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PREFACE 
 

This is a slightly modified set of notes from the most recent time I taught Mathematics 144, 
which was during the Fall 2006 Quarter.  There are only a few minor revisions and insertions, 
with updated biographical information and links as needed.  Since clickable Internet references 
appear frequently in the notes, I have also included my standard policy remarks about the use 
of such material.   
 

The official main text for this course was the book on set theory in the Schaum’s Outline Series 
by S. Lipschutz, but for several abstract or technical issues there are references to previously 
used course texts by P. Halmos and D. Goldrei (see page 1 for detailed information on all three 
of these books).  The online directory for the 2006 course  
 

http://math.ucr.edu/~res/math144/  
 

also contains several files of exercises and solutions based upon the notes. 
 

Most of the set – theoretic notation is extremely standard, and we shall also employ some 
frequently used conventions for using “blackboard bold letters” and other characters to denote 
familiar sets and number systems: 
 

 

Ø empty set 

NNNN natural numbers  = 
nonnegative integers 

ZZZZ (signed) integers 

QQQQ rational numbers 

RRRR real numbers 

CCCC complex numbers 

 

Similarly, we shall use RRRR
n
 to denote the usual analytic representation of Euclidean or 

Cartesian  n – [dimensional ] space in terms of coordinates (x1, … , xn), where the  xi ’s are all 
real numbers.  
 

As in calculus, if  a  and  b  are real numbers or  ± ∞∞∞∞  with  a  <  b, we define intervals as follows:  

 

|Notation| Type|of|interval Defining|inequalties 

(a,|b) 
| 

. 

open 
. 

a  <  x  <  b 

[a,|b] 
. 

. 

closed 
. 

a  ≤  x  ≤  b 

(a,|b] 
. 

. 

half open 
. 

a  <  x  ≤  b 

[a,|b) 
. 

. 

half open 
. 

a  ≤  x  <  b 

 
Reinhard Schultz 

Department of Mathematics 
University of California, Riverside 

December, 2012 
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Comments on Internet resources 

 
Traditional printed publications in mathematics are normally filtered through an editorial 
reviewing process which checks their accuracy (not perfectly, but for the most part very reliably).  
Some widely used Internet sources maintain similar standards (for example, most of the sites 
supported by recognized academic institutions), but others have far more lenient standards, and 
this fact must be acknowledged.  Probably the most important single example is the Wikipedia 
site: 
 

http://en.wikipedia.org/wiki/Main_Page 
 

The Wikipedia site contains an incredibly large number of articles, with extensive information 
on a correspondingly vast array of subjects.   The articles are written by volunteers, and in most 
cases they can be edited by anyone with access to the Internet, including some individuals 
whose views or understanding of a subject may be highly controversial or simply unreliable. 
This issue has been noted explicitly by Wikipedia in its articles on itself, and in particular the 
following discuss the matter in some detail.  

 

http://en.wikipedia.org/wiki/Wikipedia 
 

http://en.wikipedia.org/wiki/Reliability_of_Wikipedia 
 

Since a few documents in this directory make references to Wikipedia articles, the underlying 
policies and reasons for doing so deserve to be discussed.   First of all, despite the justifiable 
controversy surrounding the reliability of some online Wikipedia articles, the entries for 
standard, well – established topics in the sciences are generally very reliable, and the ones cited 
in the course notes were specifically checked for accuracy before they were cited.   As such, 
they are inserted into these notes as convenient but reliable online alternatives to more 
traditional library references strictly on a case by case basis.   Consequently, this usage should 
not be interpreted as a blanket policy of acceptance for all such articles, even in the “hard” 
sciences.   In general, it is best to think of Wikipedia articles as merely first steps in gathering 
information about a subject and not as substitutes or replacements for more authoritative 
(printed or electronic) references in term papers or scholarly articles.  All statements in 
Wikipedia articles definitely should be checked independently using more authoritative sources.    
 

In any discussion of Internet references, some comments about World Wide Web searches 
using Google (or other search engines) are also appropriate.   The extreme popularity and wide 
use of Google searches clearly show their value for all sorts of purposes.   Of course, it is 
important to remember that search engines are designed to make money and that profit motives 
might affect the results of searches, but usually this is not a problem for topics in the sciences.  
Most of the time search engines are very reliable at listing the best references first, but this is 
not always the case, and therefore it is strongly recommended that a user should normally go 

beyond the first page of 10 search results.   As a rule, it is preferable to look at the top 20, 50 or 

even 100 results.  
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I :    General considerations 
 

  
This is an upper level undergraduate course in set theory.  There are two official texts.   
 

P. R. Halmos, Naive Set Theory (Undergraduate Texts in Mathematics). 

Springer – Verlag, New York, 1974.  ISBN: 0–387–90092–6. 
 

This extremely influential textbook was first published in 1960 and popularized the name 
for the “working knowledge” approach to set theory that most mathematicians and 
others have used for decades.  Its contents have not been revised, but they remain 
almost as timely now as they were nearly fifty years ago.   The exposition is simple and 
direct.  In some instances this may make the material difficult to grasp when it is read for 
the first time, but the brevity of the text should ultimately allow a reader to focus on the 
main points and not to get distracted by potentially confusing side issues.     
 

S. Lipschutz, Schaum's Outline of Set Theory and Related Topics (Second 

Ed.). McGraw–Hill, New York, 1998.  ISBN: 0–07–038159–3.    
 

The volumes in Schaum’s Outline Series are designed to be extremely detailed 
accounts that are written at a level accessible to a broad range of readers, and this one 
is no exception.  As such, it stands in stark contrast to Halmos, and in this course it will 
serve as a workbook to complement Halmos. 
 

The following book has also been used for this course in the past and might provide 
some useful additional background.  It is written at a higher level than Halmos, but it is 
also contains very substantially more detailed information.  
 

D. Goldrei, Classic Set Theory: A guided independent study. Chapman and 

Hall, London, 1996.  ISBN: 0–412–60610–0.    
 

Still further references (e.g., the text for Mathematics 11 by K. Rosen) will be given later. 
 

These course notes are designed as a further source of official information, generally at 
a level somewhere between the two required texts.  Comments on both Halmos and 
Lipschutz will be inserted into these notes as they seem necessary. 
   

  

I.1 : Overview of the course 
 
 

(Halmos, Preface;  Lipschutz, Preface) 
 

Set theory has become the standard framework for expressing most mathematical 
statements and facts in a formal manner.  Some aspects of set theory now appear at 
nearly every level of mathematical instruction, and words like union and intersection 
have become almost as standard in mathematics as addition, multiplication, negative 
and zero.  The purpose of this course is to cover those portions of set theory that are 
used and needed at the advanced undergraduate level. 
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In the preface to Naive Set Theory, P. R. Halmos (1916 – 2006) proposes the following 
characterization of the set – theoretic material that is needed for specialized 
undergraduate courses in mathematics:    

 

Every mathematician agrees that every mathematician must know some set 
theory; the disagreement begins in trying to decide how much is some.  The 
purpose … is to tell the beginning student the basic set – theoretic facts … with 
the minimum of philosophical discourse and logical formalism.  The point of 
view throughout is that … the concepts and methods … are merely some of the 
standard mathematical tools. 

 

Following Halmos, whose choice of a book title was strongly influenced by earlier 

writings of H. Weyl (1885 – 1955), mathematicians generally distinguish between the 
“naïve” approach to set theory which provides enough background to do a great deal of 
mathematics and the axiomatic approach which is carefully formulated in order to 
address tough questions about the logical soundness of the subject.  We shall discuss 
some key points in the axiomatic approach to set theory, but generally the emphasis will 
be on the naïve approach.  The following quotation from Halmos provides some basic 
guidelines: 

 

axiomatic set theory from the naïve point of view … axiomatic in that some 
axioms for set theory are stated and used as the basis for all subsequent 
proofs … naïve in that the language and notation are those  of ordinary 
informal (but formalizable) mathematics. A more important way in which the 
naïve point of view predominates is that set theory is regarded as a body of 
facts, of which the axioms are a brief and convenient summary. 

 

The Halmos approach to teaching set theory has been influential and has proven itself in 
a half century of use, but there is one point in the preface to Naive Set Theory that 
requires comment:   

 

In the orthodox axiomatic view [of set theory] the logical relations among 
various axioms are the central objects of study. 

 

An entirely different perspective on axiomatic set theory is presented in the following 
online site: 

 

http://plato.stanford.edu/entries/set-theory 
 

Much of the research in axiomatic set theory that is described in the online site involves 

(1) the uses of set theory in other areas of mathematics, and (2) testing the limits to 
which our current understanding of mathematics can be safely pushed. 

 

There is some overlap between the contents of this course and the lower level course 
Mathematics 11: Discrete Mathematics.   Both courses cover basic concepts and terms 
from set theory, but there is more emphasis in the former on counting problems and 
more emphasis here on abstract constructions and properties of the real number 
system.  A related difference is that there is more emphasis on finite sets in Mathematics 
11.  At various points in the course it might be worthwhile to compare the treatment of 
topics in this course and its references with the presentation in the corresponding text for 
Mathematics 11: 
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K. H. Rosen, Discrete Mathematics and Its Applications (Fifth Ed.). McGraw 

– Hill, New York, 2003. ISBN: 0–072–93033– 0.   Companion Web site: 

http://www.mhhe.com/math/advmath/rosen/ 
 

Some supplementary exercises from this course will be taken from Rosen, and 
supplementary references to it will also be given in these notes as appropriate. 
 

One basic goal of an introduction to the foundations of mathematics is to explain how 
mathematical ideas are expressed in writing.  Therefore a secondary aim of these notes 
(and the course) is to provide an overview of modern mathematical notation.  In 
particular, we shall attempt to include some major variants of standard notation that are 
currently in use. 
 

At some points of these notes there will be discussions involving other areas of the 
mathematical sciences, mainly from lower level undergraduate courses like calculus (for 
functions of one or several variables), discrete mathematics, elementary differential 
equations, and elementary linear algebra.  The reason for such inclusions is that we are 
developing a foundation for the mathematical sciences, and in order to see how well 
such a theory works it is sometimes necessary to see how it relates to some issues from 
other branches of the subject(s).  
 

The most important justification for the course material is that provides a solid, relatively 
accessible logical foundation for the mathematical sciences and an overview of how one 
reads and writes mathematics.  However, this does not explain how or why set theory 
was developed, and some knowledge of these points is often useful for understanding 
the mathematical role of set theory and the need for some discussions that might initially 

seem needlessly complicated.  At various points in these notes — and particularly for 

the rest of this unit — we shall include material to provide historical perspective and 
other motivation.  
 
 

Starred proofs and appendices 
 
 

We shall follow the relatively standard notational convention and mark proofs that are 
more difficult, or less central to the course, by one to four stars.  Generally the number of 
stars reflects a subjective assessment of relative difficulty or importance; items not 
marked with any starts have the highest priority, items with one star have the next 

highest priority, and so on.  Section V.3 is an exception to this principle for the reasons 
given at the beginning of that portion of the notes. 
 

There are also several appendices to sections in the notes; these fill in mathematical 
details or cover material that is not actually part of the course but is closely related and 
still worth knowing.  Since this material can be skipped without a loss of logical 
continuity, we have also passed on inserting stars in the appendices. 
 
 

Exercises 
 
 

As in virtually every mathematics course, working problems or exercises is important, 
and for each unit there are lists of questions, problems or exercises to study or attempt.  
Normally the exercises for a section will begin with a list of examples from Lipschutz 
called “Problems for study.”   Solutions for all these are given in Lipschutz, but 
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attempting at least some of them before looking at the solutions is strongly 
recommended.  Each section will also have a list of “Questions to answer” or 
“Exercises to work.”   Answers and solutions for these will be given separately. 

 
 

I.2 : Historical background and motivation 
 
 

It is important to recognize that mathematicians did not develop set theory simply for 
pedagogical or aesthetic reasons, but on the contrary they did so in order to understand 
specific problems in some fundamentally important areas of the subject.  Three of the 
most important influences in the development of set theory were the following: 

 

1. There was an increasing awareness among later 19th century 
mathematicians that a more secure logical framework for 
mathematics was needed. 

 

2. Several 19th century mathematicians and logicians discovered the 
algebraic nature of some basic rules for deductive logic. 

 

3. Most immediately, there was a great deal of research at the time 
to understand the representations of functions by means of 
trigonometric series.  

 

The first of these reflects the unavoidable need for something like set theory in modern 
mathematics, while the second reflects the formal structure of set theory and the third 
reflects its principal substance, which is the study of sets that are infinitely large.  In brief, 
these are the “why,” the “how,” and the “what” of set theory.  We shall discuss each of 
these in the order listed.   

 

At various points in this section and elsewhere in these notes, we shall refer to the text 
for the course Mathematics 153: History of Mathematics: 

 

D. M. Burton, The History of Mathematics, An Introduction (Sixth Ed.).  

McGraw – Hill, New York, 2006.  ISBN: 0–  073–  05189– 6. 
 

The excellent online MacTutor History of Mathematics Archive located at the site 
 

http://www-groups.dcs.st-and.ac.uk/~history/index.html 
 

contains extensive biographical information for more than 1100 mathematicians 
(including many women and individuals from non-Western cultures) as well as an 
enormous amount of other material related to the history of mathematics. 

 

We now begin our summary of historical influences leading to the development of set 
theory.    

 

The need for more reliable logical foundations.   Most areas of human knowledge are 
now organized using deductive logic in some fashion, and the ancient Greek formulation 
of mathematics in such terms was one of the earliest and most systematic examples.  
With the discovery of irrational numbers, Greek mathematics used geometrical ideas as 
their logical foundation for mathematics, and with the passage of time Euclid’s Elements 
emerged as the standard reference.  This standard for logical soundness remained 
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unchanged for nearly 2000 years, and the following quotation from the works of Isaac 
Barrow (1630 – 1677) reflects this viewpoint: 
 

Geometry is the basic mathematical science, for it includes arithmetic, and 
mathematical numbers are simply the signs of geometrical magnitude. 

 

Barrow’s viewpoint was adopted in the celebrated work, Philosophiæ Naturalis Principia 

Mathematica, written  by his student Isaac Newton (1642 – 1727).  On the other hand, 
the development of calculus in the 17th century required several constructions that did 
not fit easily into the classical Greek setting.  In this context, it is slightly ironic that 
Barrow deserves priority for several important discoveries leading to calculus. 
 

A simple — probably much too simple — description of calculus is that it is a set of 
techniques for working with quantities that are limits of successive approximations.  
Probably the simplest illustration of this is the area of a circle, which is the limit of the 

areas of regular n – sided polygons that are inscribed within, or circumscribed about, the 

circle as n becomes increasingly large.   During the Fifth Century B. C. E., Greek 
mathematicians and philosophers discovered that a casual approach to infinite 
processes could quickly lead to nontrivial logical difficulties; the best known of these are 

contained in several well known paradoxes due to Zeno of Elea (c. 490 – 425 B. C. E.; 

see pages 103 – 104 of Burton for more details).  The writings of Aristotle (384 – 322 B. 
C. E.) in the next century helped set a course for Greek mathematics that avoided the 

“horror of the infinite.”  When Archimedes (287 – 212 B. C. E.) solved numerous 
problems from integral calculus, his logically rigorous proofs of the solutions used 
elaborate arguments by contradiction in which he studiously avoided questions about 
limits. 
 

This stiff resistance to thinking about the infinite eventually weakened, in part due to 
influences from Indian mathematics, which was far more open to discussing infinity, and 
also in part due various investigations in mathematics and philosophy during the late 
Middle Ages.  When interest in problems from calculus reappeared towards the end of 
the 16th century, there were many workers in the area who used infinite processes freely, 
while there were also some who had reservations about some or all such techniques.   
Since the methods of calculus were giving reliable and consistent answers to questions 
that had been previously out of reach, the resolution of such misgivings was an 
important issue.  In the discussions of this problem which took place during the 17th and 
18th centuries, it had become clear that calculus involves limit concepts that are beyond 
normal geometrical experience.  We shall not attempt to retrace the entire development 
of this, but instead we shall concentrate on some important developments from the 19th 
century.  The first of these was the relatively precise definition of limit due to A. – L. 
Cauchy (1789 – 1857)  in 1821; this was further refined into the modern definition of limit 

using δδδδ and εεεε which is due to K. Weierstrass (1815 – 1897).  Another important 
development was the critical analysis of convergence questions for infinite series, 
particularly in the writings of N. H. Abel (1802 – 1831).  A third development was the 
realization that certain basic facts about continuous functions required rigorous logical 
proofs.  Examples include the Intermediate Value Theorem and its proof by B. Bolzano 

(1781 – 1848).  This listing of developments is definitely (and deliberately!) not 
exhaustive, but it does illustrate the 19th century activity to put the content of calculus on 
a logically sound foundation. 
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Ultimately such basic facts from calculus depend upon a firm understanding of the real 
numbers themselves.  Greek mathematicians turned to geometry as a foundation for 
mathematics precisely because their understanding of the real numbers was incomplete.  

However, the work of Eudoxus of Cnidus (c. 408 – 355 B. C. E.) yielded one very 
important property of real numbers; namely, between any two real numbers there is a 
rational number.  By the end of the 16th century our usual understanding of real numbers 
in terms of infinite decimals was a well established principle in European mathematics, 
science and engineering.  The final insight in the process was due to R. Dedekind (1831 

– 1916), and it was a converse to the principle implicitly due to Eudoxus; specifically, the 
real numbers are in some sense the largest possible number system in which 
everything can be approximated by rational number to any desired degree of accuracy.  
Justifying this viewpoint in a logically rigorous manner requires the methods and 
results of set theory. 
 

At the same time that mathematicians were developing a new logical foundation for 
calculus during the 18th and 19th centuries, still other advances in mathematics led to 
even more serious questions about the foundations of mathematics as they had been 
previously understood.  One philosophical basis for using geometry as a foundation for 
mathematics is to view the postulates of Euclidean geometry as absolutely inevitable 
necessities of thought, much like the fact that two plus two equals four.  In particular, the 

18th century philosophical writings of I. Kant (1724 – 1804) were particularly influential in 
viewing the basic facts of geometry as intuitions that are independent of experience.   

When 19th century mathematicians such as J. Bolyai (1802 – 1860), N. Lobachevsky 

(1793 – 1856) and C. F. Gauss (1777 – 1855) realized that there was a logically 
consistent alternative to the axioms for Euclidean geometry, the Kantian position 

became far more difficult to defend.   Further information on the Non – Euclidean 

geometry studied by these mathematicians appears on pages 561 – 601 of Burton. 
 

The development of a mathematically rigorous treatment of calculus had an implication 
for classical Euclidean geometry that was largely unanticipated.  When mathematicians 
examined classical geometry in light of the logical standards that they needed for 
calculus, they realized that the classical framework did not meet the new standards.  For 
example, concepts like betweenness of points on a line and points lying on the same or 
different sides of a line were generally ignored in Euclid’s Elements.  One way to 
illustrate the need for treating such matters carefully is to see what can go wrong if they 
are dismissed too casually.  A standard example in this direction is the “proof” in the 
online reference below, which is attributed to W. Rouse Ball (1850 – 1925). This looks 
very much like a classical Greek proof, but it reaches the obviously false conclusion that 
every triangle is isosceles:   
 

http://www.mathpages.com/home/kmath392.htm 
 

The need to repair the foundations of classical Greek geometry further 
underscored the urgent need to have an entirely new logical foundation for 
mathematics.    
 

In fact, the adoption of set theory as a foundation for mathematics is also a key step 
towards bringing classical Greek geometry up to modern logical standards.  A discussion 
of this work is beyond to scope of these notes, but some further information is contained 

on pages 619 – 621 of Burton. 
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The use of algebraic methods to analyze logical questions.  Traditionally, logic was 
studied as a branch of philosophy, and the ancient Greek approach to mathematics 
established the role and usefulness of logic in studying mathematics.  Eventually 
mathematicians and logicians realized that, conversely, some ideas from mathematics 
were also useful in the analysis of logic.  Some early examples of logical symbolism 

appear in the work of J. L. Vives (1492 – 1540) and J. H. Alsted (1588 – 1638).   Fairly 

extended discussions appear in papers of G. W. von Leibniz (1646 – 1716) that were not 
published during his lifetime, and during the 18th century there were several further 

tentative probes in this direction by others such as Ch. von Wolff (1679 – 1754), G. 

Ploucquet (1716 – 1790), J. H. Lambert (1728 – 1777), and L. Euler (1707 – 1783).  
However, sustained and productive interest in the mathematical aspects of logic began 
in the middle of the 19th century, and since that time mathematical ideas have played a 
very important (but not exclusive) role in this subject.  More recently, the importance of 
formal logic for computer science has been a major source of motivation for further 
research.   
 

The name mathematical logic is due to G. Peano (1858 – 1932), and the subject is also 
often called symbolic logic (although not everyone necessarily agrees these terms have 
identical meanings). Mathematical logic still includes the logic of classical civilizations, 
for example as summarized in the Organon of Aristotle or the Nyaya Sutras of the 
Indian Philosopher Aksapada Gautama (conjecturally around the Second Century B. C. 
E., but possibly as early as 550 B. C. E. or as late as 150 A. D.), or the logic that was 
developed in ancient Chinese civilization probably around the time of Aristotle, but it is 
developed more like a branch of abstract algebra.   
 

The emergence of mathematical methods as an important factor in logic was firmly 
established with the appearance of the book, The Mathematical Analysis of Logic, by 

G. Boole (1815 – 1864) in 1847.  Boole’s work contained a great deal of new material, 
but in some respects it also drew upon earlier discoveries, writings and ideas due to R. 

Whately (1787 – 1863), G. Peacock (1791 – 1858), G. Bentham (1800 – 1884, better 

known for his work as a botanist), A. De Morgan (1806 – 1871) and William Stirling 

Hamilton (1788 – 1856); it should be noted that the latter was a Scottish logician and not 
the same person as the better known Irish mathematician William Rowan Hamilton 

(1805 – 1865), who is recognized for several fundamental contributions to mathematics, 
including his mathematical approach to classical physics and the invention of 
quaternions.  The following is a typical example of a conclusion that followed from the 
methods of these 19th century logicians but not from classical Aristotelian logic: 
 

In a particular group of people,  
 

(1) most people have shirts, 
(2) most people have shoes; 

  

therefore, some people have both shirts and shoes.  
 

Other contributors during the second half of the 19th century included J. Venn (1834 – 
1923), who devised the pictorial representations of sets that now carry his name, and C. 

L. Dodgson (1832 – 1898), who is better known by his literary pseudonym Lewis Carroll.  
His interests covered a very broad range of topics, and his mathematical achievements 
include some deep studies in symbolic logic and logical reasoning.   Much of this work 
involved specific logical problems of a somewhat whimsical nature, but he also made 
some noteworthy contributions in more general directions, including the use of truth 
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tables.  All this activity in logic led to fairly definitive algebraic formulations by W. S. 

Jevons (1835 – 1882) and E. Schröder (1841 – 1902). 
 

Further discussion of the work of Boole and De Morgan (as well as other topics that are 

mentioned above) appears on pages 643 – 647 of Burton. 
 

Representations of functions by trigonometric series.   Several distinct areas in 

mathematical physics — most notably, wave motion and heat flow — motivated interest 

in expressing periodic functions satisfying  f (x + 2 ππππ)   =   f (x)  by means of an infinite 
series of trigonometric functions 

 

 
 

analogous to the power series expansions of the form 
 

 
 

that are so useful for many purposes.  A discussion of such series at the level of first 
year calculus appears in Sections 8.9 and 8.10 of the following classic calculus text: 

 

R. L. Finney, M. D. Weir, and F. R. Giordano. Thomas’ Calculus, Early 

Transcendentals (Tenth Ed.).   Addison – Wesley, Boston, 2000.  ISBN: 

0–201–44141–1. 
 

During the middle of the 19th century many prominent mathematicians studied aspects of 
the following question: 

 

To what extent is the representation of a function by a (possibly infinite) 
trigonometric series unique? 

 

The founder of set theory, Georg Cantor (1845 – 1918), gave a positive answer to this 

question in 1870. 
 

Theorem.  Suppose that we are given two expansions of a reasonable function f as a 
convergent trigonometric series: 

 
 

Then  an  =  an′′′′   and   bn  =  bn′′′′  for all nonnegative integers  n.  
 

This is a pretty good conclusion, but one actually would like a little more.  We have not 
specified what we mean by a reasonable function, and indeed we should like to include 
some functions that are not necessarily continuous.  The most basic example in this 

context is the so – called square wave function whose value from 0 to ππππ is + 1 and 

whose value from ππππ to 2ππππ is – 1.  Waves of this type occur naturally in several physical 

contexts:  The graph of the square wave function (with the x – axis rescaled in units of 

ππππ) is given below.  
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(Source: http://mathworld.wolfram.com/FourierSeriesSquareWave.html ) 
 

Obviously this function is discontinuous, with a jump in values at every integral multiple 

of ππππ, and one might suspect that it really does not matter how we might define the 
function at such sparsely distributed jump discontinuities.  In fact, this is the case, and 
for every such choice one obtains the same trigonometric series representing the square 
wave function: 
 

 
 

(This is the general expression for period 2 L , so here L  =  ππππ.) 
 

Here are some graphs to show how close the partial sums come to approximating the 
square wave.  Note that the graphs suggest the value of the infinite sum is zero at 

integral multiples of ππππ (this is in fact true, but we shall not go into the details).  Here is a 
reference for these illustrations. 
 

http://cnx.rice.edu/content/m0041/latest/ 

 

 
 
 

(continued on the next page) 
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Clearly we could carry out the same construction for higher frequency square waves 

(using positive integral multiples of 2 ππππ) and find examples of reasonable functions with 
the same trigonometric series such that the values of the functions are the same except 

for some arbitrarily large finite set of values between 0 and 2 ππππ.  This leads naturally to 
the following problem that Cantor considered in connection with his basic uniqueness 
result: 
 

Do two reasonable functions have the same Fourier series if they agree 

at all but an infinite sequence of points p n between 0 and 2 ππππ?   
 

Cantor showed that the answer was yes if the sequence had the following closure 

property:  If a subsequence p n(k) converges to a limit L, then L  =  p m for some m. 
 

Subsequent work established the result without the closure hypothesis.  Further 
information on these matters may be found in the following reference (which is definitely 

not written at the advanced undergraduate level — the citation is included for the sake 
of completeness):  

 

A. S. Kechris and A. Louveau, Descriptive set theory and the structure of 
sets of uniqueness (London Math. Soc. Lect. Notes Vol. 128).  Cambridge 

University Press, Cambridge, UK, and New York, 1987.  ISBN: 0–521–35811–6. 
 

The important point of all this for our purposes is that Cantor’s analysis of the 

exceptional points led him to abstract set – theoretic concepts and ultimately to his 
extremely original (and at first highly controversial) research on set theory.  Additional 

information on Cantor and his work appears on pages 668 – 690 of Burton.  Further 

developments in the history of set theory are discussed on pages 690 – 707 of Burton, 
but the material covered after the middle of page 701 is not discussed in this course. 
 
 

Some further references 
 
 

Additional historical background on the topics discussed in this section is given in the 
following online sites. 
 

http://math.ucr.edu/~res/math153/history03.pdf 
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This site discusses some issues related to the logical gaps in Euclid’s Elements and 
why the latter should be still be viewed very positively despite such problems. 

 

http://math.ucr.edu/~res/math153/history12.pdf 
 

http://math.ucr.edu/~res/math153/history14a.pdf 
 

The first document contains an account of infinitesimals which goes beyond the 
Appendix to this section in some respects, and it also includes further discussion on 
problems with the logical soundness of calculus that arose during the period from 1600 
to 1900.  The second document describes one noteworthy example to illustrate how an 
overly casual approach to manipulating infinite series can lead to fallacious conclusions. 

 
 

I.2. Appendix : Comments on infinitesimals 
 
 

One of the major logical problems with calculus as developed in the 17th century was the 
legitimacy of objects called infinitesimals.  The idea is well illustrated in the method 
employed by B. Cavalieri (1598 – 1647) to study the volume of a solid A that is 

contained between two parallel planes.   If the planes are defined by the equations z  =  

0  and   z  =  1, then for each t between 0 and 1 one has the cross section A t formed by 

intersecting A with the parallel plane defined by z  =  t.  Cavalieri’s idea is to view A as 
composed of an infinite collection of cylindrical solids whose bases are the cross 

sections A t and whose heights are some very small, in fact infinitesimally small, value 
that we shall call dt.   

 

(Figure source:  http://www.mathleague.com/help/geometry/3space.htm ) 
 

From this viewpoint, the total volume is obtained by adding the volumes of these 
infinitesimally short cylindrical solids; in modern terminology, one adds or integrates 
these infinitesimals by taking the definite integral of the area function with respect to t 

from 0 to 1.  Of course, the point of this discussion is to convince the reader that the 
volume of A is given by the following standard integral formula in which a(t)  denotes the 

area of the planar section A t :  
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This is an excellent heuristic argument, but its logical soundness depends upon 
describing the concept of an infinitesimal precisely.  It was clear to 17th and 18th century 
scientists and philosophers that such infinitesimals were supposed to be smaller than 
any finite quantity but were still supposed to be positive.  If one is careless with such a 
notion it is easy to contradict the principle that between any two real numbers there is a 
rational number; a crucial question is whether it is ever possible to be careful enough 
to avoid these or other logical difficulties.  Although proponents of calculus made 
vigorous efforts to explain infinitesimals and were getting reliable answers, their 
explanations did not really clarify the situation much to mathematicians or others of that 
era.  A clear and rigorous foundation for calculus was not achieved until infinitesimals 
were discarded (for foundational purposes) in the 19th century and the subject was 
based upon the concept of limit (see the discussion above).   
 

Despite their doubtful logical status, many users of mathematics have continued to work 
with infinitesimals, probably motivated by their relative simplicity, the fact that they gave 
reliable answers, and an expectation that mathematicians could ultimately find a logical 
justification for whatever was being attempted.  This attitude towards infinitesimals was 
also evident in many undergraduate textbooks in mathematics, science and engineering, 
particularly through the first half of the 20th century; the following is a typical example:  

 

W. A. Granville, P. F. Smith and W. R. Longley, Elements of Differential and 
Integral Calculus (Various editions from 1904 to 1962).  Wiley, New York, 

1962.  ISBN: 0–471–00206–2. 
 

During the nineteen sixties Abraham Robinson (1918 – 1974) used extensive machinery 
from set theory and abstract mathematical logic to prove that one can in fact construct a 
number system with infinitesimals that satisfy the expected formal rules.   However, the 
crucial advantage of Robinson’s concept of infinitesimal — its logical soundness  —  is 
balanced by the fact that, unlike 17th century infinitesimals, it is neither simple nor 
intuitively easy to understand.  The associated theory of Nonstandard Analysis has 
been studied to a considerable extent mathematically, but it is not widely used in the 
traditional applications of the subject to the sciences and engineering; on the other hand, 
some recent work in mathematical economics has been formulated within the context of 
nonstandard analysis.  The following online references provide further information on 
this subject:  
 

http://members.tripod.com/PhilipApps/nonstandard.html 
 

http://www.haverford.edu/math/wdavidon/NonStd.html 
 

http://mathforum.org/dr.math/faq/analysis_hyperreals.html 
 

http://en.wikipedia.org/wiki/Nonstandard_analysis 
 

http://www.math.uiuc.edu/~henson/papers/basics.pdf 
 

Here are a few textbook references for nonstandard analysis: 
 

J. M. Henle and E. M. Kleinberg, Infinitesimal Calculus.  Dover Publications, 

New York, 2003.  ISBN: 0 – 486 – 42886– 9. 
 

J. L. Bell, A Primer of Infinitesimal Analysis.  Cambridge University Press, 

New York, 1998.  ISBN: 0 – 521– 62401– 0. 
 

A. E. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis 
(Pure and Applied Mathematics, Vol. 118).  Academic Press, Orlando, FL, 

1965.  ISBN: 0 – 123 – 62440 – 1. 
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Comment on “differential” notation 
 
 

In older mathematics texts and also some newer books in other subjects, expressions 

like d x, d y and d f refer to infinitesimals.  However, in newer mathematics books, for 
example the multivariable calculus text 

 

J. E. Marsden and A. Tromba, Vector Calculus (Fifth Ed.).  Freeman, New 

York, 2003.  ISBN: 0–716–74992–0. 
 

such symbols generally have a much different meaning, and it is important to recognize 
this.  A precise description of the current usage is beyond the scope of this course; one 

general suggestion is to check a textbook carefully if it contains expressions like d x and 

d y standing by themselves and not part of a larger expression for a derivative or an 
integral.   This applies particularly to any mathematics book beyond first year calculus 
with a first edition date after 1950.  
 
 

Logical rigor and modern mathematical physics 
 
 

The development of nonstandard analysis during the second half of the 20th century is 
definitely not the final step to putting everything related to mathematics on a logically 

sound basis; in fact, one expects that advances in the other sciences — particularly in 

physics — are likely to continue yielding new ideas on how our mathematical concepts 
might be stretched to deal effectively with new classes of problems.  Probably the most 
important subject currently requiring a mathematically rigorous description is the 

formalism introduced by the renowned physicist R. P. Feynman (1918 – 1988) about 60 
years ago to study questions in quantum electrodynamics.   The value and effectiveness 

of Feynman’s techniques in physics — and even in some highly theoretical areas of 

mathematics — are very widely recognized, but currently there is no general method to 
provide rigorous mathematical justifications for the results predicted by Feynman’s 
machinery (however, it is possible to do so in a wide range of special cases).  A 
comprehensive account of the mathematical aspects of Feynman’s ideas is given in the 
book cited below, and the accompanying online references provide quick surveys of 
Feynman’s life and work:  
 

G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's 
Operational Calculus (Oxford Mathematical Monographs, Corrected Ed.).  

Oxford Univ. Press, Oxford, UK, and New York, 2002.  ISBN:  0–19–851572–3. 
 

http://en.wikipedia.org/wiki/Richard_Feynman 
 

http://www.feynman.com/ 
 

http://www2.slac.stanford.edu/vvc/theory/feynman.html 

 
 

I.3 : Selected problems 
 
 

We shall begin with an online quotation from the site 
 

http://en.wikipedia.org/wiki/Adjoint_functor 
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on introducing abstract concepts. 
 

Concepts are judged according to their use in solving problems, at least 
as much for their use in building theories. 

 

Here is a more focused version of the quotation: 
 

Ideally, an abstract mathematical construction such as set theory 
should answer, or at least shed useful new light, on some problem(s) of 
recognized importance. 

 

Motivated by the preceding comments, we shall list a few mathematical questions of 
varying importance and difficulty as test cases for the usefulness of set theory.   

 

1. Providing a clear and simple mathematical description of both 
relations and functions. 

 

2. Rigorously justifying the so – called pigeonhole principle :  If 
we are given m objects and n locations to put them with m  >  n, 
then at least one of the locations will contain at least two objects.  

 

3. Finding a mathematically efficient and logically sound description 
of the real number system. 

 

4. Understanding the likelihood that a real number which is “chosen 
at random” will be algebraic; i.e., it is the root of a nonconstant 
polynomial equation with integral coefficients. 

 

Given the fundamental importance of the real number system to analysis, it should be 
apparent that anything which will make the latter logically rigorous will play a key 
role in the foundations of mathematics.  
 

At this point a few additional remarks about the desired formulation of the real number 
system seem appropriate.  Even though we view real numbers in terms of their infinite 
decimal expansions, we do not want our mathematical description of real numbers to be 
phrased in such terms.  There are two reasons for this.  One is that verifying algebraic 
identities for infinite decimal expansions is at best awkward; for example, consider the 
practical and theoretical difficulties in writing out the reciprocal to an infinite decimal 

expansion between 0 and 1 or writing out the positive square root of such a number.  A 
second reason is that we would like our concept of real number to be independent of any 
choice of computational base, and in particular we would like a system that does not 

change if we replace base 10 by, say, base 2 (or 8, or 12, or 16, or 60, or … ). 
 

