
Solutions to two locus problems

Here are the solutions to two problems posed in other documents:

PROBLEM 1. Let A 6= B be the points in the coordinate plane with coordinates (−c, 0) and
(c, 0) where c > 0, let [AB] denote the closed segment joining A to B, and let d > 0. Then the
locus (= set) of all points X such that the (minimum) distance from X to [AB] equals D consists
of the following:

(a) The semicircular arc centered at B which passes through (c + d, 0) (hence its radius is d

and its endpoints are (c,± d)).

(b) The semicircular arc centered at A which passes through (−c− d, 0) (hence its radius is d

and its endpoints are (−c,± d)).

(c) The closed line segment joining (−c, d) to (c, d).

(d) The closed line segment joining (−c,−d) to (c,−d).

There is a drawing of this locus on the last page of locus-problems2.pdf.

PROBLEM 2. Let A 6= B be the points in the coordinate plane with coordinates (0, 0) and
(a, 0), where a > 0. Then the locus (= set) of all points P such that the distance from A to P is
twice the distance from B to P is the circle with center

(

0, 4

3
a)

)

and radius 2

3
a.

There is a drawing of this locus on the last page of this document.

Notation. Given two points U and V , we shall denote the distance between U and V by
d(U, V ).

Solution to the first problem

It is necessary to split the solution into three cases, depending upon which of the following
holds:

(1) P = (x, y), where x ≤ −c.

(2) P = (x, y), where −c ≤ x ≤ c.

(3) P = (x, y), where c ≤ x.

In the first case, we need to prove that P lies on the locus if and only if P lies on the semicircular
arc centered at A. In the second case, we need to prove that P lies on the locus if and only if P

lies on one of the two line segments. In the third case, we need to prove that P lies on the locus if
and only if P lies on the semicircular arc centered at B.

The preceding three statements will be immediate consequences of the following assertions:

If P = (x, y) with x ≤ −c, and Y = (0, t) lies on the interval [AB], then d(P, Y ) ≥ d(P,A)
with equality if and only if Y = A.

If P = (x, y) with −c ≤ x < c, and Y = (0, t) lies on the interval [AB], then d(P, Y ) ≥
d(P,Z), where Z ∈ [AB] is the point (x, 0), with equality if and only if Y = Z.
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If P = (x, y) with c ≤ x, and Y = (0, t) lies on the interval [AB], then d(P, Y ) ≥ d(P,B)
with equality if and only if Y = B.

We shall now explain why the second list of statements implies the first list. Let d be the shortest
distance from P to a point of [AB].

In the first case, the shortest distance d(P, Y ) must occur when Y = A, and therefore if x ≤ −c

we have d = d(P,A). This means that the point P must lie on the semicircular arc defined by
x ≤ −c and (x + c)2 + y2 = d2. In the second case, the shortest distance d = d(P, Y ) must occur
when Y = Z, and therefore if x ≤ −c we have d = d(P,A). This means that the point P must
lie on one of the two closed segments defined by −c ≤ x < c and |y | = d; of course, the latter is
equivalent to y = ± d. In the third case, the shortest distance d(P, Y ) must occur when Y = B, and
therefore if c ≤ x we have d = d(P,B). This means that the point P must lie on the semicircular
arc defined by c ≤ x and (x − c)2 + y2 = d2.

Proofs of the assertions about distances. Suppose that x ≤ −c. Since Y lies on the segment
[AB] we must have −c ≤ t. Subtracting x from these inequalities yields 0 ≤ −c− x ≤ t− x, which
immediately yields the inequality

d(P, Y ) =
√

(t − x)2 + y2 ≥
√

(−c − x)2 + y2 = d(P,A) .

Furthermore, equality holds if and only if t = −c, or equivalently Y = A.

Next, suppose that −c ≤ x < c. Then we have the inequality

d(P, Y ) =
√

(t − x)2 + y2 ≥ |y | = d(P,Z)

with equality if and only if t = x; i.e., equality holds if and only if Y = (x, 0).

Finally, suppose that c ≤ x. Since Y lies on the segment [AB] we must have t ≤ c. Subtracting
t from these inequalities yields 0 ≤ c − t ≤ x − t, which immediately yields the inequality

d(P, Y ) =
√

(x − t)2 + y2 ≥
√

(c − x)2 + y2 = d(P,B) .

Furthermore, equality holds if and only if t = c, or equivalently Y = B.

As indicated earlier in the argument, this completes the proof.

Solution to the second problem

We are given A = (0, 0) and B = (a, 0) with a > 0. The locus is then defined by the equation
d(P,A) = 2 · d(P,B). Since both of the distances are nonnegative, the latter is equivalent to the
squared equation d(P,A)2 = 4 ·d(P,B)2, which in turn reduces to the following equation involving
coordinates:

x2 + y2 = 4 ·
(

(x − a)2 + y2
)

If we subtract x2 + y2 from both sides and then divide both sides by 3, we obtain the following
equivalent equation for the locus:

0 = x2 −
8ax

3
+

4a2

3
+ y2

2



In order to express this as the equation of a circle, we need to complete the square in the first three
terms, replacing them by (x− b)2 − c2 for some real number b and some c2 > 0. If we complete the
square, we find that the right hand side of the preceding display is given by the following:

0 = x2 −
8ax

3
+

16a2

9
+

4a2

3
−

16a2

9
+ y2 =

(

x −
4a

3

)2

−

(

2a

3

)2

+ y2

Since the right hand side is the equation of a circle with center
(

0, 4

3
a
)

and radius 2

3
a, this completes

the proof.

Generalization of the second problem

One natural generalization of this problem is to consider the locus of all points P such that
d(A,P ) = ρ · d(B,P ) for some constant ρ > 1. An argument like the preceding one shows that
the locus in this case is again a circle. If we choose coordinates as in the solution to the second
problem, the center of this circle is the line joining A to B, and the circle meets this line at the
points

(

aρ

ρ + 1
, 0

)

and (aρ, 0) .

Of course, the center of the circle will be the point halfway between the latter, and the radius is
half the difference between the first coordinates of the two points. Computations of the explicit
coordinates for the center point and the value of the radius are routine exercises in algebra.

Note also that the argument does not generalize to the case ρ = 1, for if the latter holds then
the equation x2 +y2 = (x−a)2 +y2 does not yield a quadratic polynomial in x and y if we subtract
x2 + y2 from both sides.

3



Drawing for the second problem 
 

 

 
 

The two points are indicated by blue dots, the locus is the circle in the drawing, and the center 
of the circle is indicated by the red dot.  As noted above, the center of the circle has coordinates 

(4a/3, 0)  and the radius of the circle is equal to  2a/3.  This circle meets the  x – axis at the 

points  (2a/3, 0)  and  (2a, 0). 


