Math 153
Spring 2019
R. Schultz

SOLUTIONS TO EXERCISES FROM math153exercises02b.pdf

5. If we divide each of $n, n+1, n+2, n+3$ by 4 , the sequence of remainders will be one of the following:

$$
0,1,2,3 \quad 1,2,3,0 \quad 2,3,0,1 \quad 3,0,1,2
$$

In each case this means that two numbers in the original sequence must be even (the ones with remainders 0 and 2), and one of these even numbers (the one with remainder 0) will be divisible by 4 . Therefore the entire product will be divisible by $2 \times 4=8$.
6. Follow the hint and set up a short program to compute the numbers $p n^{2}+1$ for $n=1,2, \ldots$. Then the first positive values of n which yield perfect squares for $p=13,17,19,23$ are $180,8,39,5$ respectively, and the corresponding solutions for the Pell's equations are $(n, m)=(180,649)$ for $p=13,(8,17)$ for $p=17,(39,170)$ for $p=19$, and $(5,24)$ for $p=23$. One important thing to note is that the first value of n for a given prime p can jump from quite small to quite large (and back again) as we run through all the prime numbers.
7. If we add together all the equations in the system except the first one, we obtain the new equation

$$
(n-1) x+\sum_{i=1}^{n-1} x_{i}=\sum_{i=1}^{n-1} m_{i}
$$

If we now use the first equation in the system to replace $x+\sum_{i} x_{i}$ we can rewrite the new equation as

$$
(n-2) x+s=\sum_{i=1}^{n-1} m_{i}
$$

and if we solve this equation for x we obtain the desired formula:

$$
x=\frac{1}{n-2}\left[\left(\sum_{i=1}^{n-1} m_{i}\right)-s\right] \mathbf{\square}
$$