In an appendix to the final section of these notes we shall also consider one further 
question that arises naturally in connection with the points covered in this unit; namely, 
formulating repaired versions of classical Greek deductive geometry in terms of modern 
set theory. 
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I I :    Basic concepts 
 

 
This unit is the beginning of the strictly mathematical development of set theory in the 
course.  We begin with a brief discussion of how mathematics is written and continue 
with a summary of the main points in logic that arise in mathematics.  The latter is mainly 
meant as background and review, and also as a reference for a few symbols that are 
frequently used as abbreviations.  In the remaining sections we introduce the most 
essential notions of set theory and some of their simplest logical interrelationships. 
 
 

Mathematical language 
 

 

Mathematicians are like Frenchmen; 
whatever you say to them they translate 
into their own language and forthwith it 
is something entirely different. 
 

J. W. von Goethe (1749 – 1832) 
 

A page of mathematical writing is different from a page of everyday writing in many 
respects, and for an inexperienced or uninitiated reader it is often more difficult to 
understand.  Before considering strictly mathematical topics in these notes, it might be 
helpful to summarize some special features of mathematical language and the reasons 
for such differences. 
 

The language of mathematics is a special case of technical language or language for 
special purposes.  As such, it has many things in common with other specialized 
language uses in the other sciences and also in legal writing. 
 

In all these contexts, it is important to state things precisely and to justify assertions 
based upon earlier writing.  It is also important to avoid things which are unrelated to the 
substance of the discussion, including emotional appeals and nearly all personal 
remarks; when the latter appear, they are usually restricted to a small part of the text. 
 

The need for precise, impersonal language affects mathematical writing in several ways.  
We shall list some notable features below.   
 

1. Sentences tend to be long and carefully written, sometimes at the expense of 
clarity.  This is often necessary to avoid misunderstandings or to eliminate 
potential sources for errors.  For example, in mathematics when one divides a 
number x by a number y, it is necessary to stipulate that y be nonzero. 

 

2. In scientific writing there is more of a tendency to stress nouns and modifiers 
rather than verbs, and there is a much greater use of the passive voice.  For 

example, instead of saying, “You can do X,” one generally sees the more 

impersonal, “It is possible to do X.”  This reinforces the unimportance or 

anonymity of the individual who does X.  However, a reader who is not used to 
such an impersonal style might view it as uninviting. 
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3. Precise meanings must be attached to specific words.  These do not necessarily 
correspond to a word’s everyday meaning(s), and of course there are also many 

words that are rarely if ever seen elsewhere.  Words like “product” and “set” 

and “differentiate” are examples of words whose mathematical meanings differ 

from standard usage.  Other words such as “abelian” or “eigenvector” or 

“integrand” are essentially unique to mathematics and only appear when 
mathematics is presented or applied to another subject. 

 

4. There is an extensive use of references to the writings of others.  Such citations 
are logically indispensable and make everything more concise, but they can also 
make it difficult or impossible to read through something without frequent 
interruptions. 

 

5. Particularly in the sciences, there is a heavy reliance on symbols such as 
numerals, operators (for example, the plus and equals signs), formulas or 
equations, and diagrams as well as other graphics.  These allow the writer to 
express many things quickly but precisely.  However, they may be difficult to 
decipher, particularly for a beginner. 

 

The pros and cons of mathematical (and other scientific) language are reflected by a 
surprising fact:  Even though such material is more difficult to read than an ordinary 
book, it is much easier to translate scientific writings to or from a foreign language than it 
is to translate a best selling novel or a regular column in a newspaper.  In particular, 
adequate computerized translations of scientific articles are considerably easier to 
produce than acceptable computerized translations of literature (try using software like 
http://babelfish.yahoo.com/  to translate some passages and see what happens).    
 

Both clarity and preciseness are important in mathematical (and other scientific) writing.  
A lack of precision can lead to costly mistakes in scientific experiments and engineering 
projects (similar considerations apply to legal writing, where ambiguities involving simple 
words can lead to extensive and expensive litigation).  On the other hand, a lack of 
clarity can undermine the fundamental goals of communicating information.  Every 
subject has tried to adopt guidelines for balancing these contrasting aims, but probably 
there will always be challenges to doing so effectively in all cases. 

 

 

I I .1 :  Topics from logic 
 

 
(Lipschutz, §§ 10.1 – 10.12) 

 
 

Mathematics is based upon logical principles, and therefore some understanding of logic 
is required to read and write mathematics correctly.  In this course we shall take the 
most basic concepts of logic for granted.  Our main purpose here is to describe the key 
logical points and symbolic logical notation that will be used more or less explicitly in this 
course.  Chapter 10 of Lipschutz contains numerous examples illustrating the main 
points of logic that we shall use in this course, and it it provides additional background 
and reference material.  Sections 1.1 – 1.5 of Rosen also treat these topics in an 
introductory but systematic manner.  
  

In most mathematical writings, the logical arguments are carried out using ordinary 
language and standard algebraic symbolism.  When logical terminology as developed in 
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this section is used, it is often used intermittently for purposes of abbreviation when 
ordinary wording becomes too lengthy or awkward; there are similarities between this 

and the practice of explaining some programming issues in a pseudo – code that is 
halfway between ordinary and computer language.  Although such logical abbreviations 
are only used sometimes in mathematics, it is important to be familiar with them and 
recognize them when they do appear. 

 

Concepts from propositional calculus 
 
 

The basic objects in propositional calculus are simple declarative sentences, and by 
convention each sentence is either true or false.  There are several simple grammatical 
and logical operations that can be used to connect sentences. 
 

1. If P and Q are sentences, then the sentence P and Q is sometimes 
called the conjunction of P and Q, and it is symbolically denoted by 

either P ∧∧∧∧ Q or the less formal P & Q.   Of course, if P and Q are 

both true, then P ∧∧∧∧ Q is true, while if one or both of P and Q are 

false, then  P ∧∧∧∧ Q is false.  
 

2. If P and Q are sentences, then the sentence P or Q is sometimes 
called the disjunction of P and Q, and it is denoted symbolically by 

P ∨∨∨∨ Q. In mathematics we use an inclusive OR connective; i.e., 
the statement P ∨∨∨∨ Q is true when P is true or Q is true, or both are 

true, and  P ∨∨∨∨ Q  is false only when both P and Q are false.  
 

3. If P is a sentence, then the sentence not P is sometimes called the 
negation of P, and it is denoted symbolically by ¬ P or – P or ~P 
(still other symbolisms are also used).   As one would expect, the 
sentence ¬ P is false when P is true, and the sentence ¬ P is true 
when P is false. 

 

4. If P and Q are sentences, the conditional sentence if P, then Q is 

denoted symbolically by P  →→→→  Q or P  ⇒⇒⇒⇒  Q.  In this conditional 
sentence P is called the antecedent and Q is called the 
consequent.   Such a conditional sentence is true unless P is true 
and Q is false, and it is false in this case.  (The truth of the 
conditional statement if P is false may seem puzzling, but one way 
to think about it is that since P is false the conditional is basically an 
empty statement). 

 

Of course, one can use the preceding connectives to define new ones in other ways, 
and one example is the exclusive OR connective:  If P and Q are sentences, then the 
sentence P xor Q should have the property that P xor Q is false when P and Q are 
either both true or both false, and P xor Q is true otherwise.  Symbolically one can write 

this connective in terms of the others by the formula (P ∨∨∨∨ Q)  ∧∧∧∧ ¬ (P ∧∧∧∧ Q) . 
 

Another important operation is the standard if and only if connective.  If P and Q are 
sentences, the biconditional sentence P if and only if Q, which is sometimes also 

written P  iff  Q, is given by (P  ⇒⇒⇒⇒  Q)  &  (Q  ⇒⇒⇒⇒  P), and its symbolically abbreviation is 

P  ⇔⇔⇔⇔  Q.  As expected,  this statement is true if both P and Q are true or both are false, 
and it is false if exactly one of P and Q is true and exactly one is false.   The phrase P is 
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logically equivalent to Q is also used frequently in mathematical writings to denote the 

biconditional P  ⇔⇔⇔⇔  Q.   

  
Tautologies 

 
By definition, a tautology is a sentence that is true no matter what the truth values are 

for the constituent parts. One simple example of this is P  ⇒⇒⇒⇒  P ∨∨∨∨ Q.  Here are several 
others: 

1. (P  ⇒⇒⇒⇒  Q)  ⇔⇔⇔⇔  (¬ Q  ⇒⇒⇒⇒  ¬ P)   Law of the contrapositive 

2.  [P ∧∧∧∧ (P  ⇒⇒⇒⇒  Q)] ⇒⇒⇒⇒  Q  Law of modus ponens  

3.  [(P  ⇒⇒⇒⇒  Q) ∧∧∧∧ (Q  ⇒⇒⇒⇒  R)] ⇒⇒⇒⇒ (P  ⇒⇒⇒⇒  R)   Law of Syllogism  

4. ¬ (P ∧∧∧∧ Q)  ⇔⇔⇔⇔  (¬ P ∨∨∨∨ ¬Q)     

5. ¬ (P ∨∨∨∨ Q)  ⇔⇔⇔⇔  (¬ P ∧∧∧∧ ¬Q)  DeMorgan’s Laws 

6. ¬ (P ⇒⇒⇒⇒ Q)  ⇔⇔⇔⇔  (P ∧∧∧∧ ¬Q)   

7.  (P ⇒⇒⇒⇒ Q)  ⇔⇔⇔⇔  (¬ P ∨∨∨∨ Q)   

8.  (P ∧∧∧∧ Q) ⇒⇒⇒⇒  P  

9. ¬ (¬ P)  ⇔⇔⇔⇔  P 

10.  (P ∧∧∧∧ Q) ⇒⇒⇒⇒  (P ∨∨∨∨ Q)   

11.  (P  ⇒⇒⇒⇒  ¬ Q)  ⇒⇒⇒⇒  (Q  ⇒⇒⇒⇒  ¬ P) 

12.  [¬ P  ⇒⇒⇒⇒ (R  ∧∧∧∧  ¬ R)] ⇒⇒⇒⇒  P   Law of proof by contradiction 

13.  [(P ∧∧∧∧ ¬ Q) ∧∧∧∧ (R  ∧∧∧∧  ¬ R)] ⇒⇒⇒⇒ (P  ⇒⇒⇒⇒  Q)   Law of proof by contradiction 

14.  P ∧∧∧∧ ¬ P   Law of the Excluded Middle  

15.  P  ⇒⇒⇒⇒  P 

16.  P  ⇔⇔⇔⇔  P 

17.  [P  ⇒⇒⇒⇒ (Q  ∧∧∧∧  R)] ⇒⇒⇒⇒  [(P  ∧∧∧∧  ~Q)  ⇒⇒⇒⇒ R] 

18.  [(P  ⇒⇒⇒⇒  S1) ∧∧∧∧ (S1  ⇒⇒⇒⇒  S2) ∧∧∧∧ . . . ∧∧∧∧ (S n–1  ⇒⇒⇒⇒  Sn) ∧∧∧∧ (Sn  ⇒⇒⇒⇒  R)] ⇒⇒⇒⇒ (P  ⇒⇒⇒⇒  R)   
Extended Law of Syllogism  

19.  [(P  ⇒⇒⇒⇒  R) ∧∧∧∧ (Q  ⇒⇒⇒⇒  R)]  ⇒⇒⇒⇒  [(P  ∨∨∨∨  Q)  ⇒⇒⇒⇒ R]   Proof by Cases 

20.  (P  ∧∧∧∧  Q)  ⇔⇔⇔⇔   (Q  ∧∧∧∧  P)   

21.  (P  ∨∨∨∨  Q)  ⇔⇔⇔⇔   (Q  ∨∨∨∨  P)  Commutative Laws 

22.  [P  ⇒⇒⇒⇒ (R  ⇒⇒⇒⇒  Q)] ⇔⇔⇔⇔  [(P  ∧∧∧∧  R)  ⇒⇒⇒⇒ Q] 

23.  [P  ∧∧∧∧ (Q  ∧∧∧∧  R)] ⇔⇔⇔⇔  [(P  ∧∧∧∧  Q)  ∧∧∧∧ R]   

24.  [P  ∨∨∨∨ (Q  ∨∨∨∨  R)] ⇔⇔⇔⇔  [(P  ∨∨∨∨  Q)  ∨∨∨∨ R]  Associative Laws 

25.  [P  ∧∧∧∧ (Q  ∨∨∨∨  R)] ⇔⇔⇔⇔  [(P  ∧∧∧∧  Q)  ∨∨∨∨ (P  ∧∧∧∧  R)] 

26.  [P  ∨∨∨∨ (Q  ∨∨∨∨  R)] ⇔⇔⇔⇔  [(P  ∨∨∨∨  Q)  ∧∧∧∧ (P  ∨∨∨∨  R)]  Distributive Laws 

27.  [(P  ⇔⇔⇔⇔  Q1) ∧∧∧∧   . . .  ∧∧∧∧ (Qn–1  ⇔⇔⇔⇔  Qn) ∧∧∧∧ (Qn  ⇔⇔⇔⇔  Q)] ⇒⇒⇒⇒ (P  ⇔⇔⇔⇔  Q) 

Propositional calculus is covered in Sections 10.1 – 10.10 of Lipschutz and Sections 1.1 
and 1.2 of Rosen.  The material in these sections on the order of logical operations, 
translating English sentences and logic puzzles goes beyond the topics covered here. 

 
Predicate calculus and quantifiers 

 
Propositional calculus views sentences as units, and predicate calculus views ordinary 

declarative sentences as consisting of two main grammatical parts — the subject and 
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the predicate.  The subjects (or variables) of such sentences are generally denoted by 

small letters like an x, and the predicates are denoted by functions like P( ... ),  the 
idea being that given a predicate shell one can insert an arbitrary subject to obtain a 

grammatically admissible sentence P(x) which is either true or false.  A typical example 

of such a sentence P(x)  might be x  +  2  =  5.   For this example we know that P(3) is 

true but P(4) is false.   Of course, ordinary sentences may have compound subjects, 
and it is essential to allow logical predicates to have this property also.  As one might 

expect, we shall denote the sentence obtained from insertion of x1, … , xn into the 

predicate P by P( x1, … , xn ). 
 

We now turn to a discussion of quantifiers.  Sentences involving phrases like  For 
every ...   and  There exists ...  play a very important role in mathematically reasoning.  
 

The logical symbol ∀∀∀∀, which is called the universal quantifier, is a symbolic shorthand 
for phrases such as For each, For every, and For all.  A predicate sentence such as  
 

For every x, P(x) 
 

is then written symbolically as either ∀∀∀∀ x  P(x) or equivalently ∀∀∀∀ x, P(x).  Here is a 
typical example of a true sentence in this form: 
 

∀∀∀∀ x, if x is a real number then x
2
 is nonnegative. 

 

The logical symbol ∃∃∃∃, which is called the existential quantifier, is a symbolic shorthand 
for phrases such as There exists, There is at least one,  For at least one, and   For  

some.  A sentence such as There exists an x such that P(x) is then written 

symbolically as either ∃∃∃∃ x  P(x) or equivalently ∃∃∃∃  x, P(x).   Here is a typical example of a 
true sentence in this form: 
 

∃∃∃∃  x, if x is a real number then 1 –  x
2
 is nonnegative. 

 

Note that if P is the predicate in the sentence above, then ∃∃∃∃  x, P(x) is true (take x = ½) 

but ∀∀∀∀ x, P(x) is false (take x = 2).  On the other hand, for every predicate Q we know 

that ∀∀∀∀ x  Q(x) automatically implies ∃∃∃∃ x  P(x).  
  
Since we are discussing tautologies involving quantifiers, we should mention two other 
basic statements of this type. 
 

Tautology Criterion 1: Every sentence of the type [ ¬∃∃∃∃  x, P(x) ]  ⇔⇔⇔⇔  [ ∀∀∀∀ x, ¬P(x) ]  is 
true. 
 

Tautology Criterion 2: Every sentence of the type [ ¬∀∀∀∀ x, P(x) ]  ⇔⇔⇔⇔  [∃∃∃∃  x, ¬P(x) ] is 
true. 
 

In mathematical writings one often sees a variant of the existential quantifier called the 

unique existential quantifier, which is denoted by ∃∃∃∃ I  or ∃∃∃∃ !  or ∃∃∃∃ 1  and signifies the 

unique existence of some object.  For example, the sentence ∃∃∃∃ I x, P(x) is true when 

P(x) is given as follows: 
 

x is an integer and  x  +  1  =  2. 
 

On the other hand, the sentence ∃∃∃∃ I x, Q(x) is false if Q(x) is given as follows: 
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x is an integer and  x
2
  –  3x  +  2  =  0. 

 

Formally one can express ∃∃∃∃ I directly in terms of the other quantifiers because a 

statement of the form ∃∃∃∃ I x, P(x) can be written in the following equivalent terms: 
 

[ ∃∃∃∃  x, P(x) ]   &   [ ∀∀∀∀ x ∀∀∀∀ y,  { P(x)  &  P( y) } ⇒⇒⇒⇒ { x = y } ] 
 

Another point about quantifiers that merits discussion is the order in which they are 
listed.  If an expression contains multiple quantifiers, the order in which they appear may 

be very important.  For example, suppose that P(x, y)  is the following statement: 
 

x is a real number, and if y is a real number then x  >  y. 
 

Then ∀∀∀∀ y ∃∃∃∃ x,  P(x, y)   means that for every real number x there is a larger real number 

y, and hence the quantified statement is true ,  but  ∃∃∃∃ x ∀∀∀∀y,  P(x, y)   is false (there is 

no number x  which is greater than every number, including itself).   In contrast, if P is a 

predicate such that ∃∃∃∃x ∀∀∀∀ y,  P(x, y)   is true, then ∀∀∀∀ y ∃∃∃∃x,  P(x, y)    will always be true. 
 

Predicate calculus is covered in Section 10.11 of Lipschutz and Sections 1.3 and 1.4 of 
Rosen.  The material in these sections on bound variables, nested quantifiers, the order 
of quantifiers, translating English sentences and Lewis Carroll’s logical puzzles goes 
beyond the topics covered here and in this course. 

 
Formal structure of languages 

 
The predicate calculus is an important first step in studying the formal structure or syntax 
of the language needed to carry out logical processes.  The study of such structure is 
particularly important in some aspects of computer science.  A detailed discussion of this 
topic is beyond the scope of these notes, but a good introductory discussion appears in 
Section 11.1 of Rosen.  It is extremely interesting to note that much of the work on 
formal grammars by noted workers in computer science such as J. Backus (1924 – 

2007) — who developed of the FORTRAN programming language which revolutionized 

computer programming — was anticipated many centuries earlier in the profound 
analysis of Sanskrit grammar due to Panini (520 – 460 B. C. E.) in his Astadhyayi (or 
Astaka ).  It is particularly noteworthy that Panini’s notation is equivalent in its power to 
that of Backus, and it has many similar properties.  

  
Mathematical proofs 

 
Standard methods and strategies for mathematical proofs are discussed in Sections 1.5, 
3.1 and 3.3 of Rosen.  We shall summarize the main points from these sections, mention 
a few other points points not specifically covered in these citations, and give some 
examples from high school mathematics and calculus (we are simply trying to illustrate 
the techniques, so our setting for now is informal, and in particular for the time being we 
shall not worry about things like how one proves the Intermediate Value Theorem that 
plays such an important role in calculus).  This is technically an example of a concept 
called local deduction, in which one only shows how to get from point A to point B, 
postponing questions about reaching point A to another time or place. 
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Some proofs use direct arguments, while others use indirect arguments.   The direct 
arguments are often the simplest, and many simple problem solving methods from 
elementary mathematics (algebra, in particular) are really just simple examples of direct 
proofs. 
 

Example.    If    2x + 1 = 5, show that    x = 2.   SOLUTION:    If    2x + 1 = 5,     then 

by subtracting 1 from each side we obtain    2 x = 4.  Next, if we divide both sides of the 

equation    2 x = 4 by 2, we obtain x = 2. 
 

In contrast, and indirect argument usually involves considering the negation of either the 
hypothesis or the conclusion.   This generally involves proof by contradiction, in which 
one assumes the conclusion is false and then proves part of the hypothesis is false, and 

it is related to the law of the contrapositive:   A statement    P  ⇒⇒⇒⇒  Q is true if and only 

if the contrapositive statement    not Q  ⇒⇒⇒⇒  not P is true. 
 

A general “rule of thumb” is to consider using an indirect argument if either no way of 
using a direct argument is apparent or if a direct approach seems to be getting very long 
and complicated.  There is no guarantee that an indirect argument will be any better, but 
if you get stuck trying a direct approach there often is not much to lose by seeing what 
happens if you try an indirect approach; in some cases, attempts to give an indirect 
argument may even lead to a valid or better direct proof. 
 

Example.   Show that if L and M are two lines then they have at most one point in 
common.    SOLUTION:    Suppose the conclusion is false, so that x and y are two 
distinct points on both L and M.  Then both L and M are lines containing these two 
points.  Since there is only one line N containing the two distinct points x and y, we know 
that L must be equal to N and similarly M must be equal to N, which means that L and M 
must be equal.  This contradicts our original assumption; the problem arose because we 
added an assumption that x and y belonged to both lines.  Therefore L and M cannot 
have two (or more) points in common. 
 

An important step in such indirect arguments is to make sure that the negation of the 
conclusion is accurately stated.   Mistakes in stating the negation usually lead to 
mistakes in arguments intended to prove the original result. 
 

Forward and backwards reasoning.    Very often it is helpful to work backwards as 
well as forwards.  For example, if you want to show that P implies Q, in some cases it 
might be easier to find some statement R that implies Q, and then to see if it is possible 
to prove that P implies R.  Of course, there may be several intermediate steps of this 
type. 
 

Example.    Show that the polynomial f(x) = x
5
 – x – 1 has a real root.    SOLUTION:    

We know that polynomials are continuous and that continuous functions have the 
Intermediate Value Property.  Therefore if we can show that the polynomial is positive for 

some value of x and negative for another, then we can also show that this polynomial 
has a real root.  One way of doing this is simply to calculate the value of the polynomial 
for several different values of the independent variable.  If we do so, then we see that    
f(1) = – 1 and    f(2) = 29.  Therefore we know that  f(x) has a root, and in fact by the 

Intermediate Value Theorem from first year calculus we know there is a root which lies 

somewhere between 1 and 2. 
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Proofs by cases.    Frequently it is convenient to break things up into all the different 
cases and to check them individually, and in some cases this is simply unavoidable. 
 

Example.    Let sgn(x)  be the function whose value is 1 if x is positive,    – 1 if x is 

negative, and 0 if x = 0. Prove that sgn(x y)  =  sgn(x) sgn( y).    
 

There are three possibilities for x (positive, negative, zero) and likewise for y, leading to 

the following list of nine possibilities for x and y: 
 

[+, +], [+, 0],  [+, –],  [0, +],  [0, 0],  [0, –],  [–, +],  [–, 0],  [–, –] 
 

One can then handle each case (or various classes of cases) separately; for example, 
the five cases where at least one number is zero follow because in all these cases we 

have x y   =  sgn(x) sgn( y)  =  0.  In the remaining cases, we can first establish and 

then use the identity w   = sgn(w) | w |  to complete the argument. 
 

In all proofs by cases, it is important to be absolutely certain that    ALL    possibilities 
have been listed.   The omission of some cases is an automatic mistake in any proof. 
 

Interchanging roles of variables.    This is a basic example of proofs by cases in which 
it is possible to “leverage” one case and obtain the other with little or no additional work. 
 

Example.   Show that if x and y have opposite signs, then we have |x – y|   =  |x| + |y|.  
 

SOLUTION:        Suppose first that x is positive and y is negative.   Then the left hand 
side is just x + |y|   =  |x| + |y|.   Now suppose y is positive and x is negative.  Then if we 
apply the preceding argument to y and x rather than to x and y we then obtain the 
equation |y – x|   =  |y| + |x|.   Since the left hand side is equal to  |x – y| and the right 
hand side is equal to |x| + |y|, we get the same conclusion as before.   In a situation of 
this type we often say that the second case follows from the first by reversing the roles of 
x and y. 
 
Vacuous proofs.    In some instances a statement is true because there are no 
examples where the hypothesis is valid. 
 

Example.     Show that if x is a number such that x + 1  =  x, then x
2
 + 1  =  x

2
.  

 

SOLUTION:    There is no number satisfying the hypothesis, so whatever conclusion 
one states, there will be no number which satisfies the first but does not satisfy the 

second.   Formally, the statement P  ⇒⇒⇒⇒  Q merely signifies that there are no situations in 
which P is true but Q is false; if there are no situations where P is true, then there also 
cannot be any where P is true but Q is false. 
 

How can this be useful in mathematics?    Sometimes the use of vacuously true 
statements allows one to state conclusions in a simpler or more uniform manner.  For 
example, in elementary geometry one can show that the sum of the measures of the 

vertex angles for a regular n – gon is equal to 180 (n – 2)/n degrees.   Strictly speaking 

this is only valid if n is at least 3 because every regular polygon has at least three sides, 
but for some purposes it is convenient simply to state the formula for all positive integers 

n.  The formula gives a negative angle measurement when n = 1, but in some sense 

this does not matter; the formula does not apply if n = 1 because there is no such thing 



 

 23

as a 1 – gon.  The point is that the statement of the formula is logically correct even if we 

omit the condition that n is at least 3.  This is a simple situation, but the concept of 
“vacuously true” also turns out to be useful in other situations where the hypothesis or 
conclusion is more complicated.  
 

Adapting existing proofs.     In all activities, it can be useful to use an idea that has 
worked to solve one problem in an attempt to solve another that may be somehow 
related.   The same principle works for mathematical proofs.  You can try this approach 

in order to prove that if 3 x + 1 = 10, then x = 3  (modify the first proof above). 
 
Disproving conjectures.     Frequently one is faced with an unproven statement and 
the goal is to determine whether it is true or false.   If you suspect the statement is false, 
often the fastest and simplest way to confirm this is to construct a counterexample 
which satisfies the hypotheses but not the entire conclusion.     
 

Illustration.    If we are given real numbers a and b such that a
3
 – a = b

3
 – b, can we 

conclude that a = b ?     
 

SOLUTION:   We should remark first that this is true if the absolute values of a and b 

are greater than 2, and someone who knows this might wonder if it is evidence that the 
result is always true.  However, it is not; to show this we need to find explicit distinct 

values of a and b for which the equation holds.  This can be done systematically, but 

the fastest way is to look at some examples and notices that the numbers 0 and 1 
provide a counterexample. 
 

On the other hand, it is important to recognize that one cannot prove a general 
statement by simply checking one, several, or even infinitely many examples that 
do not exhaust all the possibilities, and the preceding statement demonstrates this 

very convincingly (it is true whenever a and b are greater than 2). 
 

Contrapositives, biconditionals and logical equivalences.  In order to complete a 

proof of the biconditional (or logical equivalence) statement P  ⇔⇔⇔⇔  Q, it suffices to prove 

the two separate statements P  ⇒⇒⇒⇒  Q and (its “inverse” statement)  not P  ⇒⇒⇒⇒  not Q.  

[The reason for this rule is that the inverse statement not P  ⇒⇒⇒⇒  not Q is the 

contrapositive of the converse statement Q  ⇒⇒⇒⇒   P.] 
 

Similarly, in order to complete a proof of P  ⇔⇔⇔⇔  Q, it suffices to prove the contrapositive 

statement not Q  ⇒⇒⇒⇒  not P and the inverse statement not P  ⇒⇒⇒⇒  not Q. 
 
Proofs of existence and uniqueness.  It is absolutely essential to remember that all 
such proofs have two parts, one of which is an existence proof and the other of which is 
a uniqueness proof. 
 

A symbolic approach to proofs.    If it is difficult to decide how to start a proof, one 
suggestion is to put things into symbolic terms along the lines of the present section.  
This may provide enough insight into the question that a successful proof strategy can 
be found. 
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The use of definitions as a proof strategy.    Another suggestion for finding a proof 
strategy is to recall all relevant definitions; it is very easy to overlook these or recall them 
inaccurately. 
 

The do – something approach to finding proofs.  This is simply trial and error, but it 
definitely should not be underestimated (recall Thomas Edison’s comment about genius 

being 99 per cent perspiration and one per cent inspiration!).  Even if no particular way 
of getting from the start to the finish is apparent, there is often little to lose by simply 
getting involved, doing something, trying different approaches, drawing pictures and 
proving everything that one can from the information given.  Most of the proofs in print 
give no idea of the dead ends, incomplete arguments and otherwise unsuccessful efforts 
at proving something that took place before a valid proof was found.  Trial and error is 
just as much a part of proofs in mathematics as it is of any other intellectual activity. 
 

Mathematical induction (Finite induction).    This is often a very powerful technique, 
but it is really more of a method to provide a formal verification of something that is 
suspected to be true rather than a tool for making intuitive discoveries, but it is 
absolutely essential.   The use of mathematical induction dates back at least to some 

work of F. Maurolico (1494 – 1575).  There are many situations in discrete mathematics 

where this method is absolutely essential; we shall postpone discussing this until Unit V. 
 

Avoiding and finding mistakes in proofs.    Unfortunately, there is no simple way of 
doing these outside of checking things repeatedly and carefully, but we have already 
mentioned a few common causes of difficulties and how to prevent them and there are 
several more common errors that can be mentioned:  The list below is by no means 
exhaustive. 
 

1. Begging the question.   Frequently one finds arguments in which a proof 
uses and relies upon some other auxiliary which has not been proven.  In 
such instances all one has shown is that if this auxiliary statement is true, then 
the original statement is true.   However, we may have no way of knowing 
whether the auxiliary statement is true or false. 

 

2. Computational errors.   Sometimes mistakes in arithmetic or algebra are 
embedded in arguments and destroy their validity. 

 

3. Incorrect citations of other results.   Of course, this can be deadly to a 
proof.  Division by zero is a standard elementary example, in which one 
neglects to recognize that ax  =  ay implies x  =  y only if a is nonzero. 

 

4. Proving only half of biconditional or existence – uniqueness proofs.  Half 
a proof may be better than none at all, but it is still just half a proof. 

 

5. Proving the converse instead.  Often one finds arguments which show that 
if the conclusion is true, then the hypothesis is true.   This is the reverse of 
what is supposed to be established. 

 

6. Using unproven converses.     This is a special case of the third item, but it 
is also one which plays a role in elementary algebra. 

 

The last of these is related to material on extraneous roots that one finds in elementary 
algebra courses.   Here is a quick review of the underlying ideas.   Suppose that we 
want to solve an equation like  
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. 
 

The standard way to attack this problem is to eliminate the radical by squaring both 
sides and solving for x: 
 

 
(Source:  http://regentsprep.org/Regents/mathb/7D3/radlesson.htm) 

 

This tells us that the only possible solutions are given by the two values above, but it 
does not guarantee that either is a solution.  The reason for this is that the first step, 
in which we square both sides, shows that the first equation implies the second, but it 
does not imply that the second implies the first; for example, even though the squares of 

2 and – 2 are equal, it clearly does not follow that these two numbers are the same.   
In order to complete the solution of the problem, we need to go back and determine 

which, if any, of these two possible solutions will work.  It turns out that x = 7 is a 

solution, but on the other hand x = – 3 is not (and hence is an extraneous root). 
 

The online site http://www.jimloy.com/algebra/square.htm discusses further examples of 
this type. 
   

Pólya’s suggestions for solving problems.  The classic book, How to solve it, by G. 
Pólya (1887 – 1985), discusses useful strategies for working problems in mathematics.  
A summary of his suggestions and a more detailed reference for the book appear in the 
online document 
 

http://math.ucr.edu/~res/polya.pdf 
 

which is stored in the course directory. 
 

Ends of proofs.  In classical writings mathematicians used the initials Q. E. D. (for the 
Latin phrase, that which was to be demonstrated) or Q. E. F. (for the Latin phrase, that 
which was to be constructed) to indicate the end of a proof or construction.  Some 
writers still use this notation, but more often the end of a proof or line of reasoning is now 
indicated by a large black square, which is sometimes known as a “tombstone” or 
“Halmos (big) dot.”  We shall also use the symbol “ � ” to mark the end of an argument. 
 
Reference for further reading.  There is an article on writing proofs (“A guide to proof 

– writing,” by R. Morash) on pages 437 – 447 of the following supplement to Rosen’s 
text: 
 

K. Rosen, Student Solutions Guide to Discrete Mathematics and Its 

Applications (5
th
 Ed.).  McGraw – Hill, Boston, 2003.  ISBN: 0–07–247477–7. 

 

Of course, there are also many other excellent books available; we have chosen one 
that is closely related to a text that was consulted repeatedly in the preparation of these 
notes.  
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I I .2 :  Notation and first steps 
 

 
(Halmos, § 1;  Lipschutz, §§ 1.2 – 1.5, 1.10) 

 
 

We shall start by summarizing the naïve approach, and then we shall explain how things 
can be set up more formally.  A reader who wishes to skip the latter may do so by going 
directly from the end of the discussion of the former to the final portion of this section 
titled A few simple consequences. 
 
 

The naïve approach 

 
Most if not all of this is probably familiar, but it is necessary to state things explicitly for 
the sake of completeness. 
 

In the mathematical sciences, a “set ” is supposed to be a collection of objects; as 
noted on page 4 of Halmos, “A pack of wolves, a bunch of grapes or a flock of pigeons 
are all examples.”   To illustrate the generality of the concept, we note that the objects in 
a set may themselves be sets.  For mathematical purposes the only relevant information 
about a set concerns the objects belonging to it, and accordingly a set is completely 
determined by the objects that belong to (or are members of) it.  If an object x 

belongs to a set X, we shall denote this fact by the usual notation x ∈∈∈∈ X. 
 

There are two standard ways of describing a set.  In some cases we can describe the 
set by listing all the objects in it.  For example, the set consisting of the positive integers 

from 1 to 5 may be denoted by { 1, 2, 3, 4, 5 }.  On the other hand, a set is often 
described in terms of the properties that are true for objects belonging to it and false for 
objects that do not belong to it.  For example, if we wish to describe the set of whole 
numbers that are perfect squares, we use what is called set builder notation:  
 

{ x  |  x  is an integer and  x  =  y 2  for some integer y } 
 

This is read verbally as “the set of all x such that x is an integer and x is equal to y 2 for 
some integer y” (where the vertical line “|” is read “such that”).  
 

The possibility of a set which has no members is generally allowed, and it is called the 
“empty set” (or null set).  It is generally denoted by symbolism such as Ø . 
 

 A “subset” of a set X is simply a set which contains some but not necessarily all of the 
objects in X, and it is a “proper subset” if it does not contain all of the objects in X.  
 

Subsets are denoted using the symbol  ⊂⊂⊂⊂ , and the statement Y ⊂⊂⊂⊂ X is often expressed 

verbally as “Y is a subset of X” or “Y is contained in X” or “X contains Y.”   Sometimes 

we shall also express this relationship using the notation Y  ⊃  X. 
 

There is one further point which is usually omitted in elementary treatments of set theory 
but must be mentioned here.  Although there is a great deal of flexibility in the sorts of 
properties that can be used to define a set, serious problems arise if one tries to stretch 
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this too far.  Such difficulties were first discovered at the end of the 19th and beginning of 
the 20th century and involve collections that are somehow “too big” to be handled 
effectively.  For example, problems arise if one tries to talk about “the set of all possible 

sets.”  Further information on this appears on pages 6 – 7 of Halmos and in the more 
formal approach to set theory in this section.  
  
