
Integral solutions of x2 + 4 = y3

In the seventeenth century P. de Fermat described all integral solutions of the Diophantine
equations x2 + a = y3 where a = 2 or 4. A link to a proof for a = 2 is given in the online file
histmath11.pdf (in the course directory). We shall use the same general ideas to prove Fermat’s
result for the case a = 4.

As in the case a = 2, the proof is based upon the fact that the Gaussian integers Z[i] form a
principal ideal domain (and thus also a unique factorization domain).

Here are three basic facts about Gaussian integers which are helpful:

(1) a + bi is divisible by 1 + i if and only if a ≡ b mod 2.

(2) If y3 = x2 + 4 then the greatest common divisor (x + 2i, x − 2i) is equal to 1 if x is odd
and (1 + i)3 if x is even.

(3) If y3 = x2 + 4 then (x + 2i) = in(a + bi)3 for some integers n > 0, a and b.

Derivation of (1). If a + bi = (1 + i)(c + di) for some Gaussian integer c + di, then it follows by
direct calculation that a = c− d and b = c + d, so that b− a = 2d. Conversely, if b− a is even, say
2d, then if we take c = a + d we can check that a + bi = (1 + i)(c + di).

Derivation of (2). Let ∆ be a greatest common divisor of x+2i and x−2i. Then ∆ also divides
their difference, which is 4i as well as their sum, which is 2x. Since (1 + i)4 = −4, it follows that
up to a unit in Z[i] the greatest common divisor ∆ is a power of 1 + i; recall that the units in the
Gaussian integers are just ±1 and ±i.

If x is odd, the preceding paragraph implies that ∆ divides both 4 and 2x, where x is odd.
This means that ∆ must be a power of 1 + i (note that (1 + i)2 = 2i). If ∆ were a positive power,
then by (1) it would follow that x ≡ 2 mod 2; since x is assumed to be odd, this cannot happen,
and therefore x + 2i and x − 2i must be relatively prime.

On the other hand, if x is even and we write x = 2z, then the equation x2 + 4 = y3 becomes
4(z2 + 1) = y3. This implies that y must be even (otherwise 4 would not divide y3), which in turn
implies that 8 divides y3 and hence 2 must divide z2 +1. Since the latter is even, it follows that z2

and hence also z must be odd. By (1) we see that 1 + i must divide z + i, and since we have

2 = (1 + i)(1 − i) = (1 + i)2 · i3

it follows that (1 + i)3 must divide x + 2i = 2z + 2i. However, since (1 + i)4 = 4 we also know that
(1 + i)4 does not divide x + 2i (the imaginary part is not divisible by 4). By the initial paragraph
of this derivation, it follows that (1 + i)3 must be a/the greatest common divisor of x ± 2i if x is
even.

Derivation of (3). Write x + 2i = u · v ·
∏

j p
rj

j where u is a unit in Z[i], while v = 1 if x is odd

and (1 + i)3 if x is even, and the pj are inequivalent primes in the sense that none is equal to a
unit times another in the list, and furthermore none of these primes are equivalent to 1+ i. Taking
conjugates, we see that x − 2i = u · v ·

∏

j pj
rj .

If x is odd, then by (2) we know that x + 2i and x − 2i are relatively prime, and therefore
it follows that for all j and k the primes pj and pk are inequivalent in the sense of the previous
paragraph, and furthermore none of these primes is equivalent to 1 + i. Similarly, if x is even,
then by (2) we know that the greatest common divisor of x + 2i and x − 2i is equal to (1 + i)3
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and 4 = −(1 + i)4 divides neither. Furthermore, since 1 − i = i(1 + i) we have v = i3v, so that
x − 2i = i3 u · v ·

∏

j pj
rj . From this and (2) we can conclude as before that, if x is even, then for

all j and k the primes pj and pk are still inequivalent in the sense of the previous paragraph.

The preceding discussion yields the following prime factorization in the Gaussian integers:

y3 = (x + 2i)(x − 2i) = i3 uu · v2
·
∏

j

p
rj

j ·
∏

k

pk
rk

Since the left hand side is a perfect cube, it follows that each of the exponents rj must be divisible
by 3.

The final step of the argument is to compare the conclusion of the preceding sentence with
the prime factorization for x + 2i described earlier. We already knew that the units in Z[i] are the
powers of i and v is a perfect cube, and now we also know that each term p

rj

j is also a perfect cube.

By the unique factorization property for Z[i] this means that
∏

j p
rj

j = (a+ bi)3 for some Gaussian
integer a + bi.

By the preceding observations we know that x + 2i = in(a + bi)3 for some integers n, a, b with
n ≥ 0. Expanding the right hand side, we find that

x + 2i = in
(

(a3
− 3ab2) + (3a2b − b3)i

)

.

This means that either 2 = ±(3a2b − b3) or else 2 = ±(a3 − 3ab2); note that these two cases are
symmetric in a and b. We shall only consider the first of these cases because the other can be
handled similarly by switching the roles of a and b throughout.

We know that ±2 = 3a2b − b3 = b(3a2 − b2), and since both terms on the right hand side
are integers it follows that either b equals ±1 or ±2. If b = ±1, then we obtain the equation
±2 = ±(3a2 − 1), which implies that a2 = 1. On the other hand, if b = ±2 then we obtain the
equation ±2 = ±(6a2 − 8), which once again implies that a2 = 1.

By the preceding paragraph, the possibilities for a are ±1 and the possibilities for b are ±1 and
±2. These imply that x+2i is equal to either in(1± i)3 or in(1± 2i)3 where n is some nonnegative
integer, and if we simplify these expressions we see that x + 2i must be either in(−2 ± 2i) or
in(−11 ± 2i).

In the first cases we get that y = 2 and x = ±2, while in the second we get that y = 5 and
x = ±11. Therefore the only positive integer solutions to the equation x2 + 4 = y3 are x = y = 2
and x = 11, y = 5.
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