SOLUTIONS TO EXERCISES FROM math153exercises12b.pdf

All of the exercises considered here are Additional exercises which are in the cited exercise file. Solutions to other exercises related to Unit 12 are given in the files math153solutions14.pdf and math153solutions14a.pdf.
4. (a) The auxiliary polynomial equation for this difference equation is $r^{2}-6 r+8=0$ and its roots are $r=2,4$; therefore the general solution has the form $2^{n} P+4^{n} Q$. By assumption the initial values are $3=x_{0}=P+Q$ and $2=x_{1}=2 P+4 Q$. If we solve these equations we obtain $P=5$ and $Q=-2$, and therefore the solution is given by $5 \cdot 2^{n}-2 \cdot 4^{n}$.
(b) The auxiliary polynomial equation for this difference equation is $r^{2}-5 r+4=0$ and its roots are $r=1,5$; therefore the general solution has the form $P+5^{n} Q$. By assumption the initial values are $0=x_{0}=P+Q$ and $6=x_{1}=P+5 Q$. If we solve these equations we obtain $P=-\frac{3}{2}$ and $Q=\frac{3}{2}$, and therefore the solution is given by $\frac{3}{2} \cdot 5^{n}-\frac{3}{2}$.
(c) The auxiliary polynomial equation for this difference equation is $r^{2}+5 r+6=0$ and its roots are $r=-2,-3$; therefore the general solution has the form $(-2)^{n} P+(-3)^{n} Q$. By assumption the initial values are $0=x_{0}=P+Q$ and $1=x_{1}=-(2 P+3 Q)$. If we solve these equations we obtain $P=1$ and $Q=-1$, and therefore the solution is given by $(-2)^{n}-(-3)^{n}$.
(d) The auxiliary polynomial equation for this difference equation is $r^{2}-3 r+2=0$ and its roots are $r=1,2$; therefore the general solution has the form $P+2^{n} Q$. By assumption the initial values are $1=x_{0}=P+Q$ and $2=x_{1}=P+2 Q$. If we solve these equations we obtain $P=0$ and $Q=1$, and therefore the solution is given by 2^{n}.
(e) The auxiliary polynomial equation for this difference equation is $r^{2}-9=0$ and its roots are $r= \pm 3$; therefore the general solution has the form $3^{n} P+(-3)^{n} Q$. By assumption the initial values are $2=x_{0}=P+Q$ and $-1=x_{1}=3 P-3 Q$. If we solve these equations we obtain $P=\frac{5}{6}$ and $Q=\frac{7}{6}$, and therefore the solution is given by $\frac{5}{6} \cdot 3^{n}+\frac{7}{6} \cdot(-3)^{n}$.
$(f) \quad$ The auxiliary polynomial equation for this difference equation is $3 r+2=0$ and its root is $r=-\frac{2}{3}$; therefore the general solution has the form $\left(-\frac{2}{3}\right)^{n} K$. By assumption the initial value is $4=x_{0}=K$. Therefore the solution is given by $4 \cdot\left(-\frac{2}{3}\right)^{n}$.
(g) The auxiliary polynomial equation for this difference equation is $0=r^{3}-6 r^{2}+11 r-6$, and the right hand side factors into the product $(r-1)(r-2)(r-3)$, so the roots are $r=1,2,3$. Therefore the general solution has the form $A+2^{n} B+3^{n} C$. By assumption the initial values are $0=x_{0}=A+B+C, 1=x_{1}=A+2 B+3 C$ and $1=x_{2}=A+4 B+9 C$. If we solve these equations we obtain $A=-2, B=3$ and $C=-1$, and therefore the solution is given by $(-2)+3 \cdot 2^{n}-3^{n}$.