There are two ways of avoiding such problems with oversize collections.  One is to 
recognize their existence but to have a two-tiered system of collections in which some 
are regarded as sets and others are not.  The latter are generally too large, and one 
cannot do as much with them as one can with sets.  For example, a collection which is 
not a set cannot be viewed as a member of some other collection.  Fortunately, these 
exceptional objects do not cause any real problems most of the time; in nearly all 
situations, the foundational questions can be avoided by assuming that everything in 
sight lies inside some very large and fixed quasi – universal set. 
 

Once again, a reader who wishes to skip the more formal discussion of the framework 
for set theory may do so by proceeding directly to the heading, A few simple 
consequences. 

 
A more formal approach 

 
 

Nothing will come of nothing.  
 

(Shakespeare, King Lear, Act I, Sc. 1) 
 

We can’t define anything precisely.  If we attempt 
to, we get into that paralysis of thought that comes 
to philosophers … one saying to the other: “You 
don't know what you are talking about!” The 
second one says: “What do you mean by talking? 
What do you mean by you? What do you mean by 
know?” 
 

R. Feynman (1918 – 1988), The Feynman 
Lectures on Physics  

 

Every logical discussion must begin somewhere.  An endless sequence of definitions or 
proofs based on earlier ones will not lead to any firm conclusions.  In order to begin, the 
following three requirements must be fulfilled: 
 

1. There must be a mutual understanding of the words and 
symbols to be used. 

 

2. There must be acceptance of certain statements whose 
correctness is not further justified. 

 

3. There must be agreement about the rules of reasoning which 
determine how and when one statement follows logically from 
another.  

 

The words and symbols in the first item are generally known as undefined concepts in 
mathematics, and the statements described in the second item are generally known as 
assumptions, axioms or postulates (in modern usage all these are synonymous).  We 

have already treated the rules of reasoning in Section I I.0. 
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By modern standards, one logical difficulty with Euclid’s Elements is that it tried to 
define everything.  For example, a point was defined to be something that had no “part” 
or dimensions; to be logically precise, such a definition depends in turn upon giving a 
sound definition of “part” or dimension, and of course the same applies to any terms 
used in the definitions of the latter.  The introduction of undefined concepts eliminates 
such infinite regressions.  However, it is important to recognize that undefined concepts 
may not have any real value unless one has some understanding of what they are 
supposed to represent.  In other words, if deductions are expected to yield useful 
information, then the undefined concepts in a discussion should be formal idealizations 
of things that are relatively familiar and recognizable. 
 
 

Undefined concepts in set theory 
 
 

Not surprisingly, the most important undefined concept in this subject is a set, which 
corresponds to a collection of objects.  Since one important property of such a collection 
is whether some given object belongs to it, the notion of one entity belonging to another 
is almost as basic of an undefined concept as the notion of a set itself. 
 

In order to avoid logical difficulties with oversized sets described above, we shall work 
with three primitive concepts which reflect the intuitive notions in the preceding 
paragraph. 
 

1. CLASSES.  These are collections of objects; it is assumed that 
each object itself is also a class. 

 

2. SETS.  Collections of objects that are small enough to work with 
reliably. 

 

3. MEMBERSHIP.  A grammatical statement with two subjects that 
represents one class belonging to another. 

 

Items of the first type (actually, two types) are generally denoted by symbols such as 
letters.  The statement that a class A belongs to a class B is usually written in the 

standard manner as A  ∈∈∈∈  B.  Likewise, we shall write A  ∉∉∉∉  B  to indicate that  A  does   
NOT   belong to the class  B.   Following standard mathematical usage, we shall often 

use expressions of the following types as synonyms for A  ∈∈∈∈  B:  
 

•••• A  belongs to  B.  

•••• A  is a member of  B.  

•••• A  is an element of  B. 
 

Furthermore, we shall often say that the members or elements of a class B are all the 

objects A such that A  ∈∈∈∈  B.   None of this is surprising, but the important point is that we 
are trying to build a theory of sets that is completely formal starting from scratch, and we 
need to start with this familiar sort of structure. 
 

Comments on the introduction of classes as an undefined concept.  Our approach, 
which  differs from Halmos in that we also mention certain collections of objects that are 
too large to be treated as sets; this viewpoint was developed by J. von Neumann (1903 
– 1957).  As an example of the logical problems with an overly casual approach to set 
theory that are discussed in pages Halmos, we note that difficulties arise if one attempts 
to consider a universal set containing all sets.   More will be said about this in the 

discussion of Russell’s Paradox in Section I I.3.  The viewpoint of these notes 
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resembles the approach taken in many versions of axiomatic set theory:  It is meaningful 
for us to talk about a universal collection or class of objects, but the latter is simply too 
large to be treated as a set.  If a class is NOT a set, we shall say that it is a proper 
class. 
 

Our first basic assumption will be a smallness property that characterizes sets. 
 

SMALLNESS PROPERTY FOR SETS.  A class A is a set if and only if A  ∈∈∈∈  B for some 
class B. 
 

Some good news.  As we have already noted, in mathematics it is usually not 
necessary to worry very much about the formal distinction between sets and classes.  
The following paragraph summarizes the situation: 
 

For all practical purposes within this course, and nearly all other purposes 
in higher mathematics, one can simply view a set as a collection of 
objects that is not too large; a standard way of doing this is to assume 
that all objects in a given situation are subsets of some fixed larger 
set.   

 

The most significant exceptions to this principle arise in material dealing explicitly with 
the foundations of mathematics.  
 

The definitions of subclass and subset are now straightforward. 
 

Definition.  Let A and B be classes of objects.  We shall say that A is a subclass of B 

and write A  ⊂⊂⊂⊂   B if for each object x such that a  ∈∈∈∈  A, then we also have x  ∈∈∈∈  B.  If in 
addition A and B are sets, then we shall say that A is a subset of B. 
 

If A  ⊂⊂⊂⊂   B and the class B is small enough to be a set then one would expect the same 
holds for the class A, and in fact this is the case. 
 

SUBSET PROPERTY.   If A  ⊂⊂⊂⊂   B and B is a set, then A is also a set. 
 

Previous experience with set theory suggests that two sets should be the same if and 
only if they contain exactly the same objects.  The next property reflects this basic fact. 
 

EXTENSIONALITY PROPERTY.  If A and B are classes, then A  =  B if and only if we 

have A  ⊂⊂⊂⊂   B and B  ⊂⊂⊂⊂   A. 
 

Finally, we need to add another simple assumption, without which the whole theory 
would be entirely meaningless. 
 

MINIMAL EXISTENCE PROPERTY.  There exists at least one set. 

 
A few simple consequences 

 
Regardless of whether we adopt a naïve or more formal approach to set theory, there 
are already a few conclusions that can derived from what we have developed thus far. 
Here are two simple but important logical consequences of the definition of a subset or 
subclass: 
 

Proposition 1.  For each class A we have A  ⊂⊂⊂⊂  A. 
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Proof.  By definition of subclasses, this amounts to saying that for all x such that x  ∈∈∈∈  

A, we have x  ∈∈∈∈  A.  But this follows because every true statement implies itself.� 
 

Definition.  If A and B are classes of objects such that A  ⊂⊂⊂⊂   B, we shall say that A is a 
proper subclass of B if in addition A  ≠  B (and a proper subset if B is a set). 
 

Proposition 2.  If we are given classes A, B, C such that A  ⊂⊂⊂⊂   B and B  ⊂⊂⊂⊂   C, then we 

also have A  ⊂⊂⊂⊂   C. 
 

Proof.  By definition of subclasses and the assumptions, we know that for each x such 

that x  ∈∈∈∈  A, we also have x  ∈∈∈∈  B.  Likewise, for each y such that y  ∈∈∈∈  B, we also have 

y  ∈∈∈∈  C.  Combining these, we conclude that for each x such that x  ∈∈∈∈  A, we must also 

have x  ∈∈∈∈  C.�  
 

The Extensionality Property (two classes are the same if they have the same elements) 
has a simple but fundamental consequence. 
 

Proposition 3.  If A is a proper subclass of B, then there exists some object x such that 

x  ∈∈∈∈  B but x  ∉∉∉∉  A.   
 

Proof.  By hypothesis we know that A  ⊂⊂⊂⊂   B but A  ≠≠≠≠  B.  If B  ⊂⊂⊂⊂   A were true, then by 

extensionality we would have A  =  B.  Therefore B  ⊂⊂⊂⊂   A must be false, and this means 

that there must be some x such that x  ∈∈∈∈  B but x  ∉∉∉∉  A.�  
 
 

Variants of sets 
 
 

For certain purposes it is useful to have elaborations of sets known as multisets (also 
called bags) and fuzzy sets.  For both of these, the extra data are numerical “values of 
membership” attached to each element.  In the case of multisets, the value is a positive 
integer and it indicates that an element is somehow repeated; a simple example would 
be the roots of a quadratic equation, where one might have two single roots or one 
double root.    For fuzzy sets, the value of membership is a real number in the unit 
interval, and intuitively it can be viewed as a probability that the element actually belongs 
to the set in question.  Further discussions of both concepts are given on pages 96 – 97 
of Rosen. 
 

 

I I .3 :  Simple examples 
 

 
(Halmos, §§ 1 – 3;  Lipschutz, § 1.12) 

 
 

Thus far the only specific example of a set we have mentioned is the empty set, and at 
this point we need some ways of constructing other examples.  Once again, prior 
experience with set theory suggests that one can define a set by stipulating that the 
objects contained in it satisfy a given condition.  Our next order of business is to make 
this more precise; the following version covers both the naïve and formal approaches. 
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SPECIFICATION PROPERTY.  Suppose that we are given a set A and an admissible 

predicate statement P(x).  Then there is a subset B  ⊂⊂⊂⊂   A such that x  ∈∈∈∈  B if and only if 

x  ∈∈∈∈  A and the statement P(x) is true. 
 

To elaborate on comments in the previous section, some standard ways of writing such 
a set are  
 

{ x |  x  ∈∈∈∈  A &  P(x) }    or    { x  ∈∈∈∈  A |  P(x) }    or    { x  ∈∈∈∈  A :  P(x) }. 
 

The admissibility requirement is included to guarantee that the statement P(x) is 
meaningful in our context; for most practical purposes it will create no problems.  A brief 
discussion of suitably meaningful statements appears on pages 5 – 6 of Halmos. 
 

It is possible to weaken the Specification Axiom somewhat to eliminate the dependence 
on some predetermined set A, but in practice this requirement is not an obstacle and the 
weaker statement is considerably more complicated to state.  However, some additional 
condition is needed to avoid logical difficulties.  We shall not give an explicit description 
of admissibility, but it is useful to discuss the problems which showed the need for such 
a restriction. 
 
 

Admissible statements and Russell’s Paradox 
 
 

The most convincing example to illustrate the need to avoid totally unrestricted 
constructions of the form  
 

{ x |  P(x) } 
 

was discovered by B. Russell (1872 – 1970; much better known outside of mathematics 
for his philosophical writings and political activism) near the beginning of the 20th 

century.  He considered the simple example where P(x) is given by x  ∉∉∉∉  x.  Suppose we 

can construct a set A  =  { x |  x  ∉∉∉∉  x }.  One can then ask whether or not A  ∈∈∈∈  A.  If 

the answer is yes, then the definition of A would seem to imply that A  ∉∉∉∉  A, while if the 

answer is no, then the definition of A would seem to imply that A  ∈∈∈∈  A.  Each options 
leads to a contradiction, and hence neither is acceptable.  Numerous other problems of 
a similar nature were discovered around the same time.  Eventually it became clear that 
the underlying difficulty resulted from attempts to use sentences which somehow refer to 
themselves (think about the nonmathematical statements, “This sentence is false,” or 
“No generalization is worth very much, including this one.”).  The specific condition in 
our Specification Axiom is a simple but effective way of doing so. 
 

The idea of a set being an element of itself is somewhat contrary to our intuition, and in 
the usual forms of set theory in use today the possibility is excluded.  We shall discuss 

this further in Section I I I. 4. 
 
 

A formal approach to the empty set 
 
 

A reader who wishes to bypass material on the formal approach to set theory may skip 
this discussion and proceed directly to the next heading. 
 

We have not yet explained how or why the empty set fits into our formal approach to set 
theory.  The Specification Property gives us an easy way of doing so. 
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Proposition 1.  In the formal approach to set theory, there is a unique empty set Ø 

with the property that x  ∉∉∉∉  Ø for every set x. 
 

Proof.   Since we just assumed the existence of a set, let us try to use this right away.  
Let A be a set, and use the Specification Axiom to construct the set  
 

N  =  { x  ∈∈∈∈  A |  x  ≠  x }. 
 

For all y  ∈∈∈∈  A we have y  =  y and therefore it follows that y  ∉∉∉∉  N for all y  ∈∈∈∈  A.  By 

construction it follows that z  ∉∉∉∉  N for all z  ∉∉∉∉  A, and therefore we conclude that x  ∉∉∉∉  N 
for every set x.  This proves the existence part of the proposition. 
 

To prove uniqueness, let M and N be sets such that x  ∉∉∉∉  M, N for every set x.  Since 

nothing belongs to either set the statements M  ⊂⊂⊂⊂   N and N  ⊂⊂⊂⊂   M are vacuously true, 
and therefore by the Extensionality Property we must have M  =  N.� 
 
 

Important special cases of the Specification Axiom 
 
 

At least informally, the uses of the specification axiom to construct sets should be clear.  

For example, if we have a set RRRR of real numbers with the expected properties then we 

can define the closed interval 
 

[0, 1]   =   { x  ∈∈∈∈  RRRR |  0  ≤≤≤≤   x  ≤≤≤≤  1 } 
 

and similar subsets that arise repeatedly in calculus and other mathematics courses.  
Our interest here will be more directed towards simple general constructions.  The 
remainder of this section is valid for both the naïve and formal approaches. 
 

Proposition 2.  Suppose that A is a set.  Then there is a set { A } such that A  ∈∈∈∈  { A } if 
and only if x  =  A. 
 

The set { A }  is sometimes called singleton A. 
 

Proof.   Since A is a set we know that A  ∈∈∈∈  B for some B.   By the Specification Axiom 

there is a set given by the description { x  ∈∈∈∈  B |  x  =  A }.  This is the set { A } which is 
described in the conclusion.� 
 

It is important to recognize the difference between A and { A }, particularly since it is very 
tempting and natural (but dangerously incorrect!!) to abbreviate the latter to A.  As 
noted near the bottom of page 4 in Halmos,  
 

A box that contains a hat and nothing else is not the same thing as a hat. 
 

The preceding result yields a simple example of a nonempty set. 
 

Corollary 3.  There is a nonempty set A such that x  ∈∈∈∈  A if and only if x  =   Ø .� 
 

Since we are discussing results involving the empty set, this is a good time to mention 
one of its basic properties.  
 

Proposition 4.  For every set A we have Ø   ⊂⊂⊂⊂   A .  
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Proof.   This is similar to the last paragraph of the preceding argument.  Since nothing 

belongs to Ø the statement “(∀∀∀∀x) x  ∈∈∈∈  Ø  ⇒⇒⇒⇒ x  ∈∈∈∈  A” is vacuously true.�  
 
 

Sets defined by finite lists 
 
 

We would like to elaborate upon the argument in Proposition 2 to show that for each 

finite list of sets A 1, … , A n  there is a set { A 1, … , A n } such that B  ∈∈∈∈  { A 1, … , A n } if 

and only if B  =  A k  for some choice of k.  In order to keep the discussion simple, we 

shall initially limit ourselves to the case where n  =  2.   
 

PAIRING PROPERTY.  If A and B are two sets, then there exists a third set C such that 

A  ⊂⊂⊂⊂  C and B  ⊂⊂⊂⊂   C. 
 

Proposition 5.  Suppose that x and y are distinct sets.  Then there is a set { x, y }  

(the unordered pair) such that z  ∈∈∈∈  { x, y }  if and only if  z  =  x  or   z  =  y.  
 

Proof.   By the Pairing Axiom there is a set C such that { x }  ⊂⊂⊂⊂  C and { y }   ⊂⊂⊂⊂   C.  
Therefore by the Specification Axiom there is a set defined by the description 

{ z ∈∈∈∈  C |  z  =  x  or   z  =  y }.  This is precisely the set described in the conclusion.� 
 

In most situations that arise in mathematics, if we are given a finite list of sets A 1, … , A n  

then the underlying assumptions will imply the existence of a set C such that A k  ∈∈∈∈  C for 

all k, and in such cases there is a simple generalization of the previous result. 
 

Proposition 6.  Suppose that A 1, … , A n  are sets, and assume also that there is some 

set C such that A k  ∈∈∈∈  C for all k.  Then there exists a set { A 1, … , A n } such that we 

have B  ∈∈∈∈  { A 1, … , A n } if and only if B  =  A k  for some k. 
 

Proof.   In this case the desired set is given by the following condition:  
 

{  x ∈∈∈∈  C |  x  =  A k  for some k  } 
 

Equivalently, the set is also given by the following description: 
 

{  x ∈∈∈∈  C |  x  =  A 1  or x  =  A 2  or  …  or x  =  A n  } 
 

Either way we obtain the desired set.� 
 

Further examples.  The middle paragraph on page 10 of Halmos gives several 
examples of sets that can be constructed using the information about set theory that we 
have covered up to this point. 
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I I I :    Elementary constructions on sets 
 

 
In this unit we cover the some fundamental constructions of set theory that are used 
throughout the mathematical sciences. 
 

Much of this material is probably extremely familiar, but we shall start at the beginning 
for several reasons, including the following: 
 

1. To ensure that the discussion is complete. 
2. To emphasize the more abstract perspective on the material. 
3. To state some subtle but important differences in terminology 

between these notes and more elementary treatments of the 
material. 

 

In the final section of this unit we shall indicate how one expresses everything in more 
formal and axiomatic terms.  
 
Numbering conventions.  In mathematics it is often necessary to use results that were 
previously established.  Throughout these notes we shall refer to results from earlier 

sections by notation like Proposition I  I.4.6, which will denote Proposition 6 from Section 

I  I.4 (this particular example does not actually exist, but it should illustrate the key points 
adequately).  

 

 

I I I .1 :  Boolean operations 
 

 
(Halmos, §§ 4 – 5;  Lipschutz, §§ 1.6 – 1.7) 

 
 

We shall begin with a discussion of unions, intersections and complements.  In order to 
keep the discussion simple and familiar at the beginning, we shall begin by considering 
only those sets which are subsets of some fixed set S.    
 
Definitions.  Let A and B be subsets of some set S.  The standard Boolean operations 
on these sets are defined as follows: 
  

• The intersection of A and B is the set of all elements common to both sets.  It is 

symbolized by A  ∩∩∩∩  B  or  { x ∈∈∈∈  S   |   x  ∈∈∈∈  A    and   a  ∈∈∈∈  B }.  
  

• The union of two sets A and B is the set of elements which are in A or B or both. 

It is symbolized by  A  ∪∪∪∪  B  or   { x ∈∈∈∈  S     |   x  ∈∈∈∈  A    or   x  ∈∈∈∈  B }.    
 

• The relative complement of A in S is the set of all elements in S that do not 

belong to A.  It is symbolized by  S – A  or  { x ∈∈∈∈  S   |   x  ∉∉∉∉  A }. 
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Numerous other symbols are also used for the relative complement of A, including 
  

 
 

A ′′′′,  A
c
  and also A with a long horizontal line over it (  ).   

 

We shall now review and prove the standard relationships between these three 
operations on subsets of S.  The first group describes the algebraic identities involving 
unions and intersections which appear in the writings of G. Boole. 
 
Theorem 1.  Let A, B and C be subsets of some fixed set S.  Then the union and 
intersection defined as above satisfy the following Boolean algebra identities: 
 

 (Idempotent Law for unions.)  A  ∪∪∪∪  A   =   A.  
 

(Idempotent Law for intersections.)  A  ∩∩∩∩  A   =   A.     
 

  (Commutative Law for unions.)  A  ∪∪∪∪  B   =   B  ∪∪∪∪  A.  
 

(Commutative Law for intersections.)  A  ∩∩∩∩  B   =   B  ∩∩∩∩  A.     
 

 (Associative Law for unions.)  A  ∪∪∪∪  (B  ∪∪∪∪  C)   =   (A  ∪∪∪∪  B)  ∪∪∪∪  C. 
     

(Associative Law for intersections.)  A  ∩∩∩∩  (B  ∩∩∩∩  C)   =   (A  ∩∩∩∩  B)  ∩∩∩∩  C. 
 

(Distributive Law 1.)  A  ∩∩∩∩  (B  ∪∪∪∪  C)   =   (A  ∩∩∩∩  B)  ∪∪∪∪  (A  ∩∩∩∩  C). 
 

(Distributive Law 2.)  A  ∪∪∪∪  (B  ∩∩∩∩  C)   =   (A  ∪∪∪∪  B)  ∩∩∩∩  (A  ∪∪∪∪  C). 
 

(Zero Law.)  A  ∪∪∪∪  Ø   =   A. 
 

(Unit Law.)  A  ∩∩∩∩  S     =   A. 
 
The second group of set – theoretic relations also involves complementation. 
 
Theorem 2.  Let A and B be subsets of some fixed set S.  Then the union, intersection 
and relative complement satisfy the following identities: 
 

(Double negative Law.)   (A′′′′) ′′′′   =   A.  
 

(Complementation Law 1.)   A  ∪∪∪∪  A ′′′′      =   S. 
 

(Complementation Law 2.)   A  ∩∩∩∩  A ′′′′      =   Ø. 
 

(De Morgan’s Law 1.)   (A  ∪∪∪∪  B) ′′′′   =   A ′′′′  ∩∩∩∩   B ′′′′. 
 

(De Morgan’s Law 2.)   (A  ∩∩∩∩  B) ′′′′   =   A ′′′′  ∪∪∪∪   B ′′′′. 
 

Most if not all the verifications of these rules are fairly straightforward, and they 

essentially follow from the formulas for propositional calculus listed in Section I  I.0.  We 
shall fill in the details atfter the next heading.   Some identities are more obvious than 
others (in particular, the distributive laws and De Morgan’s laws are probably less 
intuitive than the commutative and associative laws), and in these cases we shall also 
give alternate arguments that are more detailed. 
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Boolean operations and subsets 

 
There are simple but important characterizations of the relationship A   ⊂⊂⊂⊂   B in terms of 
unions and intersections. 
 
Theorem 3.  Let A and B be subsets of some fixed set S.  Then the following are 
equivalent: 
 

 (i)  A  ∪∪∪∪  B     =   B 
 

(ii)  A   ⊂⊂⊂⊂   B 
 

(iii)  A  ∩∩∩∩  B     =   A 
 

Proof.  There are four parts to the argument. 
 

(i)  ⇒⇒⇒⇒  (ii)   If x  ∈∈∈∈  A, then x  ∈∈∈∈  A or x  ∈∈∈∈  B, and hence x  ∈∈∈∈  A  ∪∪∪∪  B, which is B.  
Hence we have A  ⊂⊂⊂⊂  B. 
 

(ii)  ⇒⇒⇒⇒  (i)   If A  ⊂⊂⊂⊂  B and x  ∈∈∈∈  A ∪∪∪∪  B, then x  ∈∈∈∈  A or x  ∈∈∈∈  B, and in either case we 

have x  ∈∈∈∈  B.  Hence we have A  ∪∪∪∪  B  ⊂⊂⊂⊂  B.  Conversely, if x  ∈∈∈∈  B, then we must have 
x  ∈∈∈∈  A or x  ∈∈∈∈  B, so that B  ⊂⊂⊂⊂  A  ∪∪∪∪  B.  Combining these, we have A  ∪∪∪∪  B   =   B. 
 

(ii)  ⇒⇒⇒⇒  (iii)   If A  ⊂⊂⊂⊂  B and x  ∈∈∈∈  A, then x  ∈∈∈∈  B and hence x  ∈∈∈∈  A  ∩∩∩∩  B, so that we 

have A  ⊂⊂⊂⊂  A  ∩∩∩∩  B. Conversely, if x  ∈∈∈∈  A  ∩∩∩∩  B, then x  ∈∈∈∈  A and x  ∈∈∈∈  B, and the latter 

means that A  ∩∩∩∩  B ⊂⊂⊂⊂  A.  Combining these, we have A  ∩∩∩∩  B   =   A. 
 

(iii)  ⇒⇒⇒⇒  (ii)   If x  ∈∈∈∈  A, then A  ∩∩∩∩  B   =   A implies that x  ∈∈∈∈  A and x  ∈∈∈∈  B, and the 

second of these means we must have A  ⊂⊂⊂⊂  B.� 

 
Verifications of the standard identities 

 
We shall derive the identities of Theorems 1 and 2 roughly in the order they were stated. 
 

Idempotent laws.  The law for unions is true because x  ∈∈∈∈  A    ⇔⇔⇔⇔    x  ∈∈∈∈  A  or  x  ∈∈∈∈  A, 
while the law for intersections is true because  x  ∈∈∈∈  A    ⇔⇔⇔⇔    x  ∈∈∈∈  A  and  x  ∈∈∈∈  A. 
 

Commutative laws.  The law for unions is true because  
 

x  ∈∈∈∈  A  ∪∪∪∪  B   ⇔⇔⇔⇔    x  ∈∈∈∈  A  or  x  ∈∈∈∈  B  ⇔⇔⇔⇔    x  ∈∈∈∈  B  or  x  ∈∈∈∈  A   ⇔⇔⇔⇔    x  ∈∈∈∈  B  ∪∪∪∪  A 
  

while the law for intersections is true because   
 

x  ∈∈∈∈  A  ∩∩∩∩  B   ⇔⇔⇔⇔    x  ∈∈∈∈  A  and  x  ∈∈∈∈  B   ⇔⇔⇔⇔    x  ∈∈∈∈  B  and  x  ∈∈∈∈  A   ⇔⇔⇔⇔    x  ∈∈∈∈  B  ∩∩∩∩  A. 
 

In symbolic terms, the preceding arguments are just special cases of the more general 
propositional equivalences 
 

P  ∨∨∨∨  Q    ⇔⇔⇔⇔    Q  ∨∨∨∨  P     and     P  ∧∧∧∧   Q    ⇔⇔⇔⇔    Q  ∧∧∧∧  P 
 

and we shall use other such equivalences freely in deriving the remaining assertions in 
the theorem. 
 

Associative laws.  The argument is similar, depending upon the general propositional 
equivalences  
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[P  ∧∧∧∧ (Q  ∧∧∧∧  R)]  ⇔⇔⇔⇔  [(P  ∧∧∧∧  Q)  ∧∧∧∧ R]     and     [P  ∨∨∨∨ (Q  ∨∨∨∨  R)]  ⇔⇔⇔⇔  [(P  ∨∨∨∨  Q)  ∨∨∨∨ R] 
 

where P, Q and R are the statements x  ∈∈∈∈  A,   x  ∈∈∈∈  B  and  x  ∈∈∈∈  C respectively. 
 
Distributive laws.  The argument is again similar, depending upon the general 
propositional equivalences 
  

[P ∧∧∧∧ (Q ∨∨∨∨ R)]   ⇔⇔⇔⇔   [(P ∧∧∧∧ Q) ∨∨∨∨ (P ∧∧∧∧ R)]     and     [P ∨∨∨∨ (Q ∧∧∧∧ R)]   ⇔⇔⇔⇔   [(P ∨∨∨∨ Q) ∧∧∧∧ (P ∨∨∨∨ R)] 
 

where P, Q and R are the statements x  ∈∈∈∈  A,   x  ∈∈∈∈  B  and  x  ∈∈∈∈  C respectively. 
 

Zero law.   One can characterize the empty set as the set of all x such that x  ≠≠≠≠ x.  Thus 

we have x  ∈∈∈∈  A ∪∪∪∪  Ø    ⇔⇔⇔⇔    x  ∈∈∈∈  A  or  x  ≠≠≠≠ x, and since the statement x  ≠≠≠≠ x is always 

false the second condition is equivalent to x  ∈∈∈∈  A.   
 

Unit law.   By hypothesis we know that A is a subset of S and therefore if x  ∈∈∈∈  A  we 

also have x  ∈∈∈∈  S, so that x  ∈∈∈∈  A  ∩∩∩∩  S.  Conversely, if x  ∈∈∈∈  A  ∩∩∩∩  S then we 

automatically have x  ∈∈∈∈  A.   
 
AN ALTERNATE APPROACH TO THE DISTRIBUTIVE LAWS.  Here is a method for 
deriving the distributive laws that does not use abstract propositional equivalences.  We 
include it because the equivalences in this case may be less transparent than the 

previous ones.  Given x  ∈∈∈∈  S, we know that each one of the three fundamental 

statements  x  ∈∈∈∈  A,  x  ∈∈∈∈  B  and  x  ∈∈∈∈  C is either  true or  false.  Thus there are exactly 
eight possibilities for every element of S.   It will suffice to show that in each of these 

cases that if  x  ∈∈∈∈  A  ∩∩∩∩  (B  ∪∪∪∪  C)  then x  ∈∈∈∈   (A  ∩∩∩∩  B)  ∪∪∪∪  (A  ∩∩∩∩  C) and conversely 

(this will prove the first distributive law), and similarly if we have x  ∈∈∈∈   A  ∪∪∪∪  (B  ∩∩∩∩  C)   

then x  ∈∈∈∈   (A  ∪∪∪∪  B)  ∩∩∩∩  (A  ∪∪∪∪  C) and conversely (this will prove the second distributive 
law).  The first step is to compile a table containing all eight possibilities; in the table 

below, + indicates that the relevant statement is true and 0 indicates that it is false. 

 
 

x  ∈∈∈∈  A 
 

x  ∈∈∈∈  B 
 

x  ∈∈∈∈  C 
 

0 0 0 

0 0 + 

0 + 0 

0 + + 

+ 0 0 

+ 0 + 

+ + 0 

+ + + 

 

Note that if we replace + by 1 then these possibilities are an ordered list corresponding 

to the base two expansions of the integers 0 through 7.  Our next step is to add two 

columns to this table, one of which indicates whether x  ∈∈∈∈  A  ∩∩∩∩  (B  ∪∪∪∪  C) in the given 
case and the other of which gives reasons for this conclusion. 
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x  ∈∈∈∈  A x  ∈∈∈∈  B x  ∈∈∈∈  C x  ∈∈∈∈   

A  ∩∩∩∩  (B  ∪∪∪∪  C) 

Reason(s) 

0 0 0 0 x  ∉∉∉∉  A 

0 0 + 0 x  ∉∉∉∉  A 

0 + 0 0 x  ∉∉∉∉  A 

0 + + 0 x  ∉∉∉∉  A 

+ 0 0 0 x  ∉∉∉∉  B  ∪∪∪∪  C 

+ 0 + + x ∈∈∈∈ A  &  x ∈∈∈∈ C   

+ + 0 + x ∈∈∈∈ A  &  x ∈∈∈∈ B   

+ + + + x ∈∈∈∈ A  &  x ∈∈∈∈ B   

 
We next carry out the same process for x  ∈∈∈∈   (A  ∩∩∩∩  B)  ∪∪∪∪  (A  ∩∩∩∩  C): 

 
x  ∈∈∈∈  A x  ∈∈∈∈  B x  ∈∈∈∈  C x  ∈∈∈∈  

(A  ∩∩∩∩  B)  

∪∪∪∪   

(A  ∩∩∩∩  C) 

Reason(s) 

0 0 0 0 x  ∉∉∉∉  A 

0 0 + 0 x  ∉∉∉∉  A 

0 + 0 0 x  ∉∉∉∉  A 

0 + + 0 x  ∉∉∉∉  A 

+ 0 0 0 x  ∉∉∉∉  B  ∪∪∪∪  C 

+ 0 + + x ∈∈∈∈ A  &  x ∈∈∈∈ C   

+ + 0 + x ∈∈∈∈ A  &  x ∈∈∈∈ B   

+ +   + + x ∈∈∈∈ A  &  x ∈∈∈∈ B   

 
In both instances we see that x belongs to the set under consideration if and only if one 

of the last three possibilities is true.  Therefore the two sets, namely A  ∩∩∩∩  (B  ∪∪∪∪  C) and  

(A  ∩∩∩∩  B)  ∪∪∪∪  (A  ∩∩∩∩  C), must be equal.  This proves the first distributive law. 
 

Of course, it is possible to approach the second distributive law similarly.  We shall not 
carry out the details here (the latter is left to the reader as an exercise), but we note that 

x  ∈∈∈∈  S belongs to the sets under consideration in this situation if and only if one of the 
last five possibilities in the first table is true.���� 
 

This completes the discussion of Theorem 1, so we shall proceed to the identities in 
Theorem 2 involvling complementation. 
 

Double negative law.   Let P be the statement that x  ∈∈∈∈  A, and let Q be the statement 
that x  ∈∈∈∈  S.  Since A is a subset of S we know that P is equivalent to P ∧∧∧∧ Q.  The 
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statement x  ∈∈∈∈  A′′′′ is then given by Q ∧∧∧∧ (¬ P), and the statement x  ∈∈∈∈  (A′′′′) ′′′′ is then given 

by Q ∧∧∧∧ ¬ [Q ∧∧∧∧ (¬ P)].  We then have the chain of logical equivalences 
 

Q ∧∧∧∧ ¬ [Q ∧∧∧∧ (¬ P)]   ⇔⇔⇔⇔  Q ∧∧∧∧ [(¬ Q) ∨∨∨∨ (¬ ¬ P)] 
 

Q ∧∧∧∧ [(¬ Q) ∨∨∨∨ (¬ ¬ P)]   ⇔⇔⇔⇔  Q ∧∧∧∧ [(¬ Q) ∨∨∨∨ P] 
 

Q ∧∧∧∧ [(¬ Q) ∨∨∨∨ P]   ⇔⇔⇔⇔  [Q ∧∧∧∧ (¬ Q)]  ∨∨∨∨  [Q ∧∧∧∧ P] 
 

 [Q ∧∧∧∧ (¬ Q)]  ∨∨∨∨  [Q ∧∧∧∧ P]   ⇔⇔⇔⇔  Q ∧∧∧∧ P    ⇔⇔⇔⇔  P 
 

which show that  x  ∈∈∈∈  (A′′′′) ′′′′   ⇔⇔⇔⇔  x  ∈∈∈∈  A. 
 

Here is a nonsymbolic approach:  In this case the two possibilities are given by the 

statements x  ∈∈∈∈  A and x  ∉∉∉∉  A.  In the first case we know that x  ∈∈∈∈  A implies x  ∉∉∉∉  A′′′′, 

which in turn implies that x  ∉∉∉∉  (A′′′′) ′′′′ is false or equivalently that x  ∈∈∈∈  (A′′′′) ′′′′ is true.  To 

prove the converse direction, note that x  ∈∈∈∈  (A′′′′) ′′′′ implies x  ∉∉∉∉  A′′′′, which we know is 

equivalent to x  ∈∈∈∈  A.  This completes the argument in the first case.  In the second 

case, we know that x  ∉∉∉∉  A implies x  ∈∈∈∈  A ′′′′, which in turn implies x  ∉∉∉∉  (A′′′′) ′′′′.  Conversely, 

if the latter is true then x  ∈∈∈∈  A ′′′′, which in turn is equivalent to x  ∉∉∉∉  A.  Thus in all cases 

we see that x  ∈∈∈∈  (A′′′′) ′′′′   ⇔⇔⇔⇔  x  ∈∈∈∈  A. 
 

Complementation laws.   If either x  ∈∈∈∈  A or x  ∈∈∈∈  A ′′′′ then we also have x  ∈∈∈∈  S, so that 

A  ∪∪∪∪  A ′′′′ is contained in S.  Conversely, if x  ∈∈∈∈  S, then we either have x  ∈∈∈∈  A  or else we 

have x  ∉∉∉∉  A, or equivalently x  ∈∈∈∈   A ′′′′, so that x  ∈∈∈∈  A  ∪∪∪∪  A ′′′′.  Therefore A  ∪∪∪∪  A ′′′′   =   S.  
Next, if both x  ∈∈∈∈  A and x  ∈∈∈∈  A ′′′′ then we have x  ∈∈∈∈  A and x  ∉∉∉∉  A, which is impossible.  
Therefore there cannot be any x in the intersection and hence it must be empty. 
 

