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SOLUTIONS TO EXERCISES FROM math153exercises02.pdf

As usual, “Burton” refers to the Seventh Edition of the course text by Burton (the page
numbers for the Sixth Edition may be off slightly).

Problems from Burton, p. 103

3. By definition tn = (n2 + n)/2. We need to show that 9 tn + 1 is equal to tm for some m.
Let’s see what happens if we substitute the expression for tn into 9 tn + 1.

9

(

n2 + n

2

)

+ 1 =
9n2 + 9n + 2

2
=

(3n + 1)(3n + 2)

2
= t3n+1

6. The number 1225 is equal to 352, and we follow the hint to write it as a triangular
number tn. According to the hint n is a root of the quadratic equation n2 + n − 2450 = 0. The
quadratic formula implies that the roots of the latter are equal to

−1 ±
√

1 + 4 · 2450
2

=
−1 ± 99

2

and hence 49 is the unique positive root. Therefore we see that 1225 = t49.

Similarly, we check that 41616 = 2042 by some method, maybe using a calculator or table,
maybe educated guessing, maybe the old algorithm for finding square roots that used to be taught in
elementary schools (which might be discussed later in this course). We must then find the positive
root of the quadratic equation n2+n−83232 = 0, and this can be done using the quadratic formula:

n =
−1 ±

√
1 + 4 · 83232

2
=

−1 ±
√

332929

2
=

−1 ± 577

2

The positive root of this pair is 288, and therefore we have shown that 41616 = t288.

11. (c) Follow the hint and write things out as

n
∑

k=1

k(k + 1) =

n
∑

k=1

k2 + k =

n
∑

k=1

k2 +

n
∑

k=1

k =

n(n + 1)(2n + 1)

6
+

n(n + 1)

2
=

n(n + 1)(n + 2)

3
.

(d) Once again we use the hint:

n
∑

k=1

1

(2k − 1)(2k + 1)
=

1

2
·

n
∑

k=1

(

1

2k − 1
−

1

2k + 1

)

=



1

2
·
(

1 −
1

2n + 1

)

=
n

2n + 1

This is an example of a telescoping series. The second piece of the kth term cancels the first piece
of the next term for every k ≤ n − 1.

Problems from Burton, p. 116

2. Follow the hint, noting that ifx2 + y2 = z2 and x+ y + z = 1

2
xy, then (x− 4)(y − 4) = 8.

One could try to set up a system of quadratic equations, but in a simple case like this it is better to
do things by hand. Since we are looking for integral solutions, this means that each of x−4 and y−4
must be 1, 2, 4 or 8. Thus the possible solutions to check are (x, y) = (5, 12), (6, 8), (8, 6)and(12, 5).
In the first and last cases we have z = 13, while in the middle two we have z = 10. Which of these
choices for (x, y, z) also satisfy the equation x + y + z = 1

2
xy? Direct substitution shows that they

all do.

3. Following the hint, if n is odd we need to check that

n2 +

(

1

2
(n2 − 1)

)2

=

(

1

2
(n2 + 1)

)2

and if n is even we need to check that

n2 +

(

n2

4
− 1

)2

=

(

n2

4
+ 1

)2

.

We do these as follows:

n2 +
n4 − 2n2 + 1

4
=

n4 + 2n2 + 1

4
=

(

1

2
(n2 + 1)

)2

n2 +

(

n2

4
− 1

)2

= n2 +
n4

16
−

n2

2
+ 1 =

n4

16
+

n2

2
+ 1 =

(

n2

4
+ 1

)2

.

7. If we divide the equation y2
n
− 2x2

n
= 1 by xn2 we obtain

(

yn

xn

)2

− 2 =
1

x2
n

.

This means that yn / xn will approach
√

2 in the limit if we know that xn −→ ∞. However, by
construction we know tht xn, yn ≥ 0, and therefore the recursive relation xn = 3xn−1 + 2 yn−1

implies xn ≥ 3n−1x1 = 2 · 3n−1. Thus xn grows exponentially with n and as noted before this
implies that the sequence of fractions yn / xn has a limit which is equal to

√
2.

18. We first show that h satisfies the harmonic mean equation if and only if it satisfies (b):

h − a

b − h
=

a

b
⇐⇒ b(h − a) = a(b − h) ⇐⇒ h(a + b) = 2 ab ⇐⇒



h =
2 ab

a + b

Next we show that h satisfies (a) if and only if it satisfies the harmonic mean equation:

1

a
−

1

h
=

1

h
−

1

b
⇐⇒

h − a

ha
=

b − h

hb
⇐⇒

h − a

b − h
=

ha

hb
=

a

b

Problems from Burton, p. 127

4. Since the point (x, y) lies on the intersection of the two parabolas we know that y2 = 2 ax
and x2 = ay. If we square the second equation we obtain x4 = a2y2 = a2 (2 ax) = 2 a3x. The real
solutions of this equation are x = 0 and x = cbrt(2) · a. Since the intersection point has a positive
first coordinate, the second solution is the one we want.

