12.B. The binomial series

The goal is to derive the Newton binomial series for the function $(1+x)^{a}$, which is valid for every nonzero real value of a and all x such that $|x|<1$.

$$
(1+x)^{a}=\sum_{k=0}^{\infty}\binom{a}{k} x^{k} \quad \text { where } \quad\binom{a}{k}=\frac{a(a-1) \cdots(a-k+1)}{k!}
$$

Derivation. Denote the power series on the right hand side by $B_{a}(x)$. Then the ratio test for convergence of infinite series implies that $B_{a}(x)$ converges absolutely when $|x|<1$ and diverges when $|x|>1$. Exactly as in the case where a is a positive integer we have the identity

$$
\binom{a}{k}=\binom{a-1}{k}+\binom{a-1}{k-1}
$$

and this leads to the formula $B_{a}(x)=(1+x) B_{a-1}(x)$. Likewise, we have the identity

$$
\binom{a}{k}=\frac{a}{k} \cdot\binom{a-1}{k-1} \quad \text { or equivalently } \quad k \cdot\binom{a}{k}=a \cdot\binom{a-1}{k-1}
$$

which implies the differentiation formula $B_{a}^{\prime}=a B_{a-1}$.
Now consider the function $Q(x)=(1+x)^{-a} B_{a}(x)$ and compute its derivative. By the standard differentiation rules and the preceding identities $Q^{\prime}(x)$ is equal to

$$
\begin{gathered}
(1+x)^{-a} \cdot a B_{a-1}(x)+(-a)(1+x)^{-a-1} \cdot B_{a}(x)= \\
(1+x)^{-a} \cdot a B_{a-1}(x)+(-a)(1+x)^{-a-1} \cdot(1+x) B_{a-1}(x)
\end{gathered}
$$

and one can check directly that the right hand side equals zero. Therefore $Q(x)$ is constant, and since $Q(0)=1$ we see that $1=(1+x)^{-a} B_{a}(x)$. If we multiply both sides of this equation by $(1+x)^{a}$, we obtain Newton's binomial formula.■