De Morgan’s laws.   Let P and Q be the statements x  ∈∈∈∈  A  and  x  ∈∈∈∈  B, and let R be 

the statement x  ∈∈∈∈  S.  The statement x  ∈∈∈∈  (A  ∪∪∪∪  B) ′′′′ is then given by R ∧∧∧∧ [¬ (P ∨∨∨∨ Q)], 
and we can then chase the string of equivalences  
 

R ∧∧∧∧ [¬ (P ∨∨∨∨ Q)]    ⇔⇔⇔⇔   R ∧∧∧∧ (¬ P ∧∧∧∧ ¬Q) 
 

R ∧∧∧∧ (¬ P ∧∧∧∧ ¬Q)    ⇔⇔⇔⇔    (R ∧∧∧∧ ¬ P)  ∧∧∧∧  (R ∧∧∧∧ ¬ Q) 
 

to see that x  ∈∈∈∈  (A  ∪∪∪∪  B) ′′′′  ⇔⇔⇔⇔  x  ∈∈∈∈  A ′′′′  ∩∩∩∩  B ′′′′.  Likewise, the statement x  ∈∈∈∈  (A  ∩∩∩∩  B) ′′′′ 
is given by R ∧∧∧∧ [¬ (P ∧∧∧∧ Q)], and we can then chase the string of equivalences 

 

R ∧∧∧∧ [¬ (P ∧∧∧∧ Q)]    ⇔⇔⇔⇔   R ∧∧∧∧ (¬ P ∨∨∨∨ ¬Q) 
 

R ∧∧∧∧ (¬ P ∨∨∨∨ ¬Q)    ⇔⇔⇔⇔    (R ∧∧∧∧ ¬ P)  ∨∨∨∨  (R ∧∧∧∧ ¬ Q) 
 

to see that x  ∈∈∈∈  (A  ∩∩∩∩  B) ′′′′  ⇔⇔⇔⇔  x  ∈∈∈∈  A′′′′  ∪∪∪∪  B′′′′.   
 
Once again we shall give another proof of this without using propositional equivalences 
by breaking things down into cases.  Here there are four possibilities, depending on 

whether each of the basic statements x  ∈∈∈∈  A  and  x  ∈∈∈∈  B is true.  To save space we 

shall proceed directly to determine whether or not x  ∈∈∈∈  (A  ∩∩∩∩  B) ′′′′ in the respective 
cases. 
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x  ∈∈∈∈  A x  ∈∈∈∈  B x  ∈∈∈∈  (A  ∩∩∩∩  B) ′′′′ Reason(s) 

0 0 + x  ∉∉∉∉  A  &  x  ∉∉∉∉  B 

0 + + x  ∉∉∉∉  A   

+ 0 + x  ∉∉∉∉  B   

+ + 0 x  ∈∈∈∈  A  &  x  ∈∈∈∈  B 

  
If one carries out the analogous procedure with x  ∈∈∈∈  A ′′′′  ∪∪∪∪  B ′′′′ replacing the third 
column, exactly the same result is obtained (with the same reasons in each case).  

Therefore, each of the separate statements x  ∈∈∈∈  (A  ∩∩∩∩  B) ′′′′ and  x  ∈∈∈∈  A ′′′′  ∪∪∪∪  B ′′′′ holds in 
the first three of the four possibilities, and accordingly the two sets under consideration 
must be equal.  This proves the second of De Morgan’s Laws. 
 

A similar approach yields the first of De Morgan’s Laws; in this situation x  ∈∈∈∈  S belongs 

to the sets under consideration, which are (A  ∪∪∪∪  B) ′′′′   and   A′′′′  ∩∩∩∩  B ′′′′, in only the first of 
the four possibilities.� 

 

 

I I I .  2 :  Ordered pairs and products 
 
 

 
(Halmos, §§ 3, 6;  Lipschutz, §§ 3.1 – 3.2) 

 
 

We shall introduce ordered pairs axiomatically, following an approach outlined on page 
25 of Halmos (see the paragraph beginning near the middle of the page).  As shown the 
preceding discussion on pages 23 – 24 of Halmos, it is possible to derive our axiom(s) 
as consequences of the other assumptions introduced up to this point.  There will be 
further discussion of efficient and irredundant systems of axioms later in these notes. 
 
EXISTENCE OF ORDERED PAIRS.  Given two set-theoretic objects a and b, there is a 
set-theoretic construction which yields an  
 

ordered pair   (a, b) 
 

which has the fundamental property 
 

(a, b)   =   (c, d)  if and only if   a   =   c   and   b   =   d. 
 

Given two classes A  and B,  the Cartesian product A ×××× B is defined to be the 

collection of all ordered pairs (a, b) where a ∈∈∈∈ A and b ∈∈∈∈ B.   This collection is also 
called the direct product of the two sets A  and B.   
 
Nonmathematical example.  If set V is the set of playing card values  { A, K, Q, J, 10, 
9, 8, 7, 6, 5, 4, 3, 2 } and set S is the set of playing card suits  { ♠, ♥, ♦, ♣ }, then the 

Cartesian product V ×××× S corresponds to the standard deck of 52 playing cards: 
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{ (A, ♠), (K, ♠), ..., (2, ♠), (A, ♥), ..., (3, ♣), (2, ♣) } 

 
Historical remarks.  Clearly the name Cartesian product is an allusion to the well 
known work of R. Descartes (1596 – 1650) on introducing algebraic coordinates into 
geometry.  This usage is somewhat ironic because Descartes himself did not explicitly 
use ordered pairs of numbers to represent points in his writings on coordinate geometry. 
The latter are formally just part of one addendum, La Géométrie, to his major work, 
Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les 
sciences (Discourse on the Method of Correctly Reasoning and Seeking Truth in the 
Sciences).  However, the name Cartesian product has stuck and is now unlikely to be 
changed.  A detailed discussion about exactly how Descartes and several others, 
including P. de Fermat (1601 – 1665), introduced coordinates into geometry during the 
17th century, and the significance of various individuals’ contributions, is far beyond the 
scope of these notes, but some information on these topics is given on pages 370 and 
375 – 376 of Burton, and the following references on the history of mathematics provide 
still more details: 
 

C. B. Boyer,  A History of Mathematics.  (Revised reprinting of the 
second edition, with a foreword by Isaac Asimov. Revised and with a 
preface by U. C. Merzbach.) John Wiley & Sons, Inc., New York, 1991. 
ISBN: 0–471–54397–7. [See in particular pages 345 – 346.] 
 

C. B. Boyer,  History of Analytic Geometry.  Dover Publications, New 
York, 2004. ISBN: 0–486–43832–5.  

 

M. Kline, Mathematical Thought from Ancient to Modern Times.  
Oxford University Press, Oxford, UK, 1972.   ISBN:  0–195–01496–0. 

 

In order to work effectively with Cartesian products like A ×××× B we need the following 
axiom. 
 

CARTESIAN PRODUCT PROPERTY.  If A  and  B are sets,  then so is A ×××× B. 
 
If one uses the construction for ordered pairs on pages 23 – 24 of Halmos, then this 
axiom follows immediately (see the discussion on page 24). 
 

In our setting (and the development in Halmos) it follows immediately that if C and D are 

subsets of A and B respectively, then C ×××× D is a subset of A ×××× B (compare the final 
sentence on page 25 of Halmos).  
 

It is important to recognize that the products B ×××× A  and  A ×××× B are not necessarily 
equal.  In fact, we have the following result: 
 

Proposition 1.  If A and B are nonempty sets, then we have  B ×××× A  =  A ×××× B if and only 
if A  =  B. 
 

Proof.  If A  =  B then we trivially have A ×××× B  =  A ×××× A  =  B ×××× A.  Conversely, suppose 

we have B ×××× A  =  A ×××× B.  Let b  ∈∈∈∈  B.  Then for each x  ∈∈∈∈  A we have (b, x)  ∈∈∈∈  B ×××× A  

=  A ×××× B, which means that b  ∈∈∈∈  A.   Thus we have shown that B is contained in A.  

Similarly, let a  ∈∈∈∈  A.  Then for each y  ∈∈∈∈  B we have (y, a)  ∈∈∈∈  B ×××× A  =  A ×××× B, which 
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means that a  ∈∈∈∈  B.   Thus we have shown that A is contained in B.  Combining these, 
we conclude that A  =  B.����   
 

Here is another elementary result on Cartesian products.  The proof is left to the reader 
as an exercise. 
 

Proposition 2.  If a and b are sets, then { a } ×××× { b }  =  { (a, b) }.���� 
   

A few simple formal identities involving Cartesian products, unions, intersections and 
complements are listed at the bottom of page 25 in Halmos, and more are given in the 
exercises for this section. 
 
Notational remark.  As noted on page 13 of the book by Munkres, the notation (a, b) for 
an ordered pair has an entirely different meaning than the use of (a, b) to denote an 

open interval in the real numbers; i.e., all real numbers x such that a  <  x  <  b.  Usually 
it is very clear from the context which meaning should be given to (a, b) but there are 

some exceptions.  The terminology a ×××× b is sometimes used (for example, in Munkres), 
but this can also lead to conflicts of various sorts so we shall avoid it.   

 

 

 

I I I .3 :   Larger constructions 
 
 

 
(Halmos, §§ 3, 5 – 6, 9;  Lipschutz, §§ 1.9, 3.1 – 3.2, 5.1 – 5.2) 

 
 

Usually the sets constructed in the preceding two sections are not much larger than the 
objects from which they are constructed.  In this section we shall discuss some basic 
constructions which generally yield much larger examples.  
 

Power sets 

 
In Section I I.1 we noted that sets may themselves be elements of other sets.  The 
following quoted passage from page 11 of Munkres, Topology (full citation below), 
explains the main idea in nonmathematical terms. 

 

The objects belonging to a set may be of any sort.  One can consider … the set 
of all decks of playing cards in the world … [which] illustrates a point we have not 
yet mentioned; namely, the objects belonging to a set may themselves be sets.  
For a deck of cards is itself a set, one consisting of pieces … [and] the set of all 
decks of cares in the world is thus a set whose elements themselves are sets. 

    

[ Source:  J. R. Munkres, Topology (Second Edition).  Prentice – Hall, Upper 
Saddle River, NJ, 2000.  ISBN: 0 – 13 – 18129 – 2.] 

 
We may state this principle more formally as follows: 
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POWER SET PROPERTY.  If S is a set, then the collection P(S) of all subsets of S is 
also a set. 
 

This set of all subsets is often called the power set for reasons that will be explained in 
the next unit. 

 

Note that union, intersection and complementation define algebraic operations on P(S) 
which satisfy the identities described above.  In some ways union and addition behave 
like addition and multiplication, but a check of the Boolean algebra identities also shows 
some important differences (for example, the idempotent laws and the fact that one has 
an extra distributive law). 
 
Examples.   If S is the set {1, 2, 3 } then there are precisely 8  =  2 

3 subsets in P(S), and 
they are all listed below: 

 

Ø,   {1},   {2},   {3},   {1, 2 },   {1, 3 },   {2, 3 },   {1, 2, 3 } 
 

If T is the set {1, 2, 3, 4 } then there are precisely 16  =  2 
4 subsets in P(S), and they may 

be obtained from the list above by ( i ) taking the eight sets in this list, ( i i )  adding the 
element 4 to each of the eight sets in this list.  Clearly one could continue in this fashion 
to list the subsets of {1, 2, 3, 4, 5 } and even larger finite sets; in particular, the set of all 
subsets of {1, … , n }  contains 2 

n elements. 
 

Note that the power set construction can be iterated, yielding sets such as  P( P(S) ),   

P( P( P(S) ) ), and so forth. 
 

Example.   If S is the set {1} then P( P(S) ) consists of the objects  Ø,  { Ø } , { {1} } , and 
P(S) . 

 
Larger unions and intersections 

 
We have already noted that the importance of set theory is directly tied to its usefulness 
in studying infinite collections of objects.  In particular, it is often necessary to consider 
unions and intersections of more than two sets at a time.  Therefore we shall need an 
axiom to guarantee that reasonable infinite unions and intersections will determine sets. 
 

AXIOM OF UNIONS.  If  A is a set and $(A) is the collection of all x such that x  ∈∈∈∈  B  for 

some  B  ∈∈∈∈  A, then $(A) is also a set.    
 
Nonmathematical example.  If A represents the set of all decks of playing cards as 
above, then $(A) is just the set of all cards belonging to these decks. 
 
Normally one writes $(A) in another notation that is more suggestive of taking unions; for 

example, we frequently use expressions like  ∪∪∪∪ {B  |  B  ∈∈∈∈  A } or  ∪∪∪∪ B ∈∈∈∈ A  B.  This set is 
often called the union of all the sets B in the collection A.  Our choice of the symbol $ is 
motivated by typographical limitations in the word processing program used to create 
these notes. 
 

There is also a corresponding notion of intersection. 
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Proposition 1.   If A is a nonempty set then there is a set  
 

{ x  ∈∈∈∈  $(A)  |  x  ∈∈∈∈  B  for all  B  ∈∈∈∈  A } 
 

which is called the intersection of all the sets B in the collection A and written in the 

forms  ∩∩∩∩ {B  |  B  ∈∈∈∈  A } or  ∩∩∩∩ B ∈∈∈∈ A  B.   
 
This result is an immediate consequence of the Axiom of Specification.  The reasons for 
assuming A is nonempty are discussed on pages 18 – 19 of Halmos; for most purposes 
it is simply enough to understand that there are some annoying (but not serious) logical 
complications if we allow the possibility A  =  Ø.���� 
 

Further topics involving large unions and intersections will be covered in Section V I I.1.  

 
Unions and intersections over subfamilies 

 
The following result describes what happens to unions and intersections of families of 

sets if one passes from a family F to a subfamily G  such that G  ⊂⊂⊂⊂  F. 
 

Theorem 2.   Let F be a family of sets, and let G be a subfamily of F. Then we have 
 

∪∪∪∪ {B  |  B  ∈∈∈∈  G }  ⊂⊂⊂⊂  ∪∪∪∪ {B  |  B  ∈∈∈∈  F } . 
 

Furthermore, if F and G are nonempty then we also have 
 

∩∩∩∩ {B  |  B  ∈∈∈∈  F}  ⊂⊂⊂⊂   ∩∩∩∩ {B  |  B  ∈∈∈∈  G } . 
 

Proof.  Suppose that x ∈∈∈∈ B0 for some B0 ∈∈∈∈ G. Then we also know that B0 ∈∈∈∈ F, and 

therefore x must also belong to  ∪∪∪∪ {B  |  B  ∈∈∈∈  F } .  Suppose now that F and G are 

nonempty and that x ∈∈∈∈ ∩∩∩∩ {B  |  B  ∈∈∈∈  F}.  If C ∈∈∈∈ G, then C ∈∈∈∈ F, and therefore if x ∈∈∈∈ B 

for every B ∈∈∈∈ F then certainly x ∈∈∈∈ B for every B ∈∈∈∈ G.  If follows that  ∩∩∩∩ {B  |  B  ∈∈∈∈  F}  

is contained in  ∩∩∩∩ {B  |  B  ∈∈∈∈  G }. 

 
Products of more than two sets 

 
We have already described the product of two sets in terms of ordered pairs.  More 
generally, one can also discuss ordered n – tuples of the form ( x1, … , x n) and define 

an n – fold Cartesian product A1 ×××× …  ×××× A n which will be the collection of all ordered n – 

tuples (x1, … , x n) such that x k  ∈∈∈∈  A k for all k between 1 and n.  There will be a few 

references to such constructions in the next few units, and in Section V.1 of these notes 
we shall show that one can even construct Cartesian products of infinite lists of sets.   
We shall state the explicit generalizations from ordered pairs to ordered n – tuples 
below.   Everything is a straightforward extension of the previous discussion for n  =  2. 
 
EXISTENCE OF ORDERED n – TUPLES.  Let  n  be a positive integer.  Given a 
sequence of  n  set – theoretic objects a1, … , an  there is a set-theoretic construction 
which yields an  

 

ordered n – tuple   (a1, … , an) 
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which has the fundamental property 
 

(a1, … , an)   =   (b1, … , bn)  if and only if   a i   =   b i   for all  i. 
 

Given n classes A1, … , An the Cartesian product  A1 ×××× … ×××× An is defined to be the 

collection of all ordered n – tuples (a1, … , an) where a i ∈∈∈∈ A i for all i.   This collection is 
also called the direct product of the classes.   
 

GENERALIZED CARTESIAN PRODUCT PROPERTY.  If  A1, … , An are sets,  then so 

is  A1 ×××× … ×××× An . 
 

Here is an important special case: 
 

Proposition 3.  If a1, … , an are sets, then { a1 } ××××… ××××  { an }  =  { (a1, … , an) }.���� 

 

 

I I I .4  :   A convenient assumption 
 

 
(Halmos, § 2;  Lipschutz, § 1.12) 

 
 

In Unit I I , the following question arose in connection with Russell’s paradox: 
 

Is it possible to have an object z in set theory such that z  ∈∈∈∈  z? 
 

We might not expect something like this to happen when we discuss collections of 
ordinary objects, but nothing that we have said thus far eliminates such possibilities from 
set theory.  The purpose of this section is to note that the latter do not arise in the most 
widely used approaches to set theory and to explain how this is done, mainly from the 
naïve point of view. 
 

There are also many questions of a similar nature that can be formulated.  Here is one 
crucial example: 
 

Is it possible to have objects u and v such that u  ∈∈∈∈  v and v  ∈∈∈∈  u? 
 

These and other questions were considered early in the 20th century, and the key 
general observation was first noticed by D. Mirimanov (1861 – 1945) in 1917.  The 
following equivalent formulation was given by J. von Neumann in the 1920s. 
 

AXIOM  OF FOUNDATION.  For each nonempty set x there is a set y such that  y  ∈∈∈∈  x 

and  y  ∩∩∩∩  x   =  Ø. 
 
This assumption, which is also known as the AXIOM OF REGULARITY, can be 
rephrased entirely in terms of words as follows: 
 

Every nonempty set is disjoint from at least one of its elements. 
 

The relation between this axiom and the condition in Russell’s paradox is contained in 
the following result. 
 



 46

Proposition 1.  For every set z we have z  ∉∉∉∉  z. 
  

Proof.   Let x be the set { z }, so that the Axiom of Foundation implies the existence of 

some y such that y  ∈∈∈∈  x and y  ∩∩∩∩  x   =  Ø.   Since x contains only the element z, it 
follows that y must be equal to z, and thus the condition y  ∩∩∩∩  x   =  Ø  translates to the 

condition z  ∩∩∩∩  { z }   =  Ø.   The latter is in turn equivalent to z  ∉∉∉∉  z.���� 
 

Similarly, we can use the Axiom of Foundation to show that the answer to the second 

question is also NO . 
 
Proposition 2.  If z and w are sets, then either z  ∉∉∉∉  w or w  ∉∉∉∉  z is true (and both might 
be true). 
 

Proof.   It will suffice to show that if z  ∈∈∈∈  w then w  ∉∉∉∉  z ; therefore we shall suppose that  
z  ∈∈∈∈  w is true.  Let x be the set { z, w }, so that the Axiom of Foundation implies the 

existence of some y such that y  ∈∈∈∈  x and y  ∩∩∩∩  x   =  Ø.  It follows immediately that 

either y  =  z or y  =  w.  If y  =  z, then  z  ∈∈∈∈  w would imply that y and x have z in 

common, which contradicts the fundamental condition on y, so we must have z  ∉∉∉∉  w.  
Likewise, if y  =  w, then  w  ∈∈∈∈  z would imply that y and x have w in common, which 

contradicts the fundamental condition on y, so we must have w  ∉∉∉∉  z.   Therefore in all 

cases at least one of the statements z  ∉∉∉∉  w or w  ∉∉∉∉  z must be true.���� 
 

More general consequences along these lines are discussed and proved on pages 95 – 

96 of the book by Goldrei (see the beginning of Unit I for full bibliographic information).  
We shall merely state Mirimanov’s original formulation of the property and one 

generalization (both without proofs; see pages 95 – 96 of Goldrei for details): 
 
Mirimanov’s Axiom of Foundation.  There are no sequences of sets A 1, A 2, A 3, … 

such that A k  ∈∈∈∈  A k + 1  for all k. 
 

Special case.  There are no sequences of sets A 1, A 2, … A n such that A k  ∈∈∈∈  A k + 1  for 

all  k and  A n  ∈∈∈∈  A 1  (i.e., there  are no finite length  ∈∈∈∈ – cycles). 

 
The second statement follows from the first by reductio ad absurdum, for if a finite 
sequence of the described type existed, then one could extend it to an infinite sequence 
as follows:  Given an arbitrary positive integer m, use long divising to write m  =  q n + r 

where 0  ≤  r  < n, and set A m  =  A r.  By construction this is a periodic or repeating 

sequence such that  A m   =  A m + n  for all m.���� 

  
FOOTNOTE.   Biographical information on D. Mirimanov (also spelled Mirimanoff) is 
available at the following online site: 

 

http://www.numbertheory.org/obituaries/OTHERS/mirimanoff.html 
 

(Unfortunately, the chronology for his life is in French, but the main items in it should be 
decipherable, and standard Internet translation software should work reasonably well for 
this material.) 
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Should one really assume the Axiom of Foundation? 

 
A few mathematicians have varying degrees of reservations about assuming the Axiom 
of Foundation, but most accept it both because (1) as we have noted it is convenient to 
do so, (2) the introduction of this assumption does not lead to any logical contradictions 
by itself.  The second point requires some explanation.   Later in these notes we shall 
discuss the following important question: 

 

Can we be certain that our logical framework for mathematics is  
entirely free of contradictions? 

 

Unfortunately, the answer is NO , and in fact the answer is no for any system that 

involves infinite objects like the basic number systems such as the positive integers or 
the real numbers.  However, if there is a logical contradiction in the standard framework 
for mathematics which includes the Axiom of Foundation, then fundamental results of K. 
Gödel (1906 – 1978) imply that there is already a logical contradiction in the framework if 
one drops this assumption.  Further information on this and related topics will appear in 

Unit V I I   when we introduce the Axiom of Choice.   
 

Here are some online references for approaches to set theory that do not assume the 
Axiom of Foundation: 

 

http://en.wikipedia.org/wiki/Non-well-founded_set_theory 
 

http://en.wikipedia.org/wiki/Axiomatic_set_theory 
 

A more extensive (and quite advanced) reference for set theory without the Axiom of 
Foundation is  Non – well – founded sets, by P. Aczel, which is available at the following 
online site:   
  

http://standish.stanford.edu/pdf/00000056.pdf 

 
Historical remarks 

  
With the  emergence of Russell’s paradox, most mathematicians and logicians from that 

time concluded that  set theory probably should not contain objects for  which  x  ∈∈∈∈  x or 

pairs of objects such that x  ∈∈∈∈  y and y  ∈∈∈∈  x.  Russell’s approach to eliminating such 

phenomena was to introduce a theory of types, in which sets have well – defined types 
or levels such that the level a set should exceed the level of its elements.  Such a theory 
will not contain objects with the undesirable properties described above, and it also will 
not allow the other sorts of paradoxes that arose near the beginning of the 20th century.  
The theory of types played a central role in Russell’s work with A. N. Whitehead (1861 – 
1947) to create a logically unassailable foundation for mathematics, which culminated in 
their massive and ambitiously titled Principia Mathematica, a work consisting of nearly 
2000 pages which was published during the period 1910 – 1913 and whose title echoes 
Isaac Newton’s monumental Philosophiæ Naturalis Principia Mathematica.   The amount 
of detail in the work is illustrated by one frequently stated piece of trivia; namely, a proof 

that “ 1 + 1  =  2 ” does not appear until a few hundred pages into the book.   The 
relevant page is depicted at following online site: 

 

http://www.idt.mdh.se/~icc/1+1=2.htm 
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Some online references for the Russell – Whitehead Principia and a bibliographic 
reference are listed below.  These include biographical references for the coauthors 

written from the perspective of philosophy as well as a biography of G. Frege (1848 – 
1925), whose writings and ideas exerted a strong influence on the work of Russell and 
Whitehead.  
 

B. Russell and A. N. Whitehead,  Principia Mathematica (2
nd

 Rev. Ed.), 
Cambridge University Press,  Cambridge, UK, and New York, 1962.  
ISBN: 0–521–06791–X. 

 

http://en.wikipedia.org/wiki/Alfred_North_Whitehead 
 

http://plato.stanford.edu/entries/whitehead/ 
 

http://plato.stanford.edu/entries/russell/ 
 

http://plato.stanford.edu/entries/frege/ 
 

http://plato.stanford.edu/entries/principia-mathematica/ 

 
One disadvantage of the theory of types is the amount of duplication it requires; at each 
level one has an exact copy of the previous level.  In some sense, von Neumann’s 
Axiom of Foundation and the introduction of classes “too big” to be sets is a drastic 
simplification of the system of levels in the theory of types which still eliminates highly 

uncomfortable possibilities like x  ∈∈∈∈  x. 
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I V  :      Relations and Functions 
 

 
Mathematics and the other mathematical sciences are not merely concerned with listing 
objects.  Analyzing comparisons and changes is also fundamentally important to the 
mathematical sciences and their applications.  Binary and higher order relations are 
simple but important tools for studying mathematical comparisons, and in this unit we 
shall describe those aspects of binary relations that are particularly important in 
mathematics.  Two particularly important types of relations are equivalence relations, 
which suggest that related objects are interchangeable for certain purposes, and 
ordering relations, which reflect the frequent need to say that one object in a set should 
come before another.  Another important tool for studying comparison and change is the 
notion of a function, which will also be covered in this unit.    

 

 

I V  .1 :    Binary relations  
 

 
(Halmos, § 6;  Lipschutz, §§ 3.3 – 3.9, 3.11) 

 
 
We shall only cover those aspects of the theory of binary relations that are needed to 
develop set theory.  In particular, we shall not discuss the various algebraic operations 
and constructions on binary relations that exist and are useful in various practical 
contexts; these include the set – theoretic operations we have introduced more 
generally, but the algebra of binary relations has a considerable amount of additional 
structure.  Much of this is summarized in the last two headings of Section 3.3 in 
Lipschutz and the subsequent material in Sections 3.4 – 3.7 of the same reference.   
 

Many basic problems in computer science require extensive use of relations, and 
accordingly the latter are covered very extensively in discrete mathematics courses like 
Mathematics 11.  Chapter 7 of Rosen contains a lengthy discussion of binary relations 

and n – ary relations for n  >  2, including numerous examples from computer science, 
the algebraic structure mentioned in the previous paragraph, various algebraic and 
graphical representations of relations, and  some computational techniques and 
formulas. 
 

The motivation for the mathematical study of relations is contained in the following 

quotation from page 471 of Rosen: 
 

The most direct way to express a relationship between elements of two sets is to 
use ordered pairs made up of two related elements.  For this reason, sets of 
ordered pairs are called binary relations. 

 

Formally, we proceed as follows:  
 
Definition.  If A and B are two classes, then a binary relation from A to B is a subset R 

of A ×××× B.  We shall often say that x  is R – related to y    or that    x  is in the R – relation to 

y    if (x, y)  ∈∈∈∈  R.  Frequently we shall also write x R y to indicate this relation holds for x 

and y in that order. 
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If  A  =  B, then a binary relation from A to A is simply called a binary relation on A. 
  

Some binary relations are not particularly interesting.  In particular, both the empty set 

and all of  A ×××× B  satisfy the condition to be a binary relation, but neither carries any 

information distinguishing one ordered pair (a, b) from another (a′′′′, b′′′′).  A less trivial, but 
still relatively unenlightening, example of a binary operation on an arbitrary class  A  is 

given by the diagonal relation  ∆∆∆∆ A consisting of all pairs (x, y) such that x  =  y.   For the 

example R  =  ∆∆∆∆ A, the condition x R y simply means that x and y are equal.   
 

In order to motivate the definition, we must construct further examples in which the given 
binary relation reflects something less trivial: 
 
Technical comments on algebraic examples (may be skipped in the naïve approach).  
The examples below involve the standard number systems of mathematics and as such 
are basically algebraic in nature.  Strictly speaking, it is necessary to introduce the 
relevant number systems formally in order to discuss such examples, but this poses no 
obstacles to an informal discussion and ultimately it is possible to justify everything in a 
logically rigorous manner; in particular, there are no surprises in doing so.  
 

Algebraic Example IV.0.1.  Let A be the integers, rational numbers or real numbers, 

and take the binary relation on A consisting of all (x, y) such that x  ≤≤≤≤  y. 
 

Algebraic Example IV.0.2.  Let A be the integers, and take the binary relation on A 

consisting of all pairs (x, y) such that x – y is even.  In this case x and y are related if 
and only if both are even or both are odd.  
 

Algebraic Example IV.0.3.  In this example A will correspond to the squares on a 
chessboard, so that 
 

A  =  { 1, 2, 3, 4, 5, 6, 7, 8 }  ××××  { 1, 2, 3, 4, 5, 6, 7, 8 } 
 

and (x, y) will be related to (x′′′′, y′′′′) if and only if one of the quantities | x – x′′′′ | , | y – y′′′′ | is 
equal to 1 and the other is equal to 2.  In nonmathematical terms this relation 
corresponds to the condition in chess that a knight positioned at square (x, y) is able to 

reach square (x′′′′, y′′′′) in one move provided the latter is not occupied by a piece of the 
same color. 
 

Algebraic Example IV.0.4.  In this example let A be the set of all polynomials with real 
coefficients, and stipulate that a polynomial f(t) is related to g(t) if there is a third 

polynomial P(x) such that g(t)  =  P( f ( t ) ). 
 

A nonalgebraic example IV.0.5.  This is given by the rock – paper – scissors game.  
Let A be the set { rock, scissors, paper }, and stipulate that object x is related to object 
y if object x wins over y under the usual rules of the game (scissors win over paper, 

while paper wins over rock and rock wins over scissors). 
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Abstract properties of binary relations 

 
Certain important types of binary relations can be described by short lists of abstract 
properties.  In this subsection we shall introduce these properties and determine whether 
they are true for various examples. 
 
Definitions.  Let R be a binary relation on a set A. 
 

• R  is said to be reflexive if  a R a  for all  a  ∈∈∈∈  A.    

• R  is said to be symmetric if  a R b  implies  b R a  for all  a, b  ∈∈∈∈  A.     

• R  is said to be transitive if a R b and b R c imply a R c for all  a, b, c  ∈∈∈∈  A.   

• R  is said to be antisymmetric if  a R b and b R a  imply a  =  b for all  a, b  ∈∈∈∈  A. 
 

The following result describes exactly which of these properties hold for each of the four 
examples described above. 
 

Theorem 1.  The following are true for Algebraic Examples IV.0.1 – IV.0.4:  
 

The  first algebraic example is reflexive, antisymmetric and transitive but not 
symmetric.   
 

The second algebraic example is reflexive, symmetric and transitive but not 
antisymmetric.   
 

The third algebraic example is symmetric but not reflexive, antisymmetric or 
transitive.   
 

The fourth algebraic example is reflexive and transitive but neither symmetric nor 
antisymmetric.  
 

Finally, the nonalgebraic example is not symmetric, reflexive, antisymmetric or 
transitive.  
 
Proof.    We begin with the first example.  The first three of these are just basic 
properties of inequality.  To see that such a relation is not symmetric it suffices to give an 

example of a pair (x, y) such that  x  ≤≤≤≤  y  but the reverse inequality is false.  The easiest 

way to give an example is to take x  =  0  and y  =  1.   
 

Passing to the second example, it is reflexive because x – x  =  2 ⋅⋅⋅⋅ 0  =  0.  To see that it 

is reflexive, note that x R y  implies y – x  =  2 ⋅⋅⋅⋅ n  implies that  x – y  =  2 ⋅⋅⋅⋅ (– n), which 

gives y R x.  Finally, if  x R y and  y R z, then we have y – x  =  2 ⋅⋅⋅⋅ n  and also  z – y  =  

2 ⋅⋅⋅⋅ m, so that   z – x  =  2 ⋅⋅⋅⋅ (m + n), which means that  x R z.  Finally, to see that the 

relation is not antisymmetric, take y  =  2  and x  =  0.  Then x R y  and  y R x, but clearly 
x and y are not equal. 
 

 We now consider the third example.  The relation is not symmetric because if we have 

(x, y) R (x′′′′, y′′′′) then both the first and second coordinates of (x, y) are unequal to the 

corresponding coordinates for (x′′′′, y′′′′).  The defining condition for the relation remains the 
same if primed and unprimed variables are switched, and this means that the relation is 
symmetric.  We now need to show that the relation is neither antisymmetric nor 



 52

transitive.  To dispose of the first one, consider the R – related pairs  p  =  (1, 1) and q  =  

(2, 3).  Then we have p R q and (since the relation is symmetric) q R p, but clearly p 
and q are unequal.  Finally, to show the relation is not transitive, let p and q be as in the 

previous sentences, and take s  =  (3, 5), so that q R s.   Then the absolute values of 

the differences of the coordinates for p and s are 2 and 4, so by the definition of R we 
cannot have p R s.  It might be helpful to get out a chessboard and experiment in order 
to obtain some additional insight into this example and the arguments given in this 
paragraph.  
 

Next, we consider the fourth example.  The relation is reflexive because if we take the 

identity polynomial P(x)  =  x then f(t)  =  P( f(t) ).  Transitivity follows because if Q and P 

and polynomials then Q[ P( f(t) ) ] is again a polynomial in f.  It remains to show the 

relation is neither symmetric nor antisymmetric.  To see the relation is not symmetric 

take f ( t )  =  t and P(x)  =  x
2
.  Then we have g ( t )  =  t 

2
 and the lack of symmetry 

follows because the function t  is not a polynomial in t 

2 ; a justification of this assertion is 
given in the footnote after the proof.  To see that the relation is not antisymmetric, let us 
take P(x)  =  x + 1 and Q(x)  =  x – 1.  Then for all f we have the identity  
 

f(t)  =  Q[ P( f(t) ) ]      where     P(f ( t ))   =   f ( t ) + 1. 
 

Therefore we know that f(t) is R – related to f ( t ) + 1 and vice versa.  However, these 
two functions are never equal and therefore we have shown that f R g and g R f does 

not necessarily mean that f  =  g.  In other words, the relation is not antisymmetric.  
 

Finally, we consider the nonalgebraic example.  In this case the relation contains only 
three ordered pairs, and for each pair the coordinates are unequal.  This shows the 
relation is not symmetric.  It is also not transitive, for direct inspection shows that if x R y 
and y R z then we have z R x and we do not have x R z.  The validity of the symmetric 
property may seem surprising at first, but it turns out to be vacuously true because 
there are NO ordered pairs (x, y) such that x R y and y R x.����  
 
Footnote.  In the course of the preceding argument, we asserted that the polynomial 

g(t)  =  t is not expressible as a polynomial in f ( t )  =  t 2.   One way of proving this is to 
use the elementary identity 
 

degree [ P( f ( t ) ) ]    =    degree [ f ( t ) ] ⋅⋅⋅⋅ degree [ P(x) ]. 
 

If g(t)  =  t were expressible as a polynomial in f ( t )  =  t  

2, then this would yield the 

equation 1  =  2 ⋅⋅⋅⋅ degree [ P(x) ], which is impossible because the degree of a nonzero 

polynomial is always a nonnegative integer.   
 

As one might expect, it is also possible to construct other examples for which some 
properties hold and others do not.  In particular, one can find examples that satisfy none 
of the four properties defined above.  
 

Algebraic Example IV.0.5.  Let A be the integers, rational numbers or real numbers, 
and take the binary relation on A consisting of all (x, y) such that y  =  x  +  1.  
 