Problems from Burton, p. 511

3. (a) The sum of all the proper divisiors of pn is

n−1
∑

k=0

pk =
pn − 1

p − 1

so if pn were a perfect number then the right hand side would be equal to pn. Multiplying both
sides of such an equation by (p − 1) clears out the fractions and yields pn − 1 = (p − 1) · pn. Now
the right hand side is at least pn, so this inequality cannot hold and we have a contradiction. The
problem arises because we assumed pn was perfect, and therefore this cannot be true.

(b) Following the hint, if p and q are odd primes then p − 1 and q − 1 are at least 2 so that

(p − 1) · (q − 1) ≥ 2 · 2 = 4 .

If we expand the left hand side we obtain

p q − p − q + 1 ≥ 4

which shows that pq > p + q + 1. Therefore p q cannot be a perfect number.

6. Since n is perfect we know that

∑

d|n

d = 2n

and if we divide everything by n we obtain

∑

d|n

d

n
= 2 .



We now make a change of variables, setting e = n/d. As d runs through all divisors of n, the new
variable e also runs through all divisors of n, so we may rewrite the second sum as

∑

e|n

1

e
= 2 .

11. To see that p cannot be part of an amicable pair, notice that it only has one proper
divisor; namely, 1. Thus the sum of the proper divisors is 1, and since the sum of the proper
divisors of 1 is 0 this means that p and 1 do not form an amicable pair.

Turning to p2, since we know its proper divisors are 1 and p, the other number in the amicable
pair would have to be p + 1. Thus we need to show that the sum of the proper divisors of p + 1
is not equal to p2. Now the largest proper divisor is 1

2
(p + 1). This has two consequences. First,

this is an upper bound on the size of any proper divisor. Second, there are at most 1

2
(p+1) proper

divisors of p + 1. Thus the sum of the proper divisors is less than or equal to the upper bound
on the number of proper divisors times the upper bound on the size of all such divisors. Upper
bounds for both are given by 1

2
(p + 1), so a bound for the sum of the proper divisors is given by

this number times itself, which is 1

4
(p+1)2, If p2 and p+1 were an amicable pair, this would mean

that p2 would be the sum of all the proper divisors of p + 1 and consequently would be less than
or equal to 1

4
(p + 1)2. However, if p is an odd prime then p > 1

2
(p + 1), and squaring this equation

yields
p2 > 1

4
(p + 1)2

which contradicts our previous conclusion. This means that p2 cannot be part of an amicable pair.

SOLUTIONS TO ADDITIONAL EXERCISES

0. In either case x and y differ by an odd number, so we have x − y = 2k for some integer
k. Thus we also have x + y = (x − y) + 2y = 2k + 2y = 2(k + y) so their sum is also even. To
finish off the argument use the identity x2 − y2 = (x− y)(x+ y) = 2k · 2(k + y) = 4(k2 +ky), which
clearly shows that the left hand side is divisible by 4.

1. (a) The first part is essentially worked out in one of the exercises from Burton.

(b) Use the same trick that we employed to show there are infinitely many Egyptian fraction
expansions. Start with an arbitrary expansion

r =
1

q1

+ · · · +
1

qk

where the terms are in decreasing order as usual, and consider the new expansion in which the final
term is replaced using

1

qk

=
∑ 1

dqk

where once again the terms on the right side appear in decreasing order. Putting these together,
we obtain

r =
1

q1

+ · · · +
1

qk−1

+
∑ 1

dqk

and since 1/qk was the smallest fraction in the first expansion, it follows that the terms in the new
expansion are again in decreasing order. The smallest term in this expansion is 1/mqk, and its
denominator is clearly divisible by m.



2. Notice that we are adding dots along three of the five sides of the pentagon. Along one
edge of the pentagon we are adding n dots, along the adjacent one we are adding another n − 1
dots, and likewise along the remaining edge we are adding another n − 1 dots. Thus the number
Pn is 3n − 2 plus the previous number Pn−1.

One can verify the formula by induction, but here is another approach: The triangular numbers
are given by

Tn =

n
∑

k=1

k

and by the preceding observation the pentagonal numbers are given by

Pn =

n
∑

k=1

3n − 2 = 3 ·
n

∑

k=1

k − ·
n

∑

k=1

2 = 3Tn − 2n .

If we now use the formula Tn = 1

2
· n(n + 1) and simplify, we obtain the formula for Pn as stated

in the exercise.

3. We shall refer to the picture repeatedly. The area of the region on the left bounded by
the circle is π = A + 2B + 4C. Since the area of a circular sector with central angle θ and radius 1
is 1

2
θ, it follows that B + C = π/6. Since the area bounded by an equilateral triangle with sides of

length 1 is 1

2

√
3, it follows that the latter equals B.

It follows that

C =
π

6
−

√
3

2
and A = π − 2B − 4C =

π −
√

3 −
(

2π

3
− 2 ·

√
3

)

=
π

3
+

√
3 .

This calculates out in decimal terms to 2.7792484..., which is about 88.5 per cent of the area
bounded by the circle containing the given lune.


