Z and Z_{k}. We shall work a typical problem involving parallel impedances here.

PROBLEM. Find the total impedance Z if the circuit has $n=3$ branches and $Z_{k}=k+i$, where $i^{2}=-1$ (as is usuall the case in mathematics).

SOLUTION. At many points we shall need the following identity from impedance.pdf:

$$
\frac{1}{x+y i}=\frac{x-y i}{x^{2}+y^{2}}
$$

If we choose Z_{k} as above, we obtain the equation

$$
\frac{1}{Z}=\frac{1}{1+i}+\frac{1}{2+i}+\frac{1}{3+i}=\frac{1-i}{2}+\frac{2-i}{5}+\frac{3-i}{10}
$$

and if we simplify this we see that

$$
\frac{1}{Z}=\frac{5(1-i)}{10}+\frac{2(2-i)}{10}+\frac{3-i}{10}=\frac{12-8 i}{10}
$$

Therefore we have

$$
Z=\frac{10}{12-8 i}=\frac{10 \cdot(12+8 i)}{12^{2}+8^{2}=208}=\frac{3-2 i}{54}
$$