Discussion of this example.  This relation is not reflexive because there are no 

numbers x such that x  =  x  +  1.  It is not symmetric because y  =  x  +  1 implies x  =  
y  –  1 and the right hand side of the second equation is not equal to  y  +  1.  It is also 
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not transitive, for y  =  x  +  1 and z  =  y  +  1 imply z  =  x  +  2 and the right hand side 
of the last equation is not equal to  x  +  1.  Finally, the relation is not antisymmetric, for 

there are no numbers x and y such that   y  =  x  +  1 and x  =  y  +  1 (note that the two 

equations combine to imply x  =  x  +  2 and y  =  y  +  2).  

 
Equivalence relations 

 
Given a set A, one of the simplest but most important binary relations on A is given by 

equality; specifically, this is the relation EA determined by the diagonal subset of A ×××× A 

consisting of all ordered pairs (a, b) such that a  =  b. 
 

Proposition 2.  For every set A the binary relation EA  is reflexive, symmetric and 
transitive.  
 

This result is merely a restatement of the three fundamental properties of equality; 

namely,  (1) the reflexive property x  =  x,  (2) the symmetric property x  =  y  ⇒⇒⇒⇒   y  =  x,  

and (3) the transitive property x  =  y  &  y  =  z  ⇒⇒⇒⇒   x  =  z.����  
 

Definition.    A binary relation E on a set A is said to be an equivalence relation if it is 
reflexive, symmetric and transitive.  
 

In addition to equality, our previous Algebraic Example IV.0.2 is an equivalence 
relation.  Yet another example may be obtained taking A to be the chessboard (or 
checkerboard?) set  

 

A  =  { 1, 2, 3, 4, 5, 6, 7, 8 }  ××××  { 1, 2, 3, 4, 5, 6, 7, 8 } 
 

and choosing E such that (x, y) is E – related to (x′′′′, y′′′′) if and only if the sum  
 

( x – x′′′′ )  +  ( y – y′′′′ ) 
 

is even.  In everyday terms, the condition on (x, y) and (x′′′′, y′′′′) means that the squares 
they represent have the same color.  The verification that E is reflexive, symmetric and 

transitive is parallel to the corresponding argument for Algebraic Example IV.0.2 above, 
and the details are left to the reader as an exercise. 
 

One can also define an equivalence relation C on A by stipulating that (x, y) is C  – 

related to (x′′′′, y′′′′) if and only if y  =  y′′′′.  It is immediate that (x, y) C (x, y) because y  =  y, 
while (x, y) C (x′′′′, y′′′′) implies y  =  y′′′′, which further implies y′′′′  =  y so that (x′′′′, y′′′′) C (x, y).  

Finally,  (x, y) C (z, w) and (z, w) C (u, v) imply y  =  w  and w  =  v, so that y  =  v and 
therefore  (x, y) C (u, v).  Informally speaking, two elements of A are C  – related if and 
only if the squares they represent are in the same column.   
 

Definition.  Let A be a set, and let  E be an equivalence relation on A.  For each a  ∈∈∈∈  A, 

the E  – equivalence class of a, written [a] E  or simply [a]  if E is clear from the context, 

is the set of all x  ∈∈∈∈  A such that x is E – related to  a.  —  If C is an equivalence class 

for E and x ∈∈∈∈ C, then one frequently says that x is a representative for the equivalence 

class C (or something that is grammatically equivalent).  
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Since equivalence classes for E are subsets of A, we have the following elementary 
observation.  
 
Proposition 3.    If A is a set and E is an equivalence relation on A, then the collection 

of all E – equivalence classes is a set.  
  

Proof.   By construction the collection of all equivalence classes is a subcollection of the 
set P(A).����  
 

As  noted in Halmos, the set of all equivalence classes is often denoted by symbolism 
such as A/E, and it is often verbalized as “A  modulo  E ” or (more briefly) “A  mod  E.”  
Halmos also uses the notation a/E for the equivalence class we (and most writers) 

denote by [a] E .   
 

Equivalence classes for previous examples.    In Algebraic Example IV.0.2, the 
equivalence class of an integer a is the set of all even integers if a is even and the set 
of all odd integers if a is odd.  For the equality relation(s), the equivalence class of  a  is 
the set { a } consisting only of  a.  In the first chessboard example, the equivalence class 
of a square is the set of all squares having the same color as the given one, and in the 
second example the equivalence class of a square is the set of all squares in the same 
column as the given one. 
 

The equivalence classes of an equivalence relation have the following fundamentally 
important property: 
 

Theorem 4.   Let A be a set, suppose that x and y belong to A, and let E be an 
equivalence relation on A.  Then either the equivalence classes [x] E  and  [y] E  are 
disjoint or else they are equal. 
 

Proof.  Suppose that the equivalence classes in question are not disjoint, and let z 
belong to both of them.  Then we have x E z and y E z.  By symmetry, the second of 
these implies z E y, and one can combine the latter with x E z and transitivity to 
conclude that x E y. 
 

Suppose now that w ∈∈∈∈ [y] E ,  so that  y E w.  By transitivity and the final conclusion of 

the previous paragraph it follows that x E w, so that  w ∈∈∈∈ [x] E  is also true.  Therefore we 

have shown that  [y] E  ⊂⊂⊂⊂  [x] E .    If we reverse the roles of x and y in this argument and 

note that x E y implies y E x, we can also conclude that  [y] E  ⊂⊂⊂⊂  [x] E.  Combining this 
with the preceding sentence yields the desired relationship  [y] E  =  [x] E .� 
 

Corollary 5.  The equivalence classes of an equivalence relation on  A  form a family of 
pairwise disjoint subsets whose union is all of  A.�   
 

A converse to the preceding corollary also plays an important role in the study of 
equivalence relations: 
 

Proposition 6.  Let A be a set, and let C be a family of subsets of A such that (1) the 

subsets in C are pairwise disjoint, (2) the union of the subsets is C is equal to ∈∈∈∈.  Then 
there is an equivalence relation E on A whose equivalence classes are the sets in the 
family C. 
 

The family C is said to define a partition of the set A. 
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Proof.  We define a binary relation E on A by stipulating that  x E y  if and only if there is 

some B ∈∈∈∈ C such that x ∈∈∈∈ B and y ∈∈∈∈ B.  Our first objective is to prove that  E  is an 
equivalence relation.  To see that  x E x  for all x, let x be arbitrary and use the 

hypothesis that the union of the subsets in  C  is  A  to find some set B such that x ∈∈∈∈ B.  

We then have x ∈∈∈∈ B and x ∈∈∈∈ B, and therefore it follows that x E x.  Now let x E y; then 

there is some B such that x ∈∈∈∈ B and y ∈∈∈∈ B.  We then also have x ∈∈∈∈ B and y ∈∈∈∈ B, and 
therefore it follows that y E x.  Finally, suppose that  x E y and y E z.   Then by the 

definition of  E there are subsets  B, D ∈∈∈∈ C such that x ∈∈∈∈ B and y ∈∈∈∈ B and also y ∈∈∈∈ D 

and z ∈∈∈∈ D.  It follows that B and D have y in common, and since the family C of subsets 
is pairwise disjoint, it follows that the subsets B and D must be equal.  But this means 

that x ∈∈∈∈ B, y ∈∈∈∈ B and z ∈∈∈∈ B.  Therefore we have y E z, and this completes the proof that 
E is an equivalence relation.     
  

What is the equivalence class of an element x ∈∈∈∈ A?  Choose B such that x ∈∈∈∈ B; since 
B is the unique subset from the family C that contains x, it follows that x E y if and only 
if y also belongs to B.  Therefore B is the equivalence class of x.  Since x was arbitrary, 
this shows that the equivalence classes of E are just the subsets in the family C.� 
 

Generating equivalence relations.  Given a binary relation R on a set A, there are 
some situations where one wants to describe an equivalence relation E such that x E y if 
x and y are R – related.  By the definition of a binary relation, this amounts to saying that 

R is contained in E as a subset of A ×××× A.  The following result shows that every binary 
relation R is contained in a unique minimal equivalence relation: 
 
Theorem 7.    Let  A be a set, and let R be a binary relation on A.  Then there is a 

unique minimal equivalence relation E such that R  ⊂⊂⊂⊂  E.  
 

Proof. (∗∗∗∗∗∗∗∗)  Define a new binary relation E so that x E y if and only if there is a finite 

sequence of elements of A 
 

x  =  x1, … , x n  =  y 
 

such that for each k one (or more) of the following holds: 
 

x k  =  x k + 1 
 

x k  R  x k + 1 
 

x k + 1  R  x k 
 

Suppose that F is an equivalence relation that contains R and that x E y.  Then for each 

k it follows that x k  F  x k + 1, and therefore by repeated application of transitivity it follows 
that x F y.  Therefore, if E is an equivalence relation it will follow that it is the unique 
minimal equivalence relation containing R.  
 

To prove that E is reflexive, for each x ∈∈∈∈ A it suffices to consider the simple length two 
sequence x, x and notice that the first option then guarantees that x E x.  Suppose now 
that x E y, and take a sequence 
 

x  =  x1, … , x n  =  y 
 

as before.  If we define a new sequence 
 

y  =  y1, … , y n  =  x 
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where y p  =  x n + 1 – p  then by the assumption on the original sequence we know that (at 

least) one of   y p  =  y p + 1,  y p + 1  R  y p,  or   y p  R  y p + 1  holds.  Therefore y E x, and 
hence the relation E is symmetric.  Finally, suppose that x E y and y E z.  Then we have 

sequences x  =  x1, … , x n  =  y   and  y  =  y1, … , y m  =  z such that consecutive terms 
satisfy one of the three conditions listed above.  Therefore if we define a new sequence 

whose terms w p are given by x p  if  p  ≤≤≤≤  n  and by y p – n + 1  if  p  >  n, it will follow that 
consecutive terms satisfy one of the three conditions we have listed.  This means that E 

is transitive and thus is an equivalence relation.� 
 

Graphical example IV.0.7.   Let X be the real numbers, and consider the binary 

relation x R y if and only if x
3
 – 27x  =  y

3
 – 27y .  It is fairly straightforward to verify that 

this defines an equivalence relation on the real numbers, and the equivalence classes 

consist of all values of x such that x
3
 – 27x is equal to a specific real number a.  One 

way to visualize the equivalence classes of R is to take the graph of x
3
 – 27x and look at 

its intersection with a fixed horizontal line of the form y  =  a.  If we sketch of the graph 

for y  =  x
3
 – 27x as in the picture below, it is apparent that for some choices of a one 

obtains equivalence classes with one point, for exactly two choices of a the equivalence 
classes consist of two points, and for still other choices the equivalence class consists of 
three points.  

 

 
 

The cases with two points occur when the tangent line to the graph is horizontal, which 
happens when |x|  =  3,  and hence when |a|  =  54.   Thus equivalence classes have 
exactly one element if |a|  <  54, exactly two elements if  |a|  =  54, exactly three 
elements if  |a|  >  54. 

 

 

I V  .2 :      Partial and linear orderings 
 

 
(Halmos, § 14;  Lipschutz, §§ 3.10, 7.1 – 7.6) 

 
In many areas of mathematics it is important to compare two objects of the same type 
and determine whether one is larger or smaller than the other.  The real number system 
is one obvious example of this sort, but it is not the only one.  When we consider the 
family of all subsets of a given set, it is often important to know if one subset is contained 
in another.  In both cases the associated ordering by size can be expressed in terms of a 
binary relation, and these relations turn out to be reflexive, antisymmetric and transitive.  
These examples lead to a general concept. 
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Definition.  If A is a set, then a partial ordering on A is a binary relation R on A which 
is reflexive, antisymmetric and transitive.  A partially ordered set (or poset) is an 
ordered pair (A, R) consisting of a set A together with a partial ordering R on A. 
 

If the partial ordering R is clear or unambiguous from the context, we often write x R y in 

a more familiar form like x  ≤≤≤≤  y  or y  ≥≥≥≥  x.  Similarly, if x  ≤≤≤≤  y  but  x  ≠≠≠≠  y  then we often 
write x  <  y  or y  <  x and say either that x  is strictly less than  y or equivalently that y  
is strictly greater than  x.   
 

Standard example IV.0.8.  The real number system RRRR with the usual meaning of “<” 

as “is less than” clearly satisfies the conditions for a partial ordering. 
 

Set – theoretic example IV.0.9.    If S is a set,  then the set – theoretic inclusion 

relation  A  ⊂⊂⊂⊂  B  on the power set P(S) is a partial ordering by the results of Unit I I.  
 

These are the most basic examples of partial orderings, but there are also many others 
that arise naturally. 
 

Algebraic Example IV.0.10.  Let A be the positive integers and let R be the binary 
relation x R y if and only if y is evenly divisible by x (with no remainder, so that y  =  x z 

for some positive integer z).  The relation is reflexive because x  =  x ⋅⋅⋅⋅ 1.  To see that the 
relation is antisymmetric, suppose that y  =  x z and x  =  y w.  Combining these, we 
obtain the equation x  =  x z w, where x, z and w are all positive integers.  The only way 
one can have an equation of this sort over the positive integers is if  z  =  w  =  1.  To see 
that the relation is transitive, suppose that y  =  x u and z  =  y v.  Combining these, we 
see that z  =  y v u, where y, v and u are all positive integers.  This implies that x R z. 
 

Algebraic Example IV.0.11.  Once again, take  A  to be the chessboard (or should it 
be checkerboard?) set 
 

A  =  { 1, 2, 3, 4, 5, 6, 7, 8 }  ××××  { 1, 2, 3, 4, 5, 6, 7, 8 } 
 

and start with the standard ordering on the first eight positive integers.  One then has the 

so – called lexicographic or dictionary ordering on A such that  (x, y)  ≤≤≤≤  (x′′′′, y′′′′) if and 

only if either (1)  x  <   x′′′′  or else (2) x  =  x′′′′ and y  ≤≤≤≤   y′′′′.   We shall show this is a partial 
ordering by proving a more general statement. 
  

Proposition 1.  Suppose that P and Q are partially ordered sets (with orderings denoted 

by ≤≤≤≤ P and ≤≤≤≤ Q), and define a binary relation  ≤≤≤≤   (the lexicographic or dictionary 

ordering) on the product P ×××× Q by (x, y)  ≤≤≤≤  (x′′′′, y′′′′) if and only if either (1)  x  < P   x′′′′  or 

else (2) x  =   x′′′′ and y  ≤≤≤≤ Q   y′′′′.   Then the relation  ≤≤≤≤  defines a partial ordering on P ×××× Q. 
 

Before beginning the proof, note that in all cases (x, y)  ≤≤≤≤  (x′′′′, y′′′′) implies x  ≤≤≤≤ P  x′′′′. 
 

Proof.  We being by showing it is reflexive.  By Condition (2) we have (x, y)  ≤≤≤≤  (x, y).  

Suppose now that we have both (x, y)  ≤≤≤≤  (x′′′′, y′′′′) and (x′′′′, y′′′′)  ≤≤≤≤  (x, y).  Then (1) and (2) 

combine to show that x  ≤≤≤≤ P  x′′′′ and x′′′′  ≤≤≤≤ P  x; therefore we must have x  =   x′′′′.  We can 

now apply (2) to conclude that y  ≤≤≤≤ Q y′′′′ and y′′′′  ≤≤≤≤ Q  y, and hence that y  =  y′′′′.   Thus both 

coordinates of (x, y)  and  (x′′′′, y′′′′) are equal, and consequently the two ordered pairs are 

equal.  Finally, suppose that we have (x, y)  ≤≤≤≤  (z, w) and also (z, w)  ≤≤≤≤  (u, v).  The 
remaining argument splits into cases; as noted before, by definition of the relation, if two 

ordered pairs (a, b) and (c, d) are related then a  ≤≤≤≤  c.  Case 1:  Suppose we have either 
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x  < P  z  or  z  < P  u.  In either case we have x  <  u and therefore by Condition (1) we 

have (x, y)  ≤≤≤≤  (u, v).  Case 2:  Suppose that x  =  z  =  u.  In this case Condition (2) 

implies  y  ≤≤≤≤ Q  w  and  w  ≤≤≤≤ Q v, and by transitivity of ≤≤≤≤  it follows that  y  ≤≤≤≤ Q  v.  

Combining the statements in the last two sentences, we conclude that (x, y)  ≤≤≤≤  (u, v).  
This completes the proof of transitivity.� 

 
Linear orderings 

 
One major difference between the ordering of the real numbers and the ordering of a set 
of subsets is that real numbers satisfy the following trichotomy principle: 

 

For every x and y, exactly one of  x  =  y, x  <  y or y  <  x is true. 
 

It is easy to construct examples showing this fails for a set of subsets P(A).  Specifically, 
if A  =  { 1, 2 } with x  =  { 1 } and y  = { 2 }, then x and y are distinct but neither is a subset 
of the other.  
  
We can formalize this property of real numbers by means of another definition. 
 

Definition.  Let (A, R) be a partially ordered set.  Then R is said to be a linear ordering, 
a simple ordering or a total ordering if for every pair of elements x and y in A, we 
either have x R y or y R x.  —   Since a partial ordering is antisymmetric, both conditions 
hold if and only if x  =  y.  
 

Here are two simple but useful results on partially ordered sets. 
  
Proposition 2.  Let (A, R) be a partially ordered set, let B be a subset of A, and let R|B 

be the restricted binary relation on B defined by R ∩∩∩∩ (B ×××× B).  Then R|B is a partial 
ordering on B.  Furthermore, if R is a linear ordering then so is R|B.  
 

The key observation in the proof is that if x and y belong to B, then x R|B y if and only if 
x R y.  Details of the argument are left to the reader as an exercise.� 
  

Proposition 3.  Let (A, R) be a partially ordered set, and let ROP denote the converse 

relation x ROP y if and only if y R x.  Then ROP defines a partial ordering on A.  Also, if R 

is a linear ordering then so is ROP. 
 

The relation ROP defines the opposite or reverse partial ordering of R in which the 

roles of   “ ≤≤≤≤ ”  and   “ ≥≥≥≥ ”   are switched.  The verification of this result is also fairly 
elementary and left to the reader as an exercise.� 
  
Proposition 4.  (“Dictionary Theorem”)  If A and B are linearly ordered sets, then the 

product  A ×××× B with the lexicographic ordering is also linearly ordered.  
 

Proof.    Suppose we are given (a, b) and (a ′′′′, b ′′′′).  Since A is linearly ordered, exactly 

one of the statements a  <A  a ′′′′,  a  =  a ′′′′ or a  >A  a ′′′′ is true.  In the first and third cases 

we have (a, b)  <  (a ′′′′, b ′′′′) and (a, b)  > (a ′′′′, b ′′′′) respectively. 
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Suppose now that a  =  a ′′′′ ; since B is linearly ordered,  exactly one of b  < B  b ′′′′, b  =  b ′′′′ 

or b  > B  b ′′′′ is true. In the respective cases we have (a, b)  <  (a ′′′′, b ′′′′), (a, b)  =  (a ′′′′, b ′′′′) 

and (a, b)  >  (a ′′′′, b ′′′′).����    
 
Partially ordered sets arise in many different mathematical contexts, and this wide range 
of contexts generates a long list of properties that a partially ordered set may or may not 
satisfy.  Several of these are described on pages 54 – 58 of Halmos.  We shall discuss a 
few of these together with some examples for which the properties are true and others 
for which the properties are false. 
 

Definitions.  An element x in a partially ordered set A has an immediate predecessor 
if there is a maximal y such that y  <  x.  An element x in a partially ordered set A has an 
immediate successor if there is a minimal y such that y  >  x.  
  
The integers have the property that every element has an immediate predecessor and 
an immediate successor, while the real numbers have the property that no element has 
an immediate predecessor of an immediate successor.  If we remove the subset of all 
real numbers x such that 0  <  |x|  <  1 and 1  <  |x|  <  2, then some elements will have 
immediate predecessors, some will have immediate successors, some will have both, 
and others will have neither.  
 

Definition.  A partially ordered set A is finitely bounded from above if for every pair of 

elements x and y in A there is some z  ∈∈∈∈  A such that x, y  ≤≤≤≤  z.  Similarly, a partially 
ordered set A is finitely bounded from below if for every pair of elements x and y there 

is some z  ∈∈∈∈  A such that z   ≤≤≤≤   x, y . 
  

Every linearly ordered set is finitely bounded from above and below (take the larger or 
smaller of the two elements).  Furthermore, every power set P(A) is also finitely bounded 
from above and below (given x and y, their union contains both and their intersection is 

contained in both).  If A is a set with more than one element, then the set X  ⊂⊂⊂⊂  P(A) of 
all subsets with exactly one element is neither finitely bounded from above nor finitely 
bounded from below.  
 
Definition.  A partially ordered set  A  is a  lattice  if the following conditions hold: 
 

(a)  For all x, y ∈∈∈∈ A there is a  unique minimal   z ∈∈∈∈ A such that x, y  ≤≤≤≤  z.   
 

(b)  For all x, y ∈∈∈∈ A there is a  unique maximal   z ∈∈∈∈ A such that z  ≤≤≤≤  x, y. 
 

Examples of lattices.  1.  Every linearly ordered set is a lattice, for if x  ≤≤≤≤  y then y is the 

unique minimal z such that x, y  ≤≤≤≤  z and x is the unique maximal z such that z  ≤≤≤≤  x, y ; 

similarly, if y  ≤≤≤≤  x then x is the unique minimal z such that x, y  ≤≤≤≤  z and  y is the unique 

maximal z such that z  ≤≤≤≤  x, y . 
 

2.   Every power set P(A) is a lattice (with inclusion as the partial ordering).  Given two 

subsets B, C  ⊂⊂⊂⊂  A, the union B  ∪∪∪∪  C   is the unique minimal Z such that B, C  ⊂⊂⊂⊂  Z and 

the intersection B  ∩∩∩∩  C is the unique maximal Z such that Z  ⊂⊂⊂⊂  B, C. 
 

3.   Let  VecSub (RRRR 

n
)  denote the set of vector subspaces of RRRR 

n
 with inclusion as the 

partial ordering.  Given two vector subspaces X, Y of RRRR 

n
 the linear sum X + Y is the 

unique minimal Z such that X, Y  ⊂⊂⊂⊂  Z and the intersection X  ∩∩∩∩  Y is the unique maximal 
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Z such that  Z  ⊂⊂⊂⊂  X, Y.  Note that the ordering in this example is the restriction of the 
ordering in the previous one but the unique minimal Z changes.  This reflects the fact 

that X + Y is the unique smallest subspace which contains the subset X  ∪∪∪∪  Y .    
 

On the other hand, if X is a reasonably large finite set then the set  C  ⊂⊂⊂⊂   P(X)  of all 
subsets not containing exactly two specific elements of  X  is finitely bounded from 
above and below,  but it is not a lattice (given two distinct one point subsets, there are 
several subsets containing both of them, but there is no unique minimal set of this type). 
 

The following type of partially (in fact, linearly) ordered set plays an important role in the 
mathematical sciences. 
 

Definition.  A partially ordered set A is said to be well – ordered if every nonempty 
subset has a minimal element. 
 

Algebraic Example IV.0.12.   If A denotes the nonnegative integers and one takes the 
usual ordering, then A is well – ordered; we shall say more about this in the next unit. —  
One can also construct other well – ordered sets.  For example, if A denotes the 

nonnegative integers and B  ∉∉∉∉  A, consider the partial ordering on A ∪∪∪∪ { B }  which 
restricts to the usual ordering on A and has B as a unique maximal element.  Similarly, if 

we take some C such that C  ∉∉∉∉  A ∪∪∪∪  { B }, then we can construct an extended well – 

ordering on the set  A  ∪∪∪∪  { B, C }  for which C is the unique maximal element.   
Constructions of this sort played a significant role in Cantor’s work on trigonometric 
series which led him to develop set theory. 
 

Proposition 5.    Every well – ordered set is linearly ordered. 
 
Proof.  Let  A  be the well – ordered set.  If  A  does not have at least two elements then 
there is nothing to prove, so assume that A  does have at least two elements.  Suppose 
that  x  and  y  are distinct elements of A, and consider the nonempty subset   { x, y }.   
By the well – ordering assumption we know this set has a least element.  If it is x, then 
we have  x  <  y, and if it is y then we have y  <  x.����  

 
Product orderings 

 
Definition.    Let  A  and  B  be partially ordered sets.   Define a binary relation  P  on 

the product  A ×××× B  by (a, b)  P  (a ′′′′, b ′′′′)  if and only if  a  ≤≤≤≤  a ′′′′ and  b  ≤≤≤≤  b ′′′′.  The relation  

P  is called the  product partial ordering  on  A ×××× B, and this usage is justified by the 
following result: 
 

Theorem 6.    If A  and  B  are partially ordered sets as above, then  P  is a partial 

ordering on  A ×××× B.   
 

Proof.  The reflexive property  (a, b)  P  (a, b)  follows from  a ≤≤≤≤  a  and  b ≤≤≤≤  b.    

To see that  P  is symmetric, suppose that  (a, b)  P  (a ′′′′, b ′′′′)  and  (a ′′′′, b ′′′′)  P  (a , b ).    

Then we have  a  ≤≤≤≤  a ′′′′ and  a ′′′′ ≤≤≤≤  a, so that a  =  a ′′′′.  Similarly, we have have  a  ≤≤≤≤  a ′′′′ 

and  a ′′′′ ≤≤≤≤  a, so that a  =  a ′′′′;  combining these, we conclude that  (a, b)  =  (a ′′′′, b ′′′′).   

To show  P  is transitive, suppose that  (a, b)  P  (a ′′′′, b ′′′′)  and  (a ′′′′, b ′′′′)  P  (a ′′′′′′′′ , b ′′′′′′′′ ).   

Then  a  ≤≤≤≤  a ′′′′ and  a ′′′′ ≤≤≤≤  a ′′′′′′′′   imply  a  ≤≤≤≤  a ′′′′′′′′,   and similarly  b  ≤≤≤≤  b ′′′′ and  b ′′′′ ≤≤≤≤  b ′′′′′′′′   imply  

b  ≤≤≤≤  b ′′′′′′′′.   Combining these, we have (a, b)  P  (a ′′′′′′′′ , b ′′′′′′′′ ).     This completes the proof  
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that  P  defines a partial ordering on  A ×××× B.����  
 
It is natural to ask how the product ordering  P   is related to the lexicographic ordering  
L  constructed above.  Here is a partial answer. 
  
Theorem 7.    If  L  and  P   respectively denote the lexicographic and partial orderings 

on A ×××× B,  then (a, b)  P  (a ′′′′, b ′′′′)  implies  (a, b)  L  (a ′′′′, b ′′′′).   
  

In a situation like this one often says that the partial ordering  L  is a  refinement  of the 
partial ordering  P. 
  
Proof.   If  (a, b)  P  (a ′′′′, b ′′′′),  then a  ≤≤≤≤  a ′′′′.   If a  <  a ′′′′, then by definition we have (a, b)  

L  (a ′′′′, b ′′′′).    On the other hand, if  a  =  a ′′′′,  then since  b  ≤≤≤≤  b ′′′′  we also have  (a, b)  L  

(a ′′′′, b ′′′′) in this case.����  
 

Example.    Usually the lexicographic ordering is a  strict  refinement of the product 
ordering;  i.e., there are pairs  (a, b)  and  (c, d)  such that  (a, b)  L  (c, d)  is true but   
(a, b)  P  (c, d)  is false.   Consider the linearly ordered set consisting of the ordinary 
alphabet 
 

A    =   {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z} 
 

with the usual alphabetical ordering.  Then  (a, z)  precedes  (b, a)   in the lexicographic 
ordering but not in the product ordering.  Of course,  (b, a)  does not precede  (a, z)  in 
either ordering. 
 

Further topics.   Sections 7.3, 7.4 and 7.10 – 7.11 in Lipschutz contain additional 
material on partial orderings which goes beyond these notes.  Toplcs include additional 
methods for constructing new partial ordering out of old ones, graphical representations 
of partial orderings, additional terminology, and more detailed discussions of a few 
special types of partially ordered sets (for example, lattices).   Some of this material is 
used in a few of the exercises. 
 

I V.3:      Functions 

 

 

(Halmos, §§ 8 – 10;  Lipschutz, §§ 4.1 – 4.4, 5.6,  5.8) 
 

 

When one thing depends on another, as, for example, the area of a circle depends on 
the radius, or the temperature on the mountain depends on the height, or the underwater 
pressure depends upon the depth, then we say that the first is a “function” of the other. 
  
More generally, if the value of a quantity y belongs to B and depends upon the value of 
a quantity x which belongs to A, we can say that the value of y in B is a function of the 
value of x in A.  Taking this one step further, we can say that the function f is a rule 

which associates to each element a  ∈∈∈∈  A some unique element b  ∈∈∈∈  B, and this is 
frequently written symbolically as b  =  f(a). 
 

The concept of a function is absolutely central to the mathematical sciences and to every 
specialized branch of mathematics.  For example, the following two reasons for the 
importance of functions reflect comments at the beginning of the previous section: 
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1. Functions can be used to describe how a given object is related to 
another one. 

 

2. Functions serve particularly well as abstract mathematical models 
for changes in the real world. 

 

In light of the second point, it should not be surprising that mathematicians often use 
dynamic words like mapping, morphism or transformation as synonyms for function. 
 

In fact, it is even possible to develop the foundations of mathematics in a logically 
rigorous manner using functions as the primitive notion rather than sets, but we shall not 
attempt to discuss this alternative approach here (in particular, it requires a higher 
degree of abstraction than is otherwise necessary).  However, here are some references 
for this approach and its background: 
 

http://en.wikipedia.org/wiki/Category_theory 
 

http://plato.stanford.edu/entries/category-theory/ 
 

www.cs.toronto.edu/~sme/presentations/cat101.pdf 
 

http://www.pnas.org/cgi/reprint/52/6/1506.pdf 

  
Standard methods of describing functions 

 
Basic mathematics courses in calculus and other subjects give several ways of 
describing functions.  Here are a few standard examples: 
 

1. The use of  tables  to  list the values  of functions in terms of 
their dependent variables. 

 

2. The use of  formulas  to  express the values  of functions in 
terms of their dependent variables. 

 

3. The use of  graphs  to  visualize the behavior  of functions. 
 

Each of these methods is quite old.   A complete discussion of the historical background 
is beyond the scope of these notes, but a few remarks seem worthwhile. 
 
Tables of values.  Although our knowledge of mathematics in the earliest civilizations is 
limited, we do have examples of tables in both Egyptian and Babylonian mathematics 
from well before 1500 B. C. E., and extensive, fairly accurate tables of trigonometric 
functions had been compiled between 1000 and 2000 years ago in several ancient 
civilizations.   
 

Formulas.  The concept of a formula was at least informally understood in ancient 
civilizations in numerous locations throughout the world, and verbally stated functions 
are certainly explicit in classical Greek and Indian mathematics.  In particular, there are 
many verbal (also called rhetorical) formulas in Euclid’s Elements.  Of course, symbolic 
expressions of formulas require some form of mathematical symbolism.  The 
development of the latter took place in an uneven manner over several centuries; in 
Western civilization, Diophantus of Alexandria introduced systematic notational 
abbreviations for basic mathematical concepts during the 3rd century A. D.  Eventually 
such abbreviations and symbolisms were employed to express mathematical formulas, 
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but this really did not become very well established in Western mathematics until later in 
the 16th century, particularly in the work of R. Bombelli (1526 – 1572) and F. Viète (1540 
– 1603). 
 

Graphs.  The idea of representing a function graphically dates back (at least) to N. 
Oresme (1323 – 1382; pronounced o-REMM), and it is described in the book, Tractatus 
de figuratione potentiarum et mensurarum (“Latitude of Forms”), which was written 
either by him or one of his students; this book was extremely influential over the next 
three centuries, and in particular the impact can be seen in the scientific work of Galileo 
(G. Galilei, 1564 – 1642).  In fact, the graphical representation of a function provides one 
motivation for the standard mathematical definition of a function. 
 
 

The formal definition of a function 

 
The use of the word “function” to denote the relationship between a dependent and 
independent variable is due to G. W. von Leibniz (1646 – 1716), who introduced the 
term near the end of the 17th century.   Over the next 150 years there was a great deal 
of discussion about exactly how a function should be defined, and during that time the 
standard f (x) notation, in which the latter expression represents the dependent variable 
and x represents the independent variable,  was introduced by L. Euler (1706 – 1783).  
In the first half of the 19th century P. Lejeune – Dirichlet (1805 – 1859; the last part of the 
name is pronounced də-REESH-lay) and N. Lobachevsky (1792 – 1856) independently 
and almost simultaneously gave the modern definition of function as a fairly arbitrary rule 
assigning a unique value to each choice for the independent variable.  A brief but very 
informative summary of the evolution of the concept of a function appears on pages 73 – 
75 of the following textbook:  
 

Z. Usiskin, A. Peressini, E. A. Marchisotto, and D. Stanley, Mathematics 
for High School Teachers: An Advanced Perspective. Prentice – Hall, 

Upper Saddle River, NJ, 2002. ISBN: 0–130–44941–5. 
 

Formally this association can be done in several ways, but the most common is by 
means of ordered pairs, and we shall also employ this approach.  It follows that, from a 
purely formal viewpoint, 
 

a function is essentially a special type of binary relation. 
 

Definition.   A function is an ordered pair ( (A, B) , ΓΓΓΓ ) where A and B are sets and ΓΓΓΓ is 

a subset of A ×××× B with the following property:  
 

[ ! ! ]  For each a ∈∈∈∈ A there is a unique element b  ∈∈∈∈  B such that (a, b)  ∈∈∈∈  ΓΓΓΓ. 
 

The sets A and B are respectively called the domain and codomain  of  f    ,  and ΓΓΓΓ is 

called the graph of  f.   Frequently we write f : A →→→→ B to denote a function with domain 
A and codomain  B, and as usual we write  
 

b = f(a) if and only if the ordered pair (a, b) lies in the graph of  f . 
 

By [ ! ! ], for every a ∈∈∈∈ A there is a unique b ∈∈∈∈ B such that b  =  f(a). 
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Frequently a function is simply defined to be the subset ΓΓΓΓ described above, but in our 
definition the source set A (formally, this is the domain of the function) and the target set 
B (formally, this is the codomain of the function) are included explicitly as part of the 
structure.  The domain is essentially redundant; however, in some mathematical 

contexts if f : A  →→→→  B  is a function and B is a subset of C, then from our perspective it is 

absolutely necessary to distinguish between the function from A to B with graph ΓΓΓΓ and 

the analogous function from A to C whose graph is also equal to ΓΓΓΓ.  One can also take 

this in the reverse direction; if f : A  →→→→  B  is a function such that its graph ΓΓΓΓ lies in A ×××× D 

for some subset D  ⊂⊂⊂⊂  B, then it is often either convenient or even mandatory to view the 

graph as also defining a related function f : A  →→→→  D.   
 
The need to specify codomains is fundamentally important in computer science; for 
example, in computer programs one must often declare whether the values of certain 
functions should be integer variables or real (floating point) variables.  A basic 
mathematical example at a more advanced level is discussed in Chapter 9 of the 
previously mentioned book by Munkres.   
 

Variants of the main definition.  We have defined functions to be total (i.e., it has a 
value for every argument in the domain), following usual mathematical practice. A partial 
function is a function which need not be defined on every member of its domain; 

however, one still insists that for each x  ∈∈∈∈  A there is at most one y  ∈∈∈∈  B such that a 
pair of the form (x, y) lies in the graph.  Some references go even further and talk about 
multiple valued functions such that for a given x there may be more than one y such that 
(x, y) lies in the graph.  However, such objects will not be discussed any further in these 
notes.  All functions considered here will be single valued. 
 
Example.  If A is the set of real numbers, then the function f(x) given by the standard 

formula x 
2 is given formally by ( (A, A), G) where G denotes the set of all (x, y) in the 

product A ×××× A such that y  =  x 
2
.  Similar considerations apply for most of the functions 

that arise in differential and integral calculus. 
 
