MORE EXERCISES RELATED TO history01.pdf

8. Use the Method of False Position to approximate the real root of $p(x)=x^{3}-6 x-1$ over the interval $[0,1]$ up to (say) four decimal places. Start with the observation that $p(0)=-1<0<1=$ $p(1)$; the procedure outlined in history01c.program.pdf provides an iterative method for finding successive approximations to the root.
9. Same problem for $p(x)=x^{3}-2$ over the interval [1, 2].
10. Let $n \geq 2$ be an integer, and let $0<k<2^{n}$. Explain why $k / 2^{n}$ has an Egyptian fraction expansion in which the denominator for each summand is a power of 2 . [Hint: Look at the base 2 expansion of k.]