One disadvantage of our definition is that it does not allow us to define functions whose 
domains or codomains are classes but not necessarily sets.  Such objects are needed at 

certain points in Unit V and in order to accommodate them we shall make the following 
nonstandard definition. 
 

Definition.  If A and B are classes, then a graph (or prefunction) on A ×××× B will be a 

subset of A ×××× B satisfying [ ! ! ] . 
 

Example(s).  A simple example of a prefunction on the universal class U
∗
 of all sets is 

given by the set of all ordered pairs ( S, P(S) ) where S is an arbitrary set. 

 

Here is another nontrivial example of a prefunction on the universal class U
∗
 of all sets; 

it is related to some constructions in Section V.3 :  Take ΣΣΣΣ    to be the collection of all 

ordered pairs (x, y) such that x is a set and y  =  x  ∪∪∪∪  { x }  (strictly speaking the 
definition of this class requires a slightly stronger version of the Axiom of Specification 
than we have used, so that one can define classes that are not necessarily contained in 
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some fixed set; for example, one can use Axiom  ZF4  on page 82 of the book by 
Goldrei that was cited at the beginning of these notes) .   

  
Equality of functions 

 
In both the naïve and formal approaches to set theory, one of the first things is to state 
the standard criterion for two sets to be equal.  We shall begin the discussion of this 
section by verifying the standard fundamental criterion for two functions to be equal. 
 

Proposition 1.  Let f : A →→→→ B  and g : A →→→→ B be functions.  Then f  =  g  if and only if 

f(x)  =  g(x)  for every x  ∈∈∈∈  A. 
 

Proof.  If f  =  g then their graphs are equal to the same set, which we shall call G.  By 

definition of a function, for each x  ∈∈∈∈  A there is a unique b ∈∈∈∈  B such that (x, b) ∈∈∈∈ G, 

and it follows that b must be equal to both f(x) and g(x).  Conversely, if f(x)  =  g(x)  for 

every x  ∈∈∈∈  A, then for each we know that the graphs of f and g both contain the element 
(x, b) where b  =  f(x)  =  g(x).  Since for each x the graphs of f and g each contain 
exactly one point whose first coordinate is x, it follows that these graphs are equal.  By 
the definition of a function, this implies f  =  g.���� 

 
Images and inverse images 

 
Definition.  Let  f : A →→→→ B  be a function, and let C  ⊂⊂⊂⊂  A.  Then the image of C under 
(the mapping) f is the set   
 

f [C]    =    { y  ∈∈∈∈  B  |  y  =  f(x)  for some  x  ∈∈∈∈  A  }. 

 

Similarly, if D  ⊂⊂⊂⊂  B, then the inverse image of D under (the mapping)  f  is the set 
 

f  
–

 
1 [ D ]    =    { x  ∈∈∈∈  A  |  f(x)   ∈∈∈∈  D  }. 

 

The set f [A], which is the image of the entire domain under f, is often called the range 
of the function. 
 
Comment on notation.   One often uses parentheses rather than brackets and writes 

images and inverse images as f (C)  and  f  – 1
 (D) rather than f [C]  and  f  – 1

 [D].  In most 
cases this should cause no confusion, but there are some exceptional situations where 
problems can arise, most notably if the set Y  =  A or B contains an element  x  such that 

both x  ∈∈∈∈  A  and x  ⊂⊂⊂⊂  A.  Such sets are easy to manufacture; in particular, given a set 

x we can always form A  =  x  ∪∪∪∪  { x }, but in practice the replacement of brackets by 
parentheses is almost never a source of confusion.  We shall consistently use square 
brackets to indicate images and inverse images. 
  

By definition we know that { f (x) }  =  f [ { x } ].  One often also sees abuses of notation in 
which an inverse image of a one point set f  

–
 
1 [ { y } ] is simply written in the abbreviated 

form f  
–

 
1 (y).  In such cases it is important to recognize that the latter is a subset of the 

domain and not an element of the latter (in particular, the subset may be empty or 
contain more than one element).    
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Examples.   1. Suppose that A  =  B is the real number system, f (x)  =  x2  and C is the 

closed interval [2, 3].  Then f [C] is equal to the closed interval [4, 9], and if C is the 

closed interval [ – 1, 1] then f [C] is equal to the closed interval [0, 1].  Similarly, if D is 

the closed interval [16, 25] then f  – 1
 [D] equals the union of the two intervals [ – 5, – 4] 

and [4, 5], while if D is the closed interval [ – 9, 4] then f  – 1
 [D] equals the closed 

interval  [ – 2, 2]. 
 

2.  Let f (x) = 2x, and let E be the interval [a, b]. Then the image f [E]  =  [2a, 2b] and 

the inverse image f  – 1
 [E] = [½a, ½b]. Note that the range of f, which is the image of the 

entire domain, is just the set of all real numbers. 
  

3.   Let f (x)  =  x
2.  If E = [ –1, 2], then f [E]  =  [0, 4].  Similarly,  if either E  =  [ –1, 4] 

or  E  = [ –2, 4], then f  – 1
 [E]  =  [ 0, 2].  The two sets have the same inverse image 

because there is no real number x whose square is negative.  Note that the range of f, 
which is the image of the entire domain, is just the set of all nonnegative real numbers. 
 

In order to work a change of variables problem in multivariable calculus it is usually 
necessary to find the image or the inverse image of a set under some vector valued 
function of several variables.  Examples and exercises of this sort are given in Section 
6.1 of the previously cited book by Marsden and Tromba. 
 

The following basic identities involving images and inverse images are mentioned (and 
in a few cases verified) on pages 38 – 39 of Halmos. 
 

Theorem 2.  If  f : A →→→→ B  is a function, then the image and inverse image constructions 
for f have the following properties: 
 

1. If V is a family of subsets of A, then f [∪∪∪∪ C ∈∈∈∈ V  C]   =   ∪∪∪∪ C ∈∈∈∈ V  f[C]. 
 

2. If V is a nonempty family of subsets of A, then we have 

f [ ∩∩∩∩ C ∈∈∈∈ V  C ]   ⊂⊂⊂⊂   ∩∩∩∩ C ∈∈∈∈ V  f [C] and the containment is 
proper in some cases. 
 

3. If C is a subset of A, then  C  ⊂⊂⊂⊂  f  – 1
 [ f [C] ].  

 

4. If W is a family of subsets of B, then we have 

f  – 1
 [ ∪∪∪∪ D ∈∈∈∈ W  D ]   =   ∪∪∪∪ D ∈∈∈∈ W  f  – 1

 [D]. 
 

5. If W is a nonempty family of subsets of B, then 

we have f  – 1
 [ ∩∩∩∩ D ∈∈∈∈ W  D ]   =   ∩∩∩∩ D ∈∈∈∈ W  f  – 1

 [D].  
 

6. If D is a subset of B, then f [f  – 1
 [D] ]  ⊂⊂⊂⊂  D.  

 

7. If D is a subset of B, then f  – 1
 [B – D]  =  A – f  – 1

 [D].  
 
Proof.   Each statement requires separate consideration. 
 

Verification of (1):   Suppose that y  ∈∈∈∈  f [∪∪∪∪ C ∈∈∈∈ V  C ].  Then y  =   f(x) for some element 

x  belonging to  ∪∪∪∪ C ∈∈∈∈ V  C, and for the sake of definiteness let us say that x  ∈∈∈∈  C0.   It 

follows that  y  ∈∈∈∈  f [C0 ], and since the latter is contained in  ∪∪∪∪ C ∈∈∈∈ V  f [C] it follows that 
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the original element y   belongs to  ∪∪∪∪ C ∈∈∈∈ V  f [C].   Conversely, if  y   ∈∈∈∈  ∪∪∪∪ C ∈∈∈∈ V  f [C] and 

we choose  C0 so that  y  ∈∈∈∈  f [C0 ],  then y  =  f(x) for x  ∈∈∈∈  C0  and C0   ⊂⊂⊂⊂  ∪∪∪∪ C ∈∈∈∈ V  C 

combine to imply that  y  ∈∈∈∈  f [ ∪∪∪∪ C ∈∈∈∈ V  C ].  Hence the two sets in the statement are 

equal. 
 

Verification of (2):   Suppose that y  ∈∈∈∈  f [ ∩∩∩∩ C ∈∈∈∈ V  C ].  Then y  =  f(x) for some element 

x  belonging to  ∩∩∩∩ C ∈∈∈∈ V C, and therefore y  ∈∈∈∈  f [C] for each C  ∈∈∈∈  V.  But this means 

that y belongs to  ∩∩∩∩ C ∈∈∈∈ V  f [C], and this proves the containment assertion.  To see that 
this containment may be proper, consider the function x2 from the real numbers to 

themselves, and let B and C denote the closed intervals [–1, 0] and [0, 1] respectively.  

Then f [B ∩∩∩∩ C]  =  { 0 } but  f [B]  ∩∩∩∩  f [C]  =  [0, 1].   
 

Verification of (3):   If x ∈∈∈∈  C then f(x} ∈∈∈∈  f[C], and therefore x ∈∈∈∈ f  – 1 [ f [C] ],  proving 

the containment assertion.   
 

Verification of (4):   Suppose that x  ∈∈∈∈  f  – 1
 [ ∪∪∪∪ D ∈∈∈∈ W  D ].  By definition we then know 

that f(x)  ∈∈∈∈   ∪∪∪∪ D ∈∈∈∈ W  D, and for the sake of definiteness let us say that f(x)  ∈∈∈∈  D0.  Then 

we have x  ∈∈∈∈  f  – 1
 [D0], and since the latter is contained in f  – 1

 [ ∪∪∪∪ D ∈∈∈∈ W  D ] we conclude 

that  f  – 1
 [ ∪∪∪∪ D ∈∈∈∈ W  D ]   =   ∪∪∪∪ D ∈∈∈∈ W  f  – 1

 [D].  Conversely, let x  ∈∈∈∈  ∪∪∪∪ D ∈∈∈∈ W  f  – 1
 [D].  Once 

again, for the sake of definiteness choose D0 so that x  ∈∈∈∈  f  – 1
 [D0].  We then have that 

f(x)  ∈∈∈∈  D0 , where the latter is contained in ∪∪∪∪ D ∈∈∈∈ W  D, so that f(x)  must belong to the 

set  ∪∪∪∪ D ∈∈∈∈ W  D.  This implies that x  ∈∈∈∈  f  – 1
 [ ∪∪∪∪ D ∈∈∈∈ W  D ].  Therefore we have shown that 

each of the sets under consideration is contained in the other and hence they must be 
equal. 
 

Verification of (5):   Suppose that x  ∈∈∈∈  f  – 1
 [ ∩∩∩∩ D ∈∈∈∈ W  D ].   Then  f(x)  =  y  for some 

element y  belonging to  ∩∩∩∩ D ∈∈∈∈ W  D, so that y  ∈∈∈∈  D for each D  ∈∈∈∈  W.   Therefore we 

have x  ∈∈∈∈  f  – 1
 [D] for each D  ∈∈∈∈  W,  which means that x  belongs to  ∩∩∩∩ D ∈∈∈∈ W  f  – 1

 [D], 

and this proves one containment direction.   Conversely, suppose x  ∈∈∈∈  ∩∩∩∩ D ∈∈∈∈ W  f  – 1
 [D].  

Then by definition we know that f(x)  ∈∈∈∈  D for every D ∈∈∈∈  W, so that we must also have 

f(x)  ∈∈∈∈  ∩∩∩∩ D ∈∈∈∈ W  D.   But this means that x  ∈∈∈∈  f  – 1
 [ ∩∩∩∩ D ∈∈∈∈ W  D ], proving containment in 

the other direction; it follows that the two sets under consideration must be equal.  
 

Verification of (6):   If y  ∈∈∈∈  f [f  – 1
 [D] ], then y  =  f(x) for some x  ∈∈∈∈  f  – 1

 [D], and by 

definition of the latter we know that f(x)  ∈∈∈∈  D; since y  =  f(x) this means that y must 

belong to D, proving the containment assertion.   
 

Verification of (7):   Suppose first that x  ∈∈∈∈  f  – 1
 [B – D].  By definition f(x)  ∈∈∈∈  B – D, and 

in particular it follows that f(x)  ∉∉∉∉  D, so that x  ∉∉∉∉  f  – 1
 [D].  The latter in turn implies that 

x  ∈∈∈∈  A – f  – 1 [D], and thus we have established f  – 1 [B – D] ⊂⊂⊂⊂ A – f  – 1
 [D].  Conversely, 

if x  ∈∈∈∈  A – f  – 1
 [D], then x  ∉∉∉∉  f  – 1

 [D] implies f(x)  ∉∉∉∉  D, so that f(x)  ∈∈∈∈  B – D and 

hence x  ∈∈∈∈  f  – 1
 [B – D].  This yields containment in the other direction.� 
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Notes.    In the next section, we shall prove that equality holds for parts (3) and (6) if the 
function  f  satisfies an additional condition (there are separate ones for each part).  
Likewise, there are results for comparing f [A – C] to B – f [C] in some cases (see 

Exercise IV.4.7). 

  
Some fundamental constructions 

 
This subsection contains two loosely related comments about the use of set theory and 
functions to formalize some fundamental mathematical concepts. 
 
Multivariable functions.  Frequently in mathematics and its applications one 
encounters so – called functions of several variables.  Formally, a function which 

depends upon n independent variables in the sets A1, … , A n is defined to be a function 
on the n – fold Cartesian product  
 

A1 ×××× … ×××× A n  
 

or some subset of such a product.  Of course, multivariable calculus provides many 

examples of functions of 2 and 3 variables where each set A i is the real numbers and 
the codomain is also the real numbers. 
 

Binary operations and algebraic systems.   One can also use functions to give a 

formal definition of algebraic operations on a set.  Specifically, if A is a set and ∗ is a 

binary operation on A, then one formalizes this operation mathematically by means of a 

function  b : A ×××× A  →→→→  A .   Given such an operation we usually denote the value  b(x, y) 

in the simpler and more familiar form x ∗ y.  In particular, if A is the real numbers then 

addition and multiplication correspond to functions of two variables 
 

αααα : A ×××× A   →→→→  A              µµµµ : A ×××× A   →→→→  A 
 

whose values satisfy appropriate conditions.  
  
Similarly, if we are given a mixed binary operation like scalar multiplication, which sends 

a scalar c and a vector v to the vector c v, we can formalize such an operation as a 

function C ×××× A  →→→→  A.   Likewise, an inner product on a vector space corresponds to a 

function of the form A ×××× A  →→→→  B, where A is the vector space and B denotes the 
associated set of scalars.  One can even go further and discuss binary operations like 

matrix multiplications which send an m ×××× n matrix and an n ×××× p matrix to an m ××××  p 

matrix, and in such cases the binary operations will be mappings A ×××× B   →→→→  C, where 
the three sets A, B and C may all be distinct. 

 
A problem involving polar coordinates 

 
Many intermediate or advanced treatments of polar coordinates contain a section on 
finding the intersection points of two plane curves given in polar coordinates.  If the 

curves are defined by equations of the form F(r, θθθθ)  =  0 and G(r, θθθθ)  =  0, then some 

points of this type are given by the values of (r, θθθθ) which solve both of these equations, 
but  frequently one encounters examples where this does  not  yield  all  the common 
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points.   One example of this sort is given by the circle with equation r  =  1 and the line 

with equation θθθθ  =  1.  The common solutions of the two equations yield the point in the 
plane with polar coordinates (1, 1)POLAR, but if one graphs the two curves it is also 

apparent that (– 1, 1)POLAR   =  (1, 1 + ππππ)POLAR  is also on both curves.    
 

Sometimes calculus texts address this difficulty by suggesting that one graph the two 
curves to see if there are any common points that are not given by simultaneous 
solutions of the equations.  This is usually effective, but it is neither systematic nor 
logically complete.  We shall use the material developed thus far in this course to give a 
more reliable basis for finding common points.  Additional details appear in the following 
online document: 

 

http://math.ucr.edu/~res/math9C/polar-ambiguity.pdf 
 

In fact, we shall look at an abstract version of the polar coordinate problem.  Suppose 

that we are given a surjective function  f : A  →→→→  B be from one set A to a second set B;  
in the special case of immediate interest, the sets A and B are both equal to the real 

numbers and f is the standard polar coordinate map sending (r, θθθθ) to (r cos θθθθ, r sin θθθθ).  
What is the abstract version of two curves C1 and C2 defined by equations in polar 
coordinates?  The equations have the form g1(a)   =   x1 and g2(a)   =   x2 for functions 

g1, g2 : A  →→→→  X, and the abstract versions of C1 and C2 are the set of all points b  ∈∈∈∈     B 

such that there are some a  ∈∈∈∈     A  satisfying f(a)  =  b and g1(a)   =   x1 (for C1) or f(a)  =  

b and g2(a)   =   x2 (for C2).   This intersection includes all points b  ∈∈∈∈     B such that there 

is some a  ∈∈∈∈     A  satisfying f(a)  =  b,  g1(a)   =   x1 and g2(a)   =   x2.  However, the 

following result, which is elementary to verify, describes ALL the possibilities: 
 

Proposition 3.   In the setting of the preceding paragraph, the intersection C1  ∩∩∩∩  C2  

consists of all     b  ∈∈∈∈     B  for which there exist     a1, a2  ∈∈∈∈     A  such that f(a1)  =  f(a2)  =  b,  

g1(a)   =   x1,  and   g2(a)   =   x2.�  
 

Application to the previous example.    In this case the equations g1(a)   =   x1 and 

g2(a)   =   x2 are  r – 1  =  0  and  q – θθθθ  =  0.  We then have f(– 1, 1)   =  f(1, 1 + ππππ), and 

we also have g1(– 1, 1)   =   0   =  g2(1, 1 + ππππ).  Therefore the criterion in the proposition 

implies that f(– 1, 1)   =  f(1, 1 + ππππ)  ∈∈∈∈     C1  ∩∩∩∩  C2 .  Graphically it is clear that this point 

and f(– 1, 1) are the only points at which the line and circle meet, but we need to check 

this analytically in order to be logically complete.  Given (r, θθθθ), the definition of polar 

coordinates shows that f(r, θθθθ)  =  f(s, ϕϕϕϕ) if and only if either (1) r = s = 0 and the second 

coordinate is arbitrary, (2) s  =  (– 1)
m

 r and ϕϕϕϕ   =  θθθθ  +  ππππm.  No coordinate pairs (r, θθθθ) 

and (s, ϕϕϕϕ) the first type yield solutions as in the proposition, and in the situation we are 
considering it is elementary to check that no additional common points arise from 
coordinate pairs of the second type. 
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I V.4:      Composite and inverse functions 

 

 

(Halmos, § 10;  Lipschutz, §§ 4.3 – 4.4, 5.7) 
 
 

This section discusses two basic methods of constructing new functions from old ones.  
Both play an important role in calculus. 
 

1. The formation of composites by taking a function of a function.  For example, 

the composite of sin x and 2x + 1 is the function sin (2x + 1), and the 

composite of the functions 1 + x
3
 and e

x
 is equal to 1 + e

3x
. 

 

2. In some situations, it is possible to undo the results of a function by taking the 

inverse function.  For example, the cube root function is the inverse of x
3
, the 

natural logarithm function is the inverse of e
x
, and arctan x is the inverse to 

tan x if the latter is viewed as a function which is defined on the open interval 

(– ππππ/2, ππππ/2).    

 
Identity and composite functions 

 
As noted above, one standard method for constructing new functions out of old ones is 
to compose them.  In particular, if f and g are suitable functions, then one can form the 

composite g( f(x) ) by first applying f to x and then applying g to the resulting value f(x). 
In order for this to be defined the value x must be in the domain of f, and f(x) must be in 
the domain of g.  For example, over the real numbers one cannot form the composite 

function sqrt( (sin x) – 2 ) because the expression inside the  radical sign is always 

negative and in elementary calculus one can only define square roots for nonnegative 
numbers. 
 

Formally, we proceed as follows: 
 

Definition.   If  f : A →→→→ B and g : B →→→→ C are functions, then the composite function  
 

g  f : A →→→→ C  
 

is defined by g  f (x)  =  g( f(x) ).   Frequently one abbreviates g  f to g f. 
 
Example.  Suppose that f(x)  =  7 x – 4 and g(x)  =  3 x + 2.   Then direct calculation 
shows that g  f (x)  =  21 x – 10. 
 
Graphically one often represents a composite by a so – called commutative diagram, 
the idea being that if one follows the arrows from one object to another, the end result is 
independent of the path taken. 
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During the past half century the use of commutative diagrams has become extremely 

widespread in the mathematical sciences and in some closely related areas (e.g., some 
branches of theoretical physics).  Section 5.6 of Lipschutz contains some further 
discussion of this point. 
  
Composition of functions is associative but not commutative.  We shall establish the first 
by proving a proposition and the second by furnishing an example. 
 

Proposition 1.  Suppose that  f: A  →→→→ B,  g: B   →→→→ C,  and  h: C  →→→→ D  are functions. 
Then we have the associativity identity h  (g  f)  =  (h  g)  f. 
 

Proof.  This follows directly from the definition of functional composition. If x  ∈∈∈∈  A is 

arbitrary, then we have the chain of equations 
  

(h  (g  f))(x)   =   h((g  f)(x))   =   h(g(f(x)))   =   (h  g)(f(x))   =   ((h  g)  f )(x). 
 

By Proposition 1 it follows that the two composites h   (g  f)  and  (h  g)  f must be 
equal.���� 
  

The proof may be illustrated by the following commutative diagram 
 

 
 

in which each of the two triangles ∆∆∆∆    ABC, ∆∆∆∆    BDC commutes; it follows from associativity 

that the parallelogram ����        ABDC also commutes. 
 

Failure of commutativity.  One basic reason why composition is not commutative (i.e., 

g  f  ≠≠≠≠  f  g in general) is that the existence of one of the composites g  f  or  f  g does 
not guarantee the existence of the other.  For example, this happens whenever we have 

f: A  →→→→  B and g: B  →→→→  C where A, B and C are all distinct.  In particular, in order to 

define both composites we need to have A  =  C, and if B is not equal to A there is still 
no way that  g  f  or  f  g  can be equal because they still have different domains and 
codomains.  Thus the only remaining situations in which one can ask whether the 

composites in both orders are equal are those where A  =  B  =  C.  The example below 
shows that commutativity fails even in such a restricted setting.  
 

Examples.  1. Let A  =  B be the real numbers, let f(x)  =  x + 3, and let g(x)  =  x 2.  

Then the composite g  f (x) is equal to (x + 3) 
2
, but the reverse composite  f  g (x)  is 

equal to x 
2
 + 3. so that g  f and f  g are completely different functions.  In particular, their 

values for x  =  0 are unequal.  
 

2.  Consider the functions f(x)  =  x + 1 and g(x)  =  x
3
.  Both f and g are 1 – 1 onto 

functions from the real numbers to themselves, but g  f (x)  =  x
3
 + 1 while the composite 

in the other order given by f  g(x) = (x + 1) 
3
  =  x

3
 + 3x

2
 + 3x + 1. 

 

3.  If we take f(x)  =  sin x and g(x)  =  x
2
,  then both f and g are functions from the real 

numbers to themselves with g  f(x)  =  sin 2 x and  f   g(x)  =   sin(x
2
).   Note that the 
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first of these has an antiderivative that is easily expressed in terms of elementary 
functions from single value calculus but the second does not; more information on the 
latter topic appears in the document  
 

http://math.ucr.edu/~res/math144/nonelementary_integrals.pdf 
 

in the course directory. 
 

Composition, images and inverse images.  The image and inverse image 
constructions are highly compatible with composition of functions. 
 

Proposition 2.  Suppose that  f: A →→→→  B   and   g: B  →→→→  C are functions, and let M and 
N denote subsets of A and C respectively.  Then we have  
 

g  f [M]   =   g[ f[M] ]        and        (g  f) 
– 1 [N]  =  f 

– 1
 [  g  

– 1 [N] ]. 
 

Proof.  We shall first verify that  g  f [M]   =   g[f [M] ].   Suppose that z  =  g  f(x) for 

some x ∈∈∈∈ M.  Since  (g  f)(x)   =   g(f(x)) it follows that  we have z  =  g(y) where y =  

f(x) and  x ∈∈∈∈ M.  Therefore y ∈∈∈∈ f [M] and consequently we also have z  ∈∈∈∈  g [ f [M] ].  To 

prove the reverse inclusion, suppose that z ∈∈∈∈  g [ f [M] ], so that z  =  g(y) where y =  f(x) 

and  x ∈∈∈∈ M.  We may then use (g  f)(x)   =   g(f(x)) to conclude that  z  ∈∈∈∈  g  f [M], 

completing the proof of the second inclusion and thus also the proof that the two sets 
under consideration are equal.    
 

We shall next verify that (g  f) 

–
 
1

 [N]  =  f –
 
1

 [ g 

–
 
1

 [N] ].  Suppose that x belongs to the set  

(g  f) 
–

 
1

 [N].  By definition we then have g  f(x)  ∈∈∈∈ N, and since (g  f)(x)   =   g(f(x)) it 

follows that f(x)  ∈∈∈∈ g  –
 
1

 [N].  The latter in turn implies that x  ∈∈∈∈ f –
 
1

 [  g –
 
1

  [N] ], and this 

proves containment in one direction.   To prove containment in the other direction, 

suppose that x ∈∈∈∈ f –
 
1

 [  
 g 

 –
 
1

 [N] ].  Working backwards, we conclude that f(x) ∈∈∈∈ g –
 
1

 [N], 

so that (g  f )(x)   =   g( f(x) ) ∈∈∈∈ N,  which implies that x  ∈∈∈∈ (g  f) –
 
1

 [N].  This proves 

containment in the other direction and hence that the two sets under consideration are 
equal.� 
 

Definition.   Given a set A, the identity function idA or 1A : A  →→→→ A is the function 
whose graph is the set of all (x, y) such that y  =  x. 
 

Identity maps and composition of functions satisfy the following simple but important 
condition. 
 

Proposition 3.   If  f: A →→→→ B is a function, then we have 1B  f  =  f  =  f  1A . 
 

Proof.  Let x  ∈∈∈∈  A be arbitrary.  Then we have 1B  f (x)  =   1B ( f (x) )  =  f (x) and we also 

have f (x)  =   f ( 1A (x))   =   f  1A (x).  We can now apply Proposition IV.3.1 to conclude 

that the three functions 1B   f ,  f , and f  1A are equal.� 
 
Inclusion mappings.   If A is a set and C is a subset of A, then the inclusion mapping j: 

C →→→→ A is the function defined by j(x)  =  x; equivalently, the graph is the set of all (x, y) 

in C ×××× A such that x  =  y. 
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Restrictions to subsets.  Suppose that f: A →→→→ B is a function, and again let C be a 

subset of A.  Then the restriction of f to C is the composite function f    j: C →→→→ B, and it is 

generally denoted by f |C.  If the graph of f is the set G  ⊂⊂⊂⊂  A ×××× B, then the graph of f |C is 

the subset G ∩∩∩∩ (C ×××× B).   

   
Special types of functions 

 
Defintions.  Let f : A →→→→ B be a function.   
 

• The function f is one – to – one or 1 – 1 if for all x, y  ∈∈∈∈  A, we have f (x)  = f (y) if 
and only if x  =  y.  Such a map is also said to be injective or an injection or a 
monomorphism or an embedding (sometimes also spelled imbedding). 
 

• The function f is onto if for each y  ∈∈∈∈  B there is some x  ∈∈∈∈  A such that f (x)  =  
y.  Such a map is also said to be surjective or a surjection or an epimorphism.  

 

• The function f is 1 – 1 and onto (or 1 – 1 onto or a 1 – 1 correspondence) if it is 
both 1 – 1  and onto.  Such a map is also said to be bijective or a bijection or an 
isomorphism. 

 

The following observation is a direct consequence of the definitions. 
 

Proposition 4.  Let f : A →→→→ B be a function.  Then f is surjective if and only if its range is 
equal to its codomain, or equivalently if and only if f [A]  =  B.���� 
 

This follows immediately because the range of f is equal to f [A] by definition. 
 

Examples of injections.   If A is a set and C is a subset of A, then the previously 

defined inclusion mapping j: C →→→→ A is an injection because j(x)  =  x for all x, so that the 
condition  j(x)  =  j(y) is equivalent to saying that x  =  y.  On the other hand, the 
inclusion j is a surjection if and only if C  =  A. 
 

Examples of surjections.   Let A and B be sets, and let A ×××× B denote their Cartesian 

product.  The (coordinate) projection mappings  pA : A ×××× B →→→→ A  and pB : A ×××× B →→→→ B 
onto A and B respectively are defined by pA(x, y)  =  x and  pB(x, y)  =  y.  These are 
also called the projections onto the first (A – ) and second (B – )  coordinates.  If 
both A and B are nonempty, then these mappings are always surjective.  On the other 
hand, the projection pA is injective if and only if B consists of a single point, and likewise 
the projection pB is injective if and only if A consists of a single point. 
 
Additional examples for injectivity and surjectivity.  Injectivity and surjectivity are 
logically independent properties. The standard way of showing this is to give an example 
of a function that is injective but not surjective and an example that is surjective but not 

injective.  For the former, consider the elementary function f : RRRR  →→→→ RRRR defined by f (x)  =  

arctan x. This is defined for all numbers and is strictly increasing, so it is automatically 

injective, but it is not surjective because its range is the open interval ( – ππππ/2, ππππ/2 ).  

An example of a function that is surjective but not injective is given by f (x)  =  x
3
 – x. 

The function is surjective because for each y one can find a real solution to the cubic 

equation x
3
 – x  =  y.  However, it is not injective because f (0)  =  f (+1)  =  f (–1)  =  0.���� 

Note also that the function f (x)  =  x
2
 is neither injective nor surjective because f (+1)  

=  f (–1) and it is not possible to find a real number x such that x
2
  =  –1. ���� 
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The following simple factorization principle turns out to be extremely useful for many 
purposes: 
 

Proposition 5.   Let f : A  →→→→  B be a function.  Then f is equal to a composite j        q, where 

q: A  →→→→  C is surjective and j : C  →→→→  B is injective.   
 

Proof.   Let C be the image of f, and define q such that the graphs of q and f are equal. 
Take j to be the inclusion of C in B (hence it is injective).   By construction q is surjective, 
and it follows immediately that f(x)  =  j( q(x) ) for all x in A.���� 
 

Note.   The factorization of a function into a surjection followed by an injection is rarely 
unique, but there is a close relationship between any two such factorizations whose 
proof is left to the exercises for this section. 
 

Complement to Proposition 5.  Suppose we have a function f : A  →→→→  B and two 
factorizations of f as j 0        q 0  and  j1        q1 where the maps q  t are surjective and the maps j  t 
are injective for t  =  0, 1.  Denote the codomain of q  t (equivalently, the domain of j  t) by 

C t.  Then there is a unique bijection H: C0  →→→→  C1 such that H q 0  =  q 1 and j1 H  =  j 0. 
A wide range of injective, surjective and bijective functions arise in subjects like calculus, 
discrete mathematics and linear algebra.  The reader is encouraged to look back at 
various basic functions from such courses to determine which if any of these conditions 
are satisfied for such examples. 

 

Proposition 6. Let f: A →→→→ B and g: B →→→→ C  be functions.  
 

(1)   If f and g are surjections then so is g    f. 
 

(2)   If f and g are injections then so is g     f. 
 

(3)   If f and g are bijections, then so is g    f. 
 

Proof.  The third statement follows from the first two, so it suffices to prove these 
assertions.  
  

Verification of (1):   Assume f and g are onto.  Let c  ∈∈∈∈  C be arbitrary.  Since g is onto 

we can take b ∈∈∈∈ B such that g (b)  =  c.  Since f is onto there is some a  ∈∈∈∈  A such that f 
(a)  =   b.  But then g    f (a)  =  g (  f(a)  )  =  g  (b)  =  c.  Hence g    f is onto. 
 

Verification of (2):   Assume f and g are 1 – 1.  Take arbitrary elements a1, a2  ∈∈∈∈  A 

and suppose that g    f (a1)  =  g    f (a2). Then g(  f (a1)  )  =  g(  f (a2)  ) by the definition of the 

composite g    f. Therefore f (a1)  =  f (a2) because g is 1 – 1, and since f is 1 – 1  it now 

follows next that a1  =  a2. This shows that g    f is 1 – 1.���� 
 

If a function f: A →→→→ B is either 1 – 1 or onto, then one can prove strengthened forms for 
some of the results in Theorem IV.3.2 on images and inverse images of subsets with 
respect to f. 
 

Theorem 7.  If  f : A →→→→ B  is a function, then the image and inverse image constructions 
for f have the following properties: 
 

1. If f is 1 – 1 and C is a subset of A,  then  C  =  f  

–
 

1
 [ f  [C] ].  

2. If f is onto and D is a subset of B,  then  f [ f  

–
 

1
 [D] ]  =  D.  

 

Proof.   As in the proof of Theorem IV.3.2, we treat each statement separately.  
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Verification of (1):   By Theorem IV.3.2, we already know C is contained in  f 
 

–
 

1
 [ f [C]  ].  

Suppose now that f is 1 – 1 and y ∈∈∈∈ f 
 

–
 

1
 [ f [C]  ].  By definition we know that f(y)  =  f(x) 

for some x ∈∈∈∈  C.  Since f is 1 – 1 this implies y  =  x, so that we must have x ∈∈∈∈  C.  

Hence the two sets under consideration are equal if f is 1 – 1. 
 

Verification of (2):   By Theorem IV.3.2, we already know f [ f 
 

–
 

1
 [D] ] is contained in D. 

Suppose now that f is onto, and let y ∈∈∈∈ D.  Then there is some x such that y  =  f(x), 

and by definition we know that x must belong to f 
 

–
 

1
 [D].   Therefore y  =  f(x) must 

belong to f [ f 
 

–
 

1
 [D] ] if f is onto, proving containment in the other direction if f is onto.� 

 
Inverse functions 

 
Intuitively, the inverse of a function f: A →→→→ B is a function g: B →→→→ A which undoes the 
action of f; frequently we say that a function is invertible if an inverse exists.  It turns out 
that a function is only invertible if it is a bijection. 
 

Definition.   Let f: A →→→→ B be a function.  A function g: B →→→→ A which is an inverse of f if 

for all  a ∈∈∈∈ A we have  g ( f(a)  )  =  a  and for all  b  ∈∈∈∈  B  we have f  (  g(b)  )  =  b.   This is 

clearly equivalent to the conditions g   f  =  id A  and  f    g  = id B. 
  
Elementary examples.   If A denotes the real numbers, B denotes the positive real 

numbers, and f(x)  =  e 
x
, then f has an inverse function g which is the logarithm of x to 

the base e.  Similarly, if A  =  B is the real numbers and f(x)  =  2 x  +  4, then f has an 

inverse g and g(x)  =  ½ x – 2.  Many other examples of this sort arise in trigonometry 
and calculus. 
 

Proposition 8.  Let f: A →→→→ B be a bijection, and define f – 1
: B →→→→ A by taking f – 1

 (b) to 

be the unique a such that f (a)  =  b; equivalently, the graph of f – 1 is the set of all 

ordered pairs (y, x) such that (x, y) lies in the graph of  f.  Then f – 1 is well-defined, and it 
is an inverse of f (in fact it is the unique inverse in view of the next proposition). 
 
Proof.  There is at least one a such that f (a)  =  b since f is onto.  There cannot be more 

than one since f is 1 – 1.  Therefore f – 1
 is well – defined.  It clearly satisfies the 

conditions for being an inverse of f.����  
 

Proposition 9.  Let f: A →→→→ B be a function. If f has an inverse g, then f is a bijection and 

the inverse is unique (and it is equal to f – 1 as defined above). 
 

Proof.  Assume that the mapping f has an inverse g. To show that f is onto, take b ∈∈∈∈ B. 

Then f( g(b) )  =  b, so b lies in the  image of f. To show that f is 1 – 1, consider an 

arbitrary pair of elements  a1, a 2  ∈∈∈∈  A.  Suppose that f(a1)  =   f(a 2).  Then g( f(a1) )  =  

g( f(a 2) ), and since g   f  is the identity it follows that a1  =  a 2. To show that the inverse 
is unique, suppose that g and h are both inverses of f.  We must show that g  =  h.  Let 

b  ∈∈∈∈  B be arbitrary.  Then f( g(b) )  =  f( h(b) )  =  b because g and  h both inverses, 

and since f is 1 – 1 we must have g(b)  =  h(b) for all b.  By Proposition 3.1, we have 
shown that g  =  h.���� 
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In view of the preceding proposition, one way of showing that a function is a bijection is 
to show that it has an inverse.  
 

The construction sending a bijective function to its inverse has several basic properties 
that are summarized in the next result. 
 

Proposition 10.   The inverse construction has the following properties: 
 

1. Let A be a set.  Then the identity map  id A  is a bijection, and it is 
equal to its own inverse. 
 

2. Suppose that f: A →→→→ B and g: B →→→→ C  are bijections so that their 
composite  g   f  is also a bijection by a previous result. Then the 

function (g   f) – 1
 is equal to  f – 1

   g – 1
. 

 

3. If f: A →→→→ B is a bijection with inverse f – 1
, then f – 1 : B →→→→ A is also 

a bijection, and its inverse is equal to f. 
 

Proof.  We shall derive all of these from the conditions v   u  =  id X  and  u   v  = id Y 

which characterize a function u : X →→→→ Y and its inverse v : Y →→→→ X.  If u  =  id A  then we 

also have v  =  id A  because id A    id A   =  id A, proving the first part.  To prove the 

second part, we take X  =  A,  Y  =  C, and u  =  g   f.  If we set v equal to f
 – 1

   g 
– 1

, then 
Propostion 1 (the associativity property for compositions) and Proposition 3 (on 
composites with identity maps) combine to imply that the composites v    u  and  u    v  

are both identity maps.  Finally, if X  =  B,  Y  =  A, and u  =  f – 1, then v  =  f has the 
property that the composites  v u  and  u  v  are both identity maps.�   
 

Example.  Here is an illustration of the identity  (g    f) – 1   =   f 
 
– 1

   g 
– 1

 using the 

functions f : RRRR →→→→

 RRRR defined by f (x)  =  e

x
 and g : RRRR →→→→ (0, 1) defined by g (y)  =  y/(1+y) 

as examples for the composite formula for inverse functions:  The composite g   f is 

given by z  =  e
x/(1 + e

x
), and if we solve for z we get the equation x  =  ln (z/(1 – z) ).  

Since g
 – 1

 (z) is equal to the expression inside the parentheses and ln y  =  x is the  

inverse to y  =  e
x
, this example does satisfy the formula for finding the inverse function 

of a composite.���� 

  
The Axiom of Replacement 

 
We have repeatedly noted that sets are supposed to be classes that are “reasonably 

small.”  Such a viewpoint suggests that if A is a set and B is a class that can be put into 

a 1 – 1 correspondence with A, then B should also be a set.  The following stronger 
axiom confirms this intuitive conclusion: 
 
AXIOM OF REPLACEMENT.  Let P( – , – ) be a two variable predicate statement such 

that for each set x there is a unique set y such that P(x, y) is true.  Then for each set A, 

the collection P[ A , – ] of all y such that P(x, y) for some x ∈∈∈∈ A is a set. 

 
Background information and the reasons for exactly this statement are summarized on 

pages 92 – 102 of the book by Goldrei which is cited at the beginning of the Unit I of 
these notes. 
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For our purposes the most important special cases arise when P(x, y) is a statement 

that x ∈∈∈∈ A for some set A and y ∈∈∈∈ B for some set B, and the statement P(x, y) asserts 

that (x, y) lies in some subclass ΓΓΓΓ of A ×××× B.  For such examples the axiom has the 
following implication: 
 

Corollary 11.   Suppose that A is a set, B is a class and  ΓΓΓΓ is a subclass of A ×××× B such 

that for each a ∈∈∈∈ A there is a unique element b ∈∈∈∈ B such that (a, b)  ∈∈∈∈  ΓΓΓΓ.  Then the 

collection of all b ∈∈∈∈ B such that (a, b) ∈∈∈∈ ΓΓΓΓ for some a ∈∈∈∈ A is a set.� 

 
In less formal terms, if we are given a set A and something which looks like a function on 
A, then the class that should be the image of A is also a set.  If we further specialize to 

subclasses  ΓΓΓΓ such that for each b ∈∈∈∈ B there is a unique a ∈∈∈∈ A such that (a, b)  ∈∈∈∈  ΓΓΓΓ, 

then we obtain the conclusions in the first sentence of this subsection; i.e., if we know 

that a class B is in 1 – 1 correspondence with a set A, then B is also a set.   

 

 

I    V.5:      Constructions involving functions 

 

 

(Halmos, § 8;  Lipschutz, § 5.7) 
 
This section discusses two unrelated points. The first concerns an important relationship 
between equivalence relations and surjective functions, and the second describes some 
basic facts about the collection of all functions from one set to another. 

  
Equivalence relations and quotient projections 

 
We have already mentioned that functions are at least as fundamental to mathematics 
as sets and that most if not all of set theory can be reformulated in terms of functions.  
The application of this principle to equivalence relations is particularly important.  Let A 

be a set, let E be an equivalence relation on A, and let A/E be the set of equivalence 

classes for E.  One then has an associated quotient projection  
 

ΠΠΠΠE : A   →→→→  A/E 
 

defined by the formula ΠΠΠΠE (x)  =  [x] E  (i.e., an element x is sent to its E – equivalence 

class).  By construction the map ΠΠΠΠE  is always onto, and it is 1 – 1 if and only if each 

equivalence class consists of exactly one element (hence the equivalence relation in 
question is just equality). 
 

The discussion of the preceding paragraph shows that an equivalence relation defines a 
function; conversely, the discussion below shows that every function defines an 
equivalence relation. 
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Definition.   Let f: A →→→→ B be a function.  Define a binary relation F on A such that x F y 
if and only if f(x)  =  f(y).  
 

Proposition 1.  In the setting above, the relation F is an equivalence relation.  
 

Proof.  The condition x F x is a trivial consequence of f(x)  =  f(x).  Given x F y, by 
definition we have f(x)  =  f(y), which is equivalent to f(y)  =  f(x) and thus implies y F x.  
If x F y and y F z, then we have f(x)  =  f(y) and f(y)  =  f(z), so that f(x)  =  f(z) and 
hence x F z.  Therefore F is an equivalence relation. 
 

By construction, the equivalence classes of F are in 1 – 1 correspondence with the 
elements of the image f [A].���� 
  

The following result on functions and equivalence relations is extremely useful in certain 
situations. 
 

Theorem 2.    Let f: A →→→→ B be a function, and let E be an equivalence relation on A 

such that f (x)  =  f (y)  whenever x E y.  Then there is a unique function g : A/E →→→→ B 

such that f  =  g         ΠΠΠΠ E .����  
 

Proof. (∗∗)   Let w ∈∈∈∈  A/E  and choose x  ∈∈∈∈  A representing the equivalence class w.  
We would like to set g(w) equal to f(x), but in order to do so it is necessary to verify that 
the latter does not depend upon the choice of representative.  Suppose that y also 
represents w, so that x E y.   It then follows from the hypothesis that f (x)  =  f (y) and 
therefore the construction g(w)  =  f(x) does determine a well – defined function from 

A/E  to  B.  Furthermore, by construction we have f  =  g          ΠΠΠΠE .  This proves existence.  

To prove uniqueness, suppose that h is an arbitrary function such that f  =  h          ΠΠΠΠ E .  Let 

w  ∈∈∈∈  A/E  and x ∈∈∈∈ A be arbitrary elements such that x represents w; by Proposition 

3.1 (the criterion for functions to be equal) it suffices to show that g(w)  =  h(w) for every 

w.  By construction we have w  =  ΠΠΠΠ E (x), and therefore by our assumptions and 

construction we have 
 

g(w)  =  g          ΠΠΠΠ E (x)   =   f(x)   =   h          ΠΠΠΠ E (x)  =  h(w) 
 

so that h  =  g; this completes the proof of uniqueness.����  
 

The following result will be useful for the one of the exercises in Section V.1. 
 

Proposition 3.   Let X and Y be sets, let f: X →→→→ Y be a function, let R be a binary 
relation on X, and let E be the equivalence relation generated by R. Suppose that for all 

u, v ∈∈∈∈ X we know that u R v implies f(u)  =  f(v).  Then for all x, y ∈∈∈∈ X such that x E y we 
also have f(x)  =  f(y).  
 

Proof.   Let E(f) be the equivalence relation defined by z E(f) w if and only if f(z) = f(w). 
Then by our assumptions we know that u R v implies u E(f) v, so that E(f) is an 
equivalence relation containing R. However, we also know that E is the unique smallest 

equivalence relation containing R, and therefore we must have E  ⊂⊂⊂⊂  E(f), which means 

that x E y implies x E(f) y. Since the latter is true if and only if f(x)  =  f(y), this proves the 
assertion in the proposition.���� 
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Sets of functions 

 
One basic principle running throughout this unit is that reasonable constructions on sets 
within the framework of set theory should yield new examples of sets.  Thus far we have 
done this mainly by means of axioms.  However, we have reached a point where our 
axioms are strong enough to guarantee that still other constructions also yield sets.  The 
following result contains one fundamental example of this type. 
 

Proposition 4.  Suppose that A and B are sets.  Then the collection of all functions from 
A to B is also a set. 
 

Proof.   By definition a function from A to B consists of an ordered pair whose first 

coordinate is (A, B) and whose second coordinate is a subset of A ×××× B.  This means that 

a function is an element of the set ( { A } ×××× { B } )  ××××  P(A ×××× B).  Since a subclass of a set is 
a set, this proves that the collection of functions is a set.�   
 

Notation.  If A and B are sets, then the set of all functions from A to B is denoted by B 
A.   

 

Sets of functions play an important role in many mathematical contexts.  We shall only 
discuss one of them, after which we shall mention some of their basic formal properties 
without proofs (none of these results will be needed later in the course). 
 

Proposition 5.  If A is a set, then there is a 1 – 1 correspondence from P(A) to the set 

of functions { 0 , 1 } A. 
 

Remark on terminology.  The existence of this 1 – 1 correspondence is the underlying 
reason why P(A) is often called the power set of A. 
 

Proof.  Let B be a subset of A, and define the indicator function or characteristic 

function J B : A  →→→→ { 0 , 1 } by J B (x)  =  1  if x  ∈∈∈∈  B and J B (x)  =  0 if x  ∉∉∉∉  B.  Since the 

set of points where J B (x)  =  1  is equal to B, it follows that J B   ≠≠≠≠  J C   if B  ≠≠≠≠  C.  Thus 

the map J : P(A)  →→→→ { 0 , 1 }
A
 is 1 – 1.  To see that the map is onto, let h : A  →→→→ { 0 , 1 }; 

by construction it follows that h  =  J D, where D is the set of all points x such that h(x)  =  

1.  Therefore J is a 1 – 1 correspondence.���� 
 

We now describe some formal properties of function sets that are sometimes useful. 
 
Proposition 6.  Composition of functions determines a function  
 

ϕϕϕϕ : B 
A

  ××××  C 
B

  →→→→  C 
A
 

 

such that ϕϕϕϕ ( f, g)  = g   f. 
 

The final result of this subsection justifies the exponential notation for sets of functions 
by displaying some identities that are formally similar to some basic laws of exponents. 
 

Theorem 7.  (Exponential laws)  If A, B and C are sets,  then there is a 1 – 1  

correspondence between (B ×××× C)
 A

  and B 
A

  ××××  C 
A
,  and there is also a 1 – 1 

correspondence between (C 
B
) 

A  and C 
B

 
××××

 
A .����  

 

Hints for proving the exponential laws are given in the exercises for this section. 
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I    V.6  :      Order types 

 

 

(Halmos, § 18;  Lipschutz, §§ 7.7 – 7.10) 
 

 
We shall conclude this unit with an application of functions to the study of partially 
ordered sets.  The cited section of Halmos begins with material not yet discussed in 
these notes, so we should mention that the relevant material in that reference begins 
near the bottom of page 71, starting with the paragraph, “We continue with an important 
part of the theory of order,” and ending just before the last paragraph on the next page.   
 

In many situations one has two partially ordered sets which have the same basic order-
theoretic structure and differ only by a simple change of variable.  For example, the set 

of nonnegative integers NNNN and the set NNNN 

+
 of positive integers have essentially the same 

order structure, and the transition is given by the linear change of variables y  =  x + 1. 

This defines a bijective map σσσσ 0 from NNNN to NNNN 

+, and it has the property that x   ≤   x′′′′ if and 

only if σσσσ 0 (x)  ≤  σσσσ 0 (x′).  Similarly, if A and B are the sets of positive integers that divide 

15 and 14 respectively, and each is partially ordered with respect to divisibility, then 

there is a 1 – 1 correspondence f : A →→→→ B such that f (1)  =  1,  f (3)  =  2,  f (5)  =  7, and 
f (15)  =  14, and one can verify directly that 
 

u divides v in A   if and only if   f (u) divides f (v) in B. 
 

More generally, we have the following: 
 

Definition.    Let (A,  ≤  A) and (B,  ≤  B)  be partially ordered sets. We say that A and B 

are similar, or have the same order type, or are order – isomorphic,  if there exists a 

1 – 1 correspondence f : A →→→→ B such that for all u, v  ∈∈∈∈  A we have  u  ≤  A  v if and only 

if  f(u)  ≤  B  f(v). 
 

Since f is injective it follows that one has an analog of the property in the last sentence 
for strict inequality: 
 

For all  u, v  ∈∈∈∈  A  we have  u  < A  v  if and only if  f(u)  < B  f(v). 
 

The bijection f is usually called an order – isomorphism, but sometimes one sees other 
names like similarity or similarity mapping; one important advantage of the terms 
“order – isomorphic” and “order – isomorphism” is that such usage is consistent 
with standard mathematical usage in most other contexts. 
 

The next result says that the property “A and B have the same order type” satisfies the 
conditions for an equivalence relation. 
 
Theorem 1.  Every partially ordered set is order – isomorphic to itself by the identity 
mapping. If there is an order – isomorphism from the partially ordered set B to the 
partially ordered set A, then there is also an order-isomorphism from B to A.  Finally, if 
there are order – isomorphisms from A to B and likewise from B to C, then there is an 
order – isomorphism from A to C. 
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Sketch of proof.    For the first sentence, one checks that the identity is an order – 

isomorphism. For the second part, one checks that if f : A →→→→ B is an order-isomorphism, 

then so is f – 1: B →→→→ A.  For the third part, one checks that if f : A →→→→ B and g : B →→→→ C are 

order – isomorphisms, then so is the composite g  f : A →→→→ C. ���� 
 

Example 1.  The real numbers are order – isomorphic to the positive real numbers by 

the map sending x to e
x
.  The inverse order – isomorphism from the positive real 

numbers to the real numbers is given by the natural logarithm function. 
 

Example 2.  The real numbers are order – isomorphic to the open interval ( –1, 1) by the 

map sending x to x/(1+|x|). 
 

Example 3.   The nonnegative real numbers are order-isomorphic to the half – open 

interval [0, 1) by the restriction of the map in the previous example. 
 

Note that there can be many order – isomorphisms from a partially ordered set to itself 

that are not equal to the identity.  For example, on the open interval (0, 1) one has the 

infinite family of distinct maps f (x)  =  x 
n 

 for all positive integers n.  Similarly, for the 
rational numbers one has the infinite family of distinct order – isomorphisms expressible 

as f (x)  =  c x, where c is an arbitrary positive rational number. 
 

The conceptual meaning of order – isomorphism is that if the partially ordered sets A 
and B are order – isomorphic, then A has a given order – theoretic property if and only if 
B does. The following theorem gives several examples.   
 

Theorem 2.  Let A and B be partially ordered sets which have the same order type, and 
let P be one of the properties listed below.  Then A satisfies property P if and only if  B 
does: 
 

(a) The partially ordered set is linearly ordered. 
(b) The partially ordered set is well – ordered. 
(c) The partially ordered set has a maximal element. 
(d) The partially ordered set has a minimal element.  
(e) The partially ordered set has a unique maximal element. 
(f) The partially ordered set has a unique minimal element. 
(g) Some element of the partially ordered set has an 

immediate predecessor. 
(h) Every element of the partially ordered set has an 

immediate predecessor. 
(i) The partially ordered set is finitely bounded from above. 
(j) The partially ordered set is finitely bounded from below. 
(k) The partially ordered set is a lattice. 

 

This list could be continued indefinitely.  One additional example appears after the proof 
below. 
 

Proof.  We shall only do the first of these.  The other cases follow the same pattern and 
the details are left to the reader as exercises. 
 

Suppose that A and B have the same order type and let f : A →→→→ B be an order –
isomorphism.  There are two cases depending upon whether A or B is already known to 
be linearly ordered.  We shall begin with the first case. 



 82

 

We need to prove that the linear ordering property for A implies the linear ordering 

property for B.  Let x and y be distinct elements of B.  Since f is onto we may write x = 

f(u) and y  =  f(v) for some elements u, v in A ; these must be distinct since they have 
different values under f.  Therefore we either have u  <  v  or v  <  u.   If the first of these 

holds then since f is order preserving we have x  =  f(u)  <  f(v)  =  y, and if the second 

holds then we have the reversed expression y  =  f(v)  <  f(u)  =  x.  Thus either x  <  y  
or y  <  x, which proves that B is also linearly ordered.   This completes the proof in the 
first case. 
 

On the other hand, if we know that B is linearly ordered, then we can prove A is linearly 
ordered using the preceding argument provided we switch the roles of A and B and 

replace f by its inverse (which is also an order – Isomorphism; verify this) .���� 
 

The preceding theorem is particularly useful for showing that two partially ordered sets 
do not have the same order type.  Here is one more additional property that is 
particularly useful for showing that certain partially ordered sets do not have the same 
order type. 
 

Definition.   An ordered set A has the self – density property if 
 

for each x, y such that  x  <  y  there is some  z  such that  x  <  z  <  y. 
 

Given two partially ordered sets A and B with the same order type, it follows as above 

that A has the self – density property if and only if B does.���� 
 

Here are some additional examples, including some beyond those in Halmos and 
Lipschutz: 
 

Examples.   We claim that each of the linearly ordered sets NNNN, ZZZZ and QQQQ of nonnegative 

integers, (signed) integers, and rational numbers is not order – isomorphic to any of 
the others in the list. The first one has a minimal element while the others do not. The 
third one has the self – density property displayed above while the others do not. 
 

Example 4.   The half-open intervals [0, 1) and (0, 1] are not order-isomorphic because 
one has a minimal element but no maximal element and the other has a maximal 
element but no minimal element. 
 

Example 5.   The half open interval [0, 1) is isomorphic to (0, 1]
OP

 (which is  (0, 1] with 

the reverse or opposite ordering), and in fact the map sending t to  1 – t  is an explicit 
order – isomorphism. 
 

Example 6.   To complete the discussion of orderings on standard number systems, we 

claim that the set of real numbers RRRR does not have the order type of NNNN, ZZZZ or QQQQ .  For 

the first two of the latter, this is true because RRRR has the self – density property while NNNN 

and ZZZZ do not.  Distinguishing RRRR from QQQQ requires a deeper understanding of the 

properties of the real number system.  Specifically, one needs the boxed statement near 
the top of page 174 in Lipschutz; we shall discuss this distinguishing feature in the next 
unit of the notes. 
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V :    Number systems and set theory 
 

 
Any reasonable framework for mathematics should include the fundamental number 
systems which arise in the subject: 
 

1. The natural numbers NNNN (also known as the nonnegative integers). 

2. The (signed) integers ZZZZ obtained by adjoining negative numbers to NNNN. 

3. The rational numbers QQQQ obtained by adjoining reciprocals of nonzero 

integers to ZZZZ. 

4. The real numbers RRRR, which should include fundamental constructions like 

n th roots of positive rational numbers for an arbitrary integer n > 1, and also 

all “infinite decimals” of the form  b1 ⋅⋅⋅⋅10 

–
 

1
 + b2 ⋅⋅⋅⋅10 

–
 

2
 + … + bk ⋅⋅⋅⋅10 

–
 

k
 + … 

where each bi  belongs to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. 
 

Up to this point we have tacitly assumed that such number systems are at our disposal.  
However, in both the naïve and axiomatic approaches to set theory it is eventually 
necessary to say more about them. 
 
The naïve approach.   In naïve set theory it is necessary to do two things.  First, one 
must describe the properties that the set – theoretic versions of these number systems 
should satisfy.  Second, something should be said to justify our describing such systems 
as THE natural numbers, THE integers, THE rational numbers, and THE real numbers.  
This usage suggests that we have completely unambiguous descriptions of the number 
systems in terms of their algebraic and other properties.  One way of stating this is that  
 

any system satisfying all the conditions for one of the standard 

systems NNNN, ZZZZ, QQQQ or RRRR should be the same as NNNN, ZZZZ, QQQQ or RRRR for all 

mathematical purposes, 
 

with some explicit means for mechanical translation from the given system to the 
appropriate standard model.   In less formal terms, it we have any systems X which 

satisfy all the fundamental properties of one of the systems NNNN, ZZZZ, QQQQ or RRRR, then X is 

essentially a mathematical clone of the appropriate number system.  
 

There are good theoretical and philosophical reasons for asking such questions about 
the essential uniqueness of the number systems, but these question also have some 
important practical implications for the development of mathematics.   If there would be 

two systems that satisfy the basic properties of NNNN, ZZZZ, QQQQ or RRRR but differ from a standard 

model in some significant fashion, then clearly we might get different versions of 
mathematics depending upon which example is chosen.  To illustrate this, suppose we 
decided to develop a version of the real numbers in which infinite  base 10 “decimal 
expansions” are replaced by expansions with some other number base, say 16 (to 
conform with the internal arithmetic of some computer) or 60 (as in Babylonian 
mathematics).  We expect that everything should work the same regardless of the 
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numerical base we choose for expressing quantities, but at some point it is necessary to 
confirm that our expectation is fulfilled.   
 

Later in this unit we shall describe precisely the notion of a mathematical clone.  For the 
time being we note that examples of this concept have already been encountered in 

Section IV.6 when we talked about whether two partially ordered sets have the same 

order type.  Given two such partially ordered sets, the 1 – 1 order preserving 
correspondence from one to another can be viewed as a formal mathematical way of 
saying that either of the partially ordered sets is a clone of the other. 
 

Our coverage in this unit will mainly concern the first item described in the naïve 
approach; namely, the formal properties of the number systems and the mathematical 
statements of their uniqueness properties.   Later in these notes (and largely for 
reference purposes) we shall explain why the basic properties describe these number 
systems in a totally unambiguous manner. 
 
The axiomatic approach.   In axiomatic set theory it is necessary to assume the 
existence of systems with the given properties and to prove these properties describe 
them unambiguously (the latter proceeds exactly the same as in naïve set theory). 
 

One new issue in the axiomatic approach is the goal of keeping the basic assumptions 
for set theory as simple as possible.  Assuming the existence of four separate but clearly 
interrelated number systems is a convenient first step, but at some point it is natural to 
ask if we really need to make such a long list of assumptions in order to set everything 
up.  Aside from possible aesthetic considerations, there is the practical consideration 
that long lists of assumptions raise questions whether there might be some logical 
inconsistency; after all, the whole idea of a proof by contradiction is that one makes so 
many assumptions that the conclusions end up contradicting each other, and it would 
undermine everything if such contradictions could be derived from the axioms for set 
theory itself.  We shall address some of these issues in the final units of the notes. 

  
Some more specific objectives 

 
Much of this unit is devoted to summarizing familiar properties of the four basic number 
systems, so we shall indicate some points that are less elementary and particularly 
important.  In Section 1 the most significant new item is the statement of the Peano 
Axioms for the natural numbers, and in Section 2 the discussion of finite induction and 
recursive definitions in the framework of set theory is one of the main topics in the unit.  
The formulas for counting the numbers of elements in various finite sets in Section 3 
start with familiar ideas, and they give systematic rules that are important both for their 
own sake and for the remaining units of the course.  Finally, the description of the real 
numbers in Section 4 is fundamentally important.  Although this description is fairly 
concise, it contains everything that is needed to justify the standard facts about real 
numbers and to develop calculus in a mathematically rigorous fashion.  The latter 
development is covered in subsequent courses.   Although the justification of the usual 
expansions for real numbers is also somewhat peripheral to the present course, for the 
sake of completeness we shall explain how our formal description of the real numbers 
yields their familiar properties which are used in everyday work, both inside and outside 
of mathematics. 
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 V . 1 :  The natural numbers and integers 
 

 

(Halmos, §§ 11 – 13;  Lipschutz, §§ 2.1, 2.7 – 2.9) 
 

 
In many respects the positive integers form the most basic number system in all of the 
mathematical sciences.   Some reasons for this are historical or philosophical, but logical 
considerations are particularly important for the systematic development of mathematics. 
 

Clearly we would like our descriptions of number systems to summarize their basic 
algebraic properties concise but understandable.   In particular, it simplifies things 
considerably if we can say that addition, subtraction and multiplication are always 
defined.   Since the positive integers are not closed under subtraction, clearly they do 
not fulfill this condition.  Therefore we shall begin by describing the integers, and we 
shall view the positive integers as a subset of the integers with certain special properties.   
 

The important algebraic properties of the integers split naturally into three classes, two of 
which are fairly general and one of which is more focused. 
 
Basic rules for addition and multiplication.  Formally, these are the conditions 
defining an abstract type of mathematical system known as a commutative ring with 
unit. 
 

FIRST AXIOM GROUP FOR THE INTEGERS.  The integers are a set ZZZZ, and they have 

binary operations  A :  ZZZZ ×××× ZZZZ  →→→→  ZZZZ, normally expressed in the form A(u, v)  =  u  +  v, 

and M : ZZZZ ×××× ZZZZ  →→→→  ZZZZ, normally expressed in the form M(u, v)  =  u v or u ⋅⋅⋅⋅ v  or u ×××× v,  

which satisfy the following algebraic conditions: 
 

1. (Associative Laws). For all a, b, c in ZZZZ, (a + b) + c  =  a  +  (b + c)  

and (a b) c  =  a (b c). 

2. (Commutative Laws).  For all a, b in ZZZZ, a + b   =   b  +  a and a b  =  

b a. 

3. (Distributive Law).  For all a, b, c in ZZZZ, a (b + c)   =   a b  +  a c. 

4. (Existence of 0 and 1).  There are distinct elements 0, 1 in ZZZZ such 

that for all a we have   a  +  0   =  a,  a ×××× 0  =  0  and   a ×××× 1  =  a. 

5. (Existence of negatives or additive inverses).  For each a in ZZZZ 

there is an element  – a in ZZZZ such that a  +  (– a)   =   0. 
  

Notational footnote:   The notation ZZZZ for the integers has become fairly standard in 

mathematical writings, and it is apparently derived from the German word for numbers 

(Zahlen) and/or cyclic (zyklisch). 
 
We shall need some consequences of the preceding algebraic conditions such as the 
following: 
 

Proposition 0.  If a belongs to a system satisfying the properties listed above, then we 

have (– a)  (– b)  =  a b.  In particular, when  a  =  1  we have  (– 1)  (– b)  =  b. 
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Proof.   The following are special cases of the axioms: 
 

0   =   a 0   =   a [b + (– b)]   =  a b  +  a (– b) 
 

0   =   0 (– b)   =   [a + (– a)] (– b)     =   a (– b)    +  (– a) (– b) 
 

The preceding results also show that a b  =  – [a (– b)]  =  (– a) (– b).���� 
 
Basic rules for ordering.   When combined with the previous conditions, these yield a 
type of mathematical system known as an ordered integral domain. 
 

SECOND AXIOM GROUP FOR THE INTEGERS.  There is a linear ordering on ZZZZ such 

that the following hold: 
 

1. If a  >  0  and b  >  0, then a + b  >  0  and a b  >  0. 

2. For all a, b in ZZZZ, we have a  >  b if and only if a – b  >  0. 
 

Proposition 1.  If a and b belong to a system satisfying the arithmetic and 

ordering properties listed above, then a  >  b if and only if  – b  >   – a.  
 

Proof.   We begin by showing that if  a  is nonzero then so is  – a.  This is true because 

a  +  (– a)   =   0  and  (– a)   =   0  imply   a  =  a + 0   =   0. 
 

Next, we shall prove that  a  >  0  implies that  – a  <  0.  If this were not the case, then 

the preceding paragraph implies that  – a  >  0,  and it follows that  a  +  (– a)   >   0;  
since the left hand side is always zero, we have a contradiction, and therefore it follows 

that  – a  <  0. 
 

Finally, if  a  >  b  then a – b  >  0,  and this implies that   
 

(– b)  –  (– a)  =  (– b) + (– (– a))  =  (– b) +  (– 1)(– a)  =  (– b) + a  =  a – b  >  0 
 

which means that (– b)  >  (– a).  The converse statement follows directly from this and 

the fact that  x  =  1 · x  =  [ (– 1)  (– 1) ] · x  =   (– 1) [  (– 1) x]  =    – (– x).����     
 

Well – ordering of positive elements.  This is the assumption that the set NNNN of 

nonnegative elements in ZZZZ, often called the natural numbers, is well – ordered with 

respect to the standard linear ordering. 
 

WELL - ORDERING AXIOM FOR THE NONNEGATIVE INTEGERS.  The set NNNN of all x 

in ZZZZ such that x  ≥≥≥≥  0  is well – ordered. 

 
We shall now derive some basic properties of the integers. 
 

Lemma 2.  If x is a nonzero element in a system satisfying the first two groups of 

axioms, then x
2
 is positive. 

 

Proof of Lemma 2.  Either x is positive or – x is positive, and in these respective cases 

it follows that  x
2
 is positive or (– x)

2
 is positive.  However, the previous proposition 

implies that x
2
  =  (– x)

2
, and thus in either case we know that the square must be 

positive.� 
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Lemma 3.  The multiplicative identity 1 is positive, and there are no integers x for which 
we have  0  <  x  <  1. 
 

Proof of Lemma 3.  First of all, 1 is positive because 1  =  1
2
.  Let P be the set of 

positive elements in ZZZZ.  By well – ordering it follows that  P has a least element m, which 

must satisfy m  ≤≤≤≤  1.   If strict inequality holds then we have 1 – m  >  0, and therefore 

we have m (1 – m) >  0, which translates to 0  <  m
2
  <  m, contradicting the minimality 

of m.  Therefore 1 must be the least element of the positive integers.� 
 

We shall need the following elementary but important property of positive integers later 
in this unit. 
 
Theorem 4. (Long Division Theorem.)  Given two nonnegative integers a and b such 

that  b   >   1, there are unique nonnegative integers q and r such that a   =   b q  +  r, 

where 0   ≤≤≤≤   r   ≤≤≤≤   b – 1. 
 

The numbers q and r are often called the integral quotient and remainder respectively. 
 

Proof.  We first prove existence.  Consider the set of all differences a – b x, such that x 

is a nonnegative integer and a – b x is nonnegative.  This set contains a, and thus it is 
nonempty, and as such it has a minimum element y.  We claim that y  <  b; if this were 

false, then y – x would be another element of the set (it is still nonnegative) and it would 
be strictly less than y.  Since y is minimal this cannot happen, and therefore we must 
have y  <  b.  This establishes existence. 
 

To prove uniqueness, suppose that we have two expressions  
 

a   =   b q  +  r   =   b q′′′′    +  r′′′′ , 
 

where q and q′′′′  are nonnegative and (say) 0   ≤≤≤≤   r   ≤≤≤≤   r′′′′    ≤≤≤≤   b – 1.  These conditions 

imply that 0   ≤≤≤≤   r′′′′  –  r   ≤≤≤≤   b – 1, and since     

b (q′′′′  –  q)  =   r′′′′  –  r   ≤≤≤≤   b – 1 
 

it follows that  b (q′′′′  –  q)  =  0.   Since b is positive this forces q′′′′  –  q to be equal to  0, 

so that q′′′′   =  q.   If we substitute this back into the first displayed equation in the 

paragraph we see that we must also have r′′′′   =  r.���� 

  
The Peano Axioms for the natural numbers 

 
There is a very simple and important characterization of NNNN which is due to G. Peano 

(1858 – 1932).  It depends upon two intuitively clear properties.  The first is that zero is 
the unique nonnegative integer that is smaller than every other nonnegative integer, and 

the  second is that if we are given a nonnegative integer n, then n + 1 is the unique 

minimal positive integer m such that m  >  n.   
 

Definition.  A system satisfying the Peano axioms is an ordered pair (P, σσσσ) consisting 

of a set P and a function σσσσ : P  →→→→  P with the following properties [which reflect the 

nature of σσσσ as a map taking each natural number m to its “successor” m + 1]: 
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(1)  There is a distinguished element (the zero element 0 or 0P) that is not in the 

image of σσσσ. 
 

(2)  The map σσσσ is 1 – 1.  
 

(3)  If A is a subset of P such that  
 

(i) 0  ∈∈∈∈  A ,   

(ii) for all k  ∈∈∈∈  P ,  k  ∈∈∈∈  A implies σσσσ(k)  ∈∈∈∈  A ,  
 
 

then we must have A  =  P. 
 

The third axiom is added to guarantee that P is the minimal set satisfying the axioms and 
containing 0. 
 

The next result should come as no surprise. 
 

Theorem 5.  If  NNNN denotes the natural numbers and σσσσ : NNNN  →→→→ NNNN is the function defined by  

σσσσ(m)  =  m + 1, then (P, σσσσ) satisfies the Peano axioms. 
 

Proof,    The first property follows because σσσσ(x)  =  0 implies x  =  – 1, and hence 0 is 

not in the range of σσσσ.   The second follows because σσσσ(x)  =  σσσσ(y) means that  x + 1  

=  y + 1, and if we subtract 1 from each side we obtain x  =  y.  To prove the third, 

suppose that A is not equal to NNNN.  By well – ordering we know that NNNN – A has a least 

element m.  Since 0  ∈∈∈∈  A, we know that m  >  0.  Furthermore, since m is the least 

element of NNNN – A then it follows that m – 1  ∈∈∈∈  A.   But now if we apply property (ii) we 

conclude that m  =  σσσσ( m – 1) must also lie in A, contradicting our assumption that m 

does not belong to A.  The source of the contradiction is our assumption that A is a 

proper subset of NNNN, and hence this must be false, so that A  =  NNNN. ���� 

  
Uniqueness of the integers 

 
At the beginning of this unit we indicated that our descriptions of number systems should 
essentially characterize them uniquely; in other words, we would like to say that if we are 
given two systems which satisfy our axioms for the integers, then they are the same for 
all mathematical purposes.  This is analogous to the notion of order – isomorphism in 

Section IV.6, and the term isomorphism is also used to describe the sorts of 
mathematical equivalences that we shall consider here.  
    
As in the case of partially ordered sets, we shall try to motivate the appropriate concept 
of isomorphism with an example:  If we are given one system which satisfies the given 
list of properties for the integers, then it is possible to construct a second system by 

brute force as follows.  Let ZZZZ be the original set with operations and order given in the 

usual manner.  Then we can make the set ZZZZ ×××× {0} into a system satisfying the same 

properties by defining addition by the formula  (x, 0) + (y, 0)  =  (x + y, 0), multiplication 

by the formula (x, 0) ⋅⋅⋅⋅ (y, 0)  =  (x y, 0), and ordering by the formula (x, 0)  <  (y, 0) if and 
only if x  <  y.  This may, and in fact should, seem somewhat artificial, for there is an 

obvious 1 – 1 correspondence h from ZZZZ to ZZZZ ×××× { 0 } such that h(x + y)  =  h(x) + h(y), 
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h(x ⋅⋅⋅⋅ y)  =  h(x) ⋅⋅⋅⋅ h(y), and h(x)  <  h(y) if and only if x  <  y.  In other words, the 1 – 1 
correspondence h preserves all the basic structure.  A map of this sort is known as an 
isomorphism.  The basic uniqueness result states that any two systems satisfying the 
listed properties for the integers are related by an isomorphism.  Here is the formal 
statement.   
 
Theorem 6.  Suppose that X and Y are sets with notions of addition, multiplication and 

ordering which satisfy all the conditions for the integers.  Then there is a unique 1 – 1 
correspondence from h from X to Y that is an isomorphism in the appropriate sense:   
 

For all elements u, v  ∈∈∈∈ X we have h(u + v)  =  h(u) + h(v), h(u ⋅⋅⋅⋅ v)  =  

h(u) ⋅⋅⋅⋅ h(v), and  h(u)  <  h(v) if and only if u  <  v.  The map h sends the 

zero and unit of X to the zero and unit of Y respectively.  
  

The existence of an isomorphism implies that any reasonable mathematical statement 
about the addition, multiplication and linear ordering of X is also true about Y and 

conversely.  A proof of Theorem 6 appears in Unit VI I I.  The proof itself is relatively 
straightforward and elementary but somewhat tedious; however, it is absolutely 
necessary to establish such a result if we want to talk about THE integers.  
 

 

 

 V . 2 :  Finite induction and recursion 
 

 

(Halmos, §§ 11 – 13;  Lipschutz, §§ 1.11, 4.6, 11.1 – 11.7) 
 

 
Proofs by mathematical induction, or more precisely by finite induction, play an 
important role in the mathematical sciences and many of their applications to other 
subjects.  Furthermore, as noted on page 48 of Halmos, 
 

induction is often used not only to prove things but also to define things 
 

and because of this we shall describe both the proof definition processes explicitly in this 
section.  Objects defined by induction are often said to be defined recursively (or by 
finite recursion).  Examples of recursive definitions arise throughout the mathematical 
sciences, including set theory itself, and therefore we shall describe the procedure fairly 
explicitly. 
 
 

Description of the method 
 
Mathematical induction is often a very powerful technique, but it is really more of a 
method to provide a formal verification of something that is suspected to be true rather 
than a tool for making intuitive discoveries, but it is absolutely essential.   The use of 
mathematical induction dates back at least to some work of F. Maurolico (1494 – 1575).  
There are many situations in discrete mathematics where this method is absolutely 
essential.   
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Most of the remaining material on mathematical induction is adapted from the following 
online references: 
 

http://www.cut-the-knot.org/induction.shtml 
 

http://en.wikipedia.org/wiki/Mathematical_induction 

 
IMPORTANT:  The similarity between the phrases “mathematical induction” and 
“inductive reasoning” may suggest that the first concept is a form of the second, but this 
is not the case.   Inductive reasoning is different from deductive reasoning, while   
 

mathematical induction is actually a form of deductive reasoning. 
 

Proofs by mathematical induction involve a sequence of statements, one for each 
nonnegative integer n (sometimes it is impractical to start with n  =  0, and one can begin 

instead with an arbitrary integer n0), and it is convenient to let P(n) denote the nth  
statement.  In the original example from the 16th century, P(n) was the familiar formula 
for the sum of the first n odd positive integers:   
 

1 + 3 + 5 + ... + (2n – 1)   =   n2 

 

In this case the first statement P(1) is 1  =  12
, the statement P(2) is 1 + 3  =  22

, the 

statement P(3) is 1 + 3 + 5  =  32
, and so on. 

 

The method of proof by mathematical induction has two basic steps: 
 

1. Proving that the first statement P(n0) is true. 
2. Proving that if P(k) is true for some value of k, then so is the next statement 

P(k + 1). 
 

In effect, mathematical induction allows one to prove an infinite list of statements, say 
P(1), P(2), P(3), .... , with an argument that has only finitely many steps.   It may be 
helpful to visualize this in terms of the domino effect; if you have a long row of dominoes 
standing on end, you can be sure of two things: 
 

1. The first domino can be pushed over. 
2. Whenever a domino falls, then its next neighbor will also fall. 

 

Under these conditions, we know that every one of the dominos in the picture below 
will eventually fall if the first one is nudged down in the right direction. 
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Here is a YOUTUBE video illustrating the domino effect: 
 

http://www.youtube.com/watch?v=IV68b0JlG9k&feature=related 
  

There are some instances where one uses a variant of the principle of mathematical 
induction stated above; namely, one replaces the assumption in the second step with a 

stronger hypothesis that P( m ) is true for all  m  <  k + 1 and not just for m  =  k. 
 
Example of a proof by induction.  Here is a proof of the summation formula for the first 

n odd integers.  The statement P(1) merely asserts that 1   =   12, and hence it is 
obviously true.   Let’s assume we know that P( k ) is also true for some arbitrary k, so that 

we have the equation 1 + 3 + 5 + ... + (2k – 1)   =   k2.   The next step in 

mathematical induction is to derive P( k+1 ) from P( k ). To do this, we note that  
  

1 + 3 + ... + (2k–1) + (2k+1) = [1 + 3 + ... + (2k–1)] + (2k+1) 

  = k2 + (2k+1) 

  = (k + 1)2 
 

which shows that P( k+1 ) is also true because 2k + 1   =   2(k + 1) – 1.  Therefore the 
statement P( n ) is true for all n and we have proven the general formula by mathematical 
induction.���� 
 

Formally, the difference between mathematical induction and inductive reasoning sis 
that the latter would check the first few statements, say P( 1 ), P( 2 ), P( 3 ), P( 4 ), and then 

conclude that P( n ) holds for all n.  The inductive step “P( k ) implies P( k+1 )” is missing. 
Needless to say, inductive reasoning does not constitute a proof in the strict sense of 
deductive logic.   
 

Frequently the verification of the first statement in a proof by induction is fairly easy or 
even trivial, but it is absolutely essential to include an explicit statement about the 
truth of the initial case, and also it is important to be sure that the inductive step 
works for every statement in the sequence.  If these are not done, the final 
conclusion may be false and in some cases downright absurd. 
 

Example. (Somewhat more difficult than the others)   Consider the following defective 
“proof” that a nonempty finite set (purportedly!) contains as many elements as one of its 
proper subsets.  This is vacuously true for the empty set, so assume it is true for a set 

with k elements.  Let S be a set with k + 1 elements; we need to show that some proper 
subset T contains the same number of elements as S.  Let T be obtained from S by 
removing one element, and let U be obtained from T by removing one element.  By the 
induction assumption we know that #(T)  =   #(U), and since we also know that  #(S)  =  

#(T) + 1 and #(T)  =  #(U) + 1 we conclude that #(S)  =  #(T).   This is a ridiculous 
conclusion, so the point here is to ask, “How did this happen?”  In fact, the inductive 
step we have given is valid for all values of k except for the case k  =  0.  However, 
when k  =  0 it breaks down because T must be the empty set, so it is not possible to 

construct the subset U by removing an element from T.    

 
Justification of the method 

 
In fact, there are two versions of proof by induction that are used frequently in the 
mathematical sciences.  We shall state and prove both of them. 
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Theorem 1. (WEAK PRINCIPLE OF FINITE INDUCTION.)   Suppose that for each 
nonnegative integer n we are given a statement ( Sn )  such that the statements ( Sn ) 
satisfy the following conditions: 

 

(i) ( S0 )  is true.   

(ii) For all positive integers n,  if ( Sn – 1 )  is true, then ( Sn )  is true.   
 

Then each of the statements ( Sn ) is true. 
 

Proof:   Let F be the set of all n such that ( Sn ) is false.  We claim that F is empty; we 
shall assume the contrary and derive a contradiction.   
 

If F is nonempty, then there is a least m such that ( Sm ) is false, and by the first 

assumption we know that m is positive, so that m – 1 is nonnegative.  By the minimal 

nature of m we know that ( Sm – 1 ) must be true.   Therefore the second condition implies 
that ( Sm ) is true, yielding a contradiction.  The contradiction arises from our assumption 
that F is nonempty, and therefore the latter set must be empty, which means that each of 
the statements ( Sn ) is true.���� 
 
Frequently one needs a version of finite induction with a stronger hypothesis. 
 

Thereom 2.  (STRONG PRINCIPLE OF FINITE INDUCTION.)   Suppose that for each 
nonnegative integer n we are given a statement ( Sn )  such that the statements ( Sn ) 
satisfy the following conditions: 

 

(i) ( S0 )  is true.   

(ii) For all positive integers n,  if ( Sk )  is true for all  k  <  n, then ( Sn )  is true.   
 

Then each of the statements ( Sn ) is true. 
 

Proof:   Let F be the set of all n such that ( Sn ) is false.  We claim that F is empty; we 
shall assume the contrary and derive a contradiction.   
 

If F is nonempty, then there is a least m such that ( Sm ) is false, and by the first 
assumption we know that m is positive, so that the set of all k such that k  <  m is 
nonempty.  By the minimal nature of m, we know ( Sk ) is true for all k  <  m.   Therefore 
the second condition implies that ( Sm ) is true, yielding a contradiction.  The contradiction 
arises from our assumption that F is nonempty, and therefore the latter set must be 
empty, which means that each of the statements ( Sn ) is true.���� 
 

One important example of a result whose proof requires the Strong rather than the Weak 
Principle of Finite Induction is the Fundamental Theorem of Arithmetic (see Rosen, 
Example 14, p. 250).  Another example illustrating the use of the Strong Principle of 
Finite Induction appears at the end of the next section. 

  
Definition by recursion 

 
The basic idea is fairly simple.  We begin to define a function by specifying f(0), assume 
we know how to define f(x) for x  <  n, and we use this partial function to find f(n).  Here 
is a formal statement of this principle: 
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Theorem 3. (Recursive Definition Theorem.)  Suppose that B is a set, and suppose 

also that for each nonnegative integer n we have a function H : B{
 
0, … , n

 
}

  →→→→  B,  let NNNN be 

the nonnegative integers, and let b0 ∈∈∈∈ B.  Then there is a unique function f : NNNN  →→→→ B 

such that f(0)  =  b0 and for all positive n we have 
 

f(n)  =  H( f | { 0, … , n – 1 } ). 
 

Proof.  We begin by describing the approach to proving the result.  The idea for proving 

existence is to define a sequence of functions  g n :  { 0, … , n – 1 }  →→→→ B  which agree on 
the overlapping subsets; one then constructs a function f whose graph is the union of 
the graphs of the partial functions.  The uniqueness proof will then reduce to proving 
uniqueness for the restrictions to each subset { 0, … , n – 1 }. 
 

The function g0: { 0 }  →→→→ B  is defined by g0 ( 0 )  =   b0.  Once we are given the function 

gn:  { 0, … , n – 1 }  →→→→ B. we define the function gn + 1 :  { 0, … , n }  →→→→ B by  gn + 1 ( k )   =    

gn ( k ) if k  <  n and gn + 1 ( n )   =    H( g n ).  Let Gn  ⊂⊂⊂⊂   { 0, … , n – 1 } ×××× B  be the graph of 

gn ,  and let  G  ⊂⊂⊂⊂  NNNN ×××× B  be the union of the subsets Gn .   
 

We claim that for each x  ∈∈∈∈  N N N N  there is a unique y  ∈∈∈∈  B such that (x, y)  ∈∈∈∈  G.  If true, 

then this will imply the existence of a function f : NNNN  →→→→  B whose graph is equal to G.  

Since G is the union of the graphs Gn , this is equivalent to verifying that for all n  >  x  
the elements gn ( x ) are all equal; note that gn ( x ) is only defined for these values of n.  

We shall prove that g x + m ( x )  =  g x + 1 ( x )  for all m  >  1 by induction on m; by 

construction we know that g n ( x )  =  g n + 1 ( x ) for n as above.  Therefore if m  =  2 we 

know that  g x + 2 ( x )  =  g x + 1 ( x ), yielding the first step of the inductive proof.  If we know 
the result for m, we can obtain it for m + 1 by once again applying the identity g n ( x )  =  
g n + 1 ( x ).  This proves that G satisfies the required property for the graph of a function 

from NNNN to B. 
 

Finally, we need to prove uniqueness.  Suppose that  f′′′′  is an arbitrary function satisfying 
the given properties, and let f be constructed as in the previous paragraphs.  We shall 

prove that the restrictions of  f  and  f′′′′  to each subset  { 0, … , n – 1 }  are equal by 

induction on n.  If n  =  1 then uniqueness follows because the assumptions imply that 

the values of both f and f′′′′ at 0 are equal to b0.  Suppose now that the restrictions of f 

and f′′′′ to the subset { 0, … , n – 1 } are equal; to prove the inductive step, it will suffice to 

show that  f(n)  =   f′′′′ (n).  But this follows from the equalities 
 

f (n)   =   H( f | { 0, … , n – 1 } )   =   H( f′′′′ | { 0, … , n – 1 } )   =   f′′′′ (n), 
 

where the first equation is true by construction, the second is true by the induction 

hypothesis, and the third is true by the assumption on  f′′′′  .����  

 
Typical recursive definitions 

 
In practice, recursive definitions are usually stated in a less formal manner than 
indicated by the existence and uniqueness result.  Probably the best way to illustrate this 
is to give simple examples as one would see it in a semi – formal mathematical 
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discussion and to analyze it in terms of the formal statement of the Recursive Definition 
Theorem.  We begin with one which arises in numerous contexts. 
 
Solutions to difference equations.  Suppose that we are given a sequence of objects 
(say numbers, vectors, matrices or functions) a( n ) in a set A which has a reasonable 
notion of addition.  We would like to create a new sequence b(n) such that for each n 

the difference between consecutive terms b(n + 1) – b( n ) is equal to a( n ).    Such an 
equation is often called a first order difference equation, and in some respects the theory 
of solutions to difference equations resembles the theory of solutions to differential 
equations.  In particular, solutions to first order equations generally exist if one properly 
specifies an initial value b(0) for the sequence.   It should be clear that we can uniquely 
define b( n ) by the conditions given here, but we would also like to explain how this fits 
into the framework of the Recursive Definition Theorem.   According to that result, for 

each n we need to define a suitable function H : A 

{
 

0, … , n
 
}  →→→→ A, and one simple way of 

doing so is to take H(g )   =   g( n ) + a( n ).  The conditions of the Recursive Definition 
Theorem then imply that one obtains a unique function b( n ) satisfying the given 
conditions.���� 
 

Here is a more abstract type of example within set theory itself. 
 

Proposition 4.  Let A be an infinite subset of the nonnegative integers NNNN.  Then there is 

a strictly order – preserving 1 – 1 mapping f from NNNN to A. 
 

Proof. (∗∗∗)   Define the function f recursively as follows:  Take f(0) to be the least 

element of A.  Suppose that we have a 1 – 1 strictly order – preserving mapping f 
defined from the finite set  { 0, … , n – 1 } to A.  Since A is infinite it follows that the image 
f [ { 0, … , n – 1 } ] is a proper subset of A, so that its complement is nonempty and there 
is some element of A which is greater than every element in f [ { 0, … , n – 1 } ].  Now 
take f ( n ) to be the least such element of A .  We claim the latter recursively defines f ; 
this will be discussed further in the next paragraph.  To complete the recursive step in 
the argument, we need to show that the newly extended function  f  on {0, … , n } is also 
strictly order – preserving .  This follows because f is already known is strictly order – 
preserving on {0, … , n – 1 } and by construction  f ( n )  >  f ( j )  for all j  <  n.���� 
 

We now need to analyze the construction of f and see how it can be formalized to fulfill 
all the conditions in the Recursive Definition Theorem.  The main thing that does not 
appear in our discussion is a  complete and explicit means for defining an element of A 
given an arbitrary mapping from {0, … , n – 1 }  to  A.  In our recursive definition we 

assumed that the function defined on the finite piece of NNNN was strictly increasing, and at 

each step we showed that the extended function was also strictly increasing.  Strictly 
speaking, we need to define an element of  A  even for partial functions that are not 
strictly increasing, but  the precise nature of these definitions is unimportant because we 
shall never need the definitions for functions that are not strictly increasing.  Formally, 
one can define the function for such irrelevant sequences by some simple arbitrary 
device.  For example, in our setting we can simply take the value for one of the 
“irrelevant” partial functions to be the unique least element of A.   If there are ever 
circumstances in which it is not clear how to define a value for “irrelevant” partial 

functions, one standard way is to work inside the slightly larger set A  ∪∪∪∪  { A } (recall this 
properly contains A) and simply define the value at the irrelevant functions to be the 
extra element A.����   
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 V . 3 :  Finite sets 
 

 

(Halmos, §§ 11 – 13;  Lipschutz, §§ 1.8, 3.2) 
 

 
Courses in discrete structures and combinatorics study questions about finite sets 
extensively.  In this section we shall develop a few basic aspects of this topic that will be 
needed or useful later in the course. 
 

For our purposes a set X will be said to be  finite  if there is some positive integer n for 
which there is a 1 – 1 correspondence from X to {1, … , n }. 

  
The pigeonhole principle 

 
Experience indicates that if X is a finite set, then there is no 1 – 1 correspondence 
between X and a proper subset of itself.  Our first objective is to give a rigorous proof of 
this basic fact. 
 

Theorem 1.   Suppose that A is a finite set, B is a subset of A, and f : A →→→→ A  is a 1 – 1 

mapping with  f  [ A ]  =  B.  Then  B  =  A. 
 

Proof.  (∗∗∗∗∗∗∗∗)  We shall first consider the special case where A  =  {1, 2, … , n} and 

proceed by induction on n.  If n  =  1 then the result is trivial.  Suppose it is true for n and 

proceed to the case of n + 1.  Call this set A, and let C be the set of the first n elements.  

If f  [ C ] is contained in C then by induction f  [ C ]   =   C and we must then have f (n + 1)   

=   n + 1.  Suppose now that f  [ C ] is not contained in C.  Since f is 1 – 1, it follows that  

f ( n + 1) cannot be equal to n + 1, and therefore we must have  f ( r )   =   n + 1 for some  

r   <   n + 1 and also  f( n + 1)  =  m   <   n + 1.  Define a new function g : C  →→→→ C by 

setting  g ( r )   =   m  and  g ( k )   =   f ( k ) otherwise.   
 

 
 

  

CLAIM:   g is a 1 – 1 mapping.  Suppose that g ( i )   =   g ( j ) .  Since f   =  g for x  ≠≠≠≠  r it 
follows that one of i and j must be equal to r, so say j   =   r.  Then  g ( i )   =   f ( i )  and 

also g ( r )   =   m   =   f( n + 1).   Since  i   <   n + 1 and  f  is 1 – 1, it follows that  g ( i )  ≠≠≠≠  
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g ( r )  and consequently g  is a  1 – 1  mapping.  By induction g, which is defined on the 
set  { 1, 2, … , n – 1}, is also onto.   
 

We shall use the preceding paragraph to prove that f is also onto.  If  y   <   n + 1, then  

y   =   g ( z ) for some z  ∈∈∈∈     C, and since g ( z )   =   f ( w )  for some w, it follows that the 

image of  f  contains all of C.  Since we have shown that  n + 1 =  f ( r )  it follows that the 

image of  f contains all of A, provided that A  =  { 1, 2, … , n }. 
 

To prove the general case, let A be a finite set with n elements, so that there is a 1 – 1 

onto mapping h from  A  to { 1, 2, … , n }.   Given a 1 – 1 mapping f : A → A,  let f0 be 

the conjugate mapping from { 1, 2, … , n } to itself defined by f0  =  h f h – 
1. 

 

 
 

We claim that f0 is a 1 – 1 mapping.  Suppose that f0 ( x )  =  f0 ( y ); by definition of f0 we 

have h f h – 
1

 ( x )   =   h f h – 
1

 ( y ).  Since the mappings h, f and h – 
1
 are all 1 – 1 we can 

successively use the injectivity of h to conclude that that f h – 
1

 ( x )  =  f h – 
1

 ( y ),   the 

injectivity of f to conclude that that h – 
1

 ( x )   =   h – 
1

 ( y ),  and the injectivity of h – 
1

  to 

conclude that that  x   =   y.  Therefore f0 is 1 – 1, and therefore the preceding argument 
shows that f0 is also onto.  
 

To prove that  f  is onto, suppose that  z  ∈∈∈∈     A, and let  w  =  h(z).   By the special case 

established above, it follows that w  =  f0 ( v ) for some v, so that  
 

z   =   h – 
1

 ( w )   =   h – 
1

 ( f0 (v) )   =    h – 
1

 ( h f h – 
1

 (v) )   =   f h – 
1

 ( v ) 
 

which implies that  f  must be onto.���� 

  
Counting elements of finite sets 

 
If X is a finite set, there is a unique natural number n such that there is a  1 – 1 
correspondence between X and { 1, … , n }; uniqueness follows from the previous 
discussion in this section.  Following standard practice we say that  X  has n elements  if 

this is the case, and we write |X|  =  n.  
 

Our first result looks obvious, but we still need to prove it. 
 

Proposition 2.  If  B  is a subset of A, then |B|  ≤  |A|.   
 

Proof.  We proceed by induction on n  =  |A|.  If n  =  0 then the result is trivial because 

A is empty and hence B is also empty, so we have |B|  =  0  ≤  0  = |A|.   Suppose the 

result is known for |A|  =  k, and consider the case where |A|  =  k + 1.   
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Let f : { 1, … , k + 1 }  →→→→  A be a 1 – 1 correspondence, and let B be a subset of A.  Let 

C be the subset of A obtained by removing f( k + 1), and let D denote the intersection of 

B and C.  By construction |C|  =  k and D is a subset of C, and therefore by the induction 
hypotheses we have |D|  ≤  k.    There are now two cases depending upon whether or 

not  f ( k + 1 ) belongs to B.  If so, then D  =  B  and hence |B|  =  |D|  ≤  k  <  |A|.   If not, 

then B  =  D  ∪∪∪∪  { f ( k + 1 ) } and hence |B|  =  |D|  +  1  ≤  k + 1  =  |A|.    This completes 
the proof of the inductive step.���� 
 
Corollary 3.  If B is a  proper  subset of A, then |B|  <  |A|.   
 

This follows immediately by combining the previous two results.���� 
 

The following basic formulas for counting elements of finite sets have important 

counterparts for infinite sets that will be discussed in Unit V. 
 

Theorem 4.  Let A and B be sets with n and m elements respectively. 
 

1. If A and B are disjoint, then | A  ∪∪∪∪  B |   =   n  +  m. 
   

2. For arbitrary finite sets A and B we have  | A  ××××  B |   =   n ⋅⋅⋅⋅ m.  
 

3. If A and B are arbitrary finite sets and B 
A is the set of functions 

from A to B, then we have  | B 
A|   =   m 

n. 
 

Proof.  All of the proofs proceed by induction on n  =  | A |.   
 

Verification of (1):   If n  =  0 then  A  ∪∪∪∪  B  =  B and therefore  m  =  |B|  =  | A  ∪∪∪∪  B |   =   

0 + m.  Suppose the result is true for n  =  k, suppose also that |A|  =  k + 1, suppose 

we have a 1 – 1 correspondence between  A and { 1, … , k + 1 }, let  C   ⊂⊂⊂⊂   A 

correspond to { 1, … , k }, and let z be the unique element of A such that A  =  C  ∪∪∪∪ { z }.   

By induction there is a 1 – 1 correspondence g : { 1, … , k + m }  →→→→  C ∪∪∪∪  B.   Define a 

new function f : { 1, … , k + m + 1 }  →→→→  A  ∪∪∪∪  B  such that f  =  g on { 1, … , k + m }  and  

f ( k + m + 1 )  =  z.   
 

We claim that  f  is 1 – 1 and onto.  Suppose that f ( x )  =  f ( y ).  If neither  x nor y is 

equal to k + m + 1, then g ( x )  =  f ( x ) and g ( y )  =  f ( y ), and since g is 1 – 1 it follows 

that x  =  y.  Suppose now that, say, x  =  k + m + 1.  Then f ( x )  =  z.  On the other 

hand, if  f ( y )  =  z  then the only possibility is  k + m + 1, and hence x  =  y in this case 

too.  Therefore f is a 1 – 1 mapping.    Suppose now that w belongs to A  ∪∪∪∪  B; we need 

to show that w lies in the image of f.  If w is not equal to z then we have w  =  g ( j )  for 

some j <  k + m + 1, and thus we also have w  =  f ( j ) for the same choice of j .  On the 

other hand, if w  =  z then we have z  =  f ( k + m + 1).    Therefore f is 1 – 1 and onto, 
so this completes the proof of the inductive step.   
 

Verification of (2):   If n  =  0  then  A  ××××  B  =  Ø and therefore  0  =  | Ø |  =  | Ø  ××××  B|   =   

0 ⋅⋅⋅⋅ m.  Suppose once again the result is known to be true for n  =  k, and suppose also 

that |A|  =  k + 1 with some given 1 – 1 correspondence from A  to  { 1, … , k + 1 }.   Let 

C   ⊂⊂⊂⊂   A correspond to { 1, … , k }, and let z be the unique element of A such that A  =  

C   ∪∪∪∪  { z }.   By the induction hypothesis there is a 1 – 1 correspondence g : { 1, … , k⋅⋅⋅⋅ m }    
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→→→→  C  ××××  B.   Let  h : { 1, … , m } →→→→  B  be a 1 – 1 correspondence, and define a new 

function f : { 1, … , k⋅⋅⋅⋅ (m + 1) }  →→→→  A ×××× B  such that  f  =  g  on  { 1, … , k⋅⋅⋅⋅ m }  and  
 

f ( k⋅⋅⋅⋅ m + j )  =  ( z, h(j) ) 
 

for j  =  1, … , m.   
 

We claim that f is 1 – 1 and onto.  Suppose that f ( x )  =  f ( y ).  If neither x nor y greater 

than k⋅⋅⋅⋅ m, then g ( x )  =  f ( x ) and g ( y )  =  f ( y ), and since g is 1 – 1 it follows that x  =  y.  

Suppose now that, say, we have x  >  k⋅⋅⋅⋅ m.  Then f ( x )  =  (z, b) for some b in B, and 

hence f ( y )  =  (z, b).  By construction, the only way this can happen is if y is also greater 

than k ⋅⋅⋅⋅ m.  Therefore we may write x  =  k ⋅⋅⋅⋅ m + i  and  y  =  k ⋅⋅⋅⋅ m + j  for some integers i 

and j between 1 and m.  Since f ( x )  =  f ( y ), it follows from the construction that  h ( i )  =  

h ( j )  =  b, and the latter in turn implies that i  =  j.  Therefore we have x  =  y  and hence 

f is 1 – 1.  Suppose now that w belongs to A ×××× B; we need to show that w lies in the 

image of f .  If the first coordinate of w is not equal to z then in fact we have w  =  g ( j )  

for some j  ≤≤≤≤  k ⋅⋅⋅⋅ m, and thus we also have w  =  f ( j )  for the same choice of j .   On the 

other hand, if the first coordinate of w is equal to z, then write w  =  (z, b).  By 

construction b  =   h ( j ) for some j , and it then follows that w  =  (z, b)  =  f ( k ⋅⋅⋅⋅ m + j ).  

Therefore f is 1 – 1  and onto, so this completes the proof of the inductive step.   
 

Verification of (3): (∗∗∗∗∗∗∗∗∗∗∗∗)   If  n  =  0  then there is a unique function from A  =  Ø  to B; 

namely, the function whose graph is the empty set.  Therefore we have |B 
A|   =   |B 

Ø
 |   

=   1  =  m 

0.  Suppose again the result is known to be true for n  =  k, suppose also  |A|  

=  k + 1, and assume we have a 1 – 1  correspondence between  A and {1, … , k + 1 }.   

Let C   ⊂⊂⊂⊂   A correspond to {1, … , k }, and as before let z be the element of A such that 

A  =  C ∪∪∪∪ { z }.   By induction there is a 1 – 1  correspondence g : { 1, … , m 

k
 }  →→→→  B 

C. 
 

By the result in the preceding part of the theorem, it will suffice to construct a 1 – 1 

correspondence between B 
A and B  

C ×××× A, for then one obtains the equations 
 

|B 
A|   =   |B 

C
  ××××  A|   =   m 

k
 ⋅⋅⋅⋅ m   =   m 

k
 

+
 

1
 

 

which is what we need to prove in order to verify the inductive step.  Suppose now that 

we are given a function u : A  →→→→  B.  Consider the mapping  ΩΩΩΩ: B 
A  →→→→  B 

C ×××× A defined 

by ΩΩΩΩ (u)  =  (u|C, u(z) ); we claim that ΩΩΩΩ is 1 – 1 and onto.  
 

Suppose first that  ΩΩΩΩ (u)  =  ΩΩΩΩ (v).  Then by construction we have  u|C  =  v|C  and u ( z )  

=  v ( z).  Combining these with A  =  C  ∪∪∪∪ { z }, we see that u ( t )  =  v ( t ) for all t ∈∈∈∈ A, and 

therefore we must have u  =  v.  Therefore ΩΩΩΩ is 1 – 1.  Suppose now that we are given 

an arbitrary pair (g, b).  Then there exists a function f such that f ( t )  =  g ( t )  for all t ∈∈∈∈ C 

and f ( z) = b, and therefore ΩΩΩΩ is onto as required.���� 
 
Note.  The result in the third part of the theorem illustrates one important reason for 
using B 

A to denote the set of all functions from A to B. 
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Boolean algebras of subsets 

 
We shall prove a result relating the properties of finite sets to the Strong Principle of 
Finite Induction that was formulated in the preceding section. 
 
Definition.  Given a set A, let P(A) be the set of all subsets with the algebraic operations 
of union, intersection, and relative complementation.  A Boolean subalgebra of P(A) is 

a subset S  ⊂⊂⊂⊂  P(A) such that S is contained in P(A), it contains A and the empty set, it 
is closed under taking finite unions and intersections, and it is also closed under taking 
relative complements.  
 

The simplest examples of Boolean subalgebras are given by equivalence relations.  
Specifically, if R is an equivalence relation on A and S is the family of all subsets that are 
unions of R – equivalence classes, then it is a routine exercise to verify that S is a 
Boolean subalgebra of P(A).   The result below shows that all Boolean subalgebras have 
this form if A is a finite set.  
 
Proposition 5.  Let A be a set, and let S be a Boolean subalgebra of P(A).  Then there 
is an equivalence relation such that the subsets of S are the unions of R – equivalence 
classes. 
 

Proof. (∗∗∗∗∗∗∗∗)   A subset Y  ∈∈∈∈  S is said to be atomic for S if it is nonempty and there are no 

nonempty subsets X  ∈∈∈∈  S that are properly contained in Y.  We shall prove the 

proposition by verifying the following two assertions: 
 

1. Every subset of S is a union of atomic subsets. 
 

2. Two atomic subsets of S are either disjoint or identical. 
 

By previous results, it will follow that the atomic subsets are the equivalence classes for 
some equivalence relation on A.  
 
We shall prove the first statement by induction on |A|.    If A has 0 or 1 element, then S 
must be equal to P(A), and for any finite set A a subset is atomic for P(A) if and only if it 
contains exactly one element.  Suppose now that the result is true for all sets B such 
that |B|  <  |A|.   There are two cases depending upon whether S contains a nonempty 
proper subset.  If it does not, then S only consists of A and the empty set, and therefore 
A must be atomic.  On the other hand, if S contains a nonempty proper subset C, then it 
also contains A – C  =  D, and D is also a nonempty proper subset.  It follows that both 
|C| and |D| are strictly less than |A|. 
 
Let  S|C  and  S|D  denote the set of all subsets in S that are contained in C and D 
respectively.  We claim that these are Boolean subalgebras of P(C) and P(D) 
respectively; by our hypotheses we know that the empty set lies in both, that C and D 

are contained in S|C and S|D respectively, and that both of the latter are closed under 
finite unions or intersections (because the same is true for S).  To show these families 

are closed under relative complementation, note that if X lies in S|C or then  
 

C – X    =    C  ∩∩∩∩  A – X 
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shows that  C – X also belongs to S|C, and similar considerations show that if X lies in 

S|D then D – X also lies in S|D.  By the induction hypothesis it follows C and D are 

unions of atomic subsets, and therefore the same is true for A  =  C ∪∪∪∪ D. 
 
To complete the proof, we need to prove the second assertion given above; specifically, 
we need to prove that two atomic subsets are either disjoint or identical.  But if X and Y 

are atomic subsets of S, then the Boolean subalgebra condition implies that X ∩∩∩∩ Y also 
belongs to S.  Since it is contained in the minimal nonempty subsets X and Y, either the 
intersection is empty or else if it is nonempty then it must be equal to both X and Y.����  
 
An abstract Boolean algebra is an algebraic system consisting of a set A together with 

three operations; namely, two binary operations ∪∪∪∪ , ∩∩∩∩ and one unary operation (sending 

an element x to x′′′′) which have the formal properties of unions, intersections, and 
complements.  Chapter 11 of Lipschutz contains further material on such structures, with 
emphasis on computational techniques.  An entirely different perspective on Boolean 
algebras, which reflects their role in modern pure mathematics, is contained in the 
following reference (which is written at the graduate level): 
 

P. R. Halmos, Lectures on Boolean algebras (Originally published as 
Van Nostrand Math. Studies, No. 1).  Springer – Verlag, New York, 1974.  
ISBN: 0 – 387 – 90094 – 2.  

 

 

 

 V . 4 :  The real numbers 
 

 

(Lipschutz, §§ 2.2 – 2.6, 7.7) 
 

 
Following the approach of Section 1, we shall give an axiomatic description of the real 
numbers in terms of their basic properties.   Many of these properties are also properties 
of the integers, but there are also some important new ones. 
 
Basic rules for addition and multiplication.  Formally, these are the conditions 
defining an abstract type of mathematical system known as a field.  The first five of 
these are the previously introduced properties for a commutative ring with unit, and the 
final one reflects an important difference between the integers in the real numbers; in the 
latter one can divide by nonzero numbers, but usually this is not possible within the 
integers. 
 

FIRST AXIOM GROUP FOR THE REAL NUMBERS.  The real numbers are a set RRRR, 

and they have binary operations  A :  RRRR ×××× RRRR  →→→→  RRRR    (addition), which is normally 

expressed in the form A(u, v)  =  u  +  v, and M : RRRR ×××× RRRR  →→→→  RRRR    (multiplication), which is 

normally expressed in the form M(u, v)  =  u v or u ⋅⋅⋅⋅ v  or  u ×××× v,  such that the following 

algebraic conditions are satisfied:    
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1. (Associative Laws)  For all  a, b, c  in RRRR,  we have  (a + b) + c   =   

a  +  (b + c)  and (a  b) c  =  a  (b  c). 

2. (Commutative Laws)  For all a, b in RRRR, we have  a + b   =   b + a 

and a b  =  b a. 

3. (Distributive Law)  For all a, b, c in RRRR, we have  a  (b + c)   =   a  b  +  a  c. 

4. (Existence of 0 and 1)  In RRRR there are distinct elements 0, 1 such 

that for all  a  we have   a  +  0   =  a,  a  ⋅⋅⋅⋅  0  =  0  and   a  ⋅⋅⋅⋅  1  =  a. 

5. (Existence of negatives or additive inverses). For each a in RRRR 

there is an element – a in RRRR such that a  +  (– a)   =   0. 

6. (Existence of reciprocals or multiplicative inverses)  For each a  

≠≠≠≠        0  in RRRR there is an element  a  

–
 

1  in RRRR such that a ⋅⋅⋅⋅ a  

–
 

1
   =   1. 

 
Basic rules for ordering.   These are the same as the ordering properties for the 
integers.  When combined with the previous conditions, these yield a type of 
mathematical system known as an ordered field. 
 
SECOND AXIOM GROUP FOR THE REAL NUMBERS.  There is a linear ordering on R 
such that the following hold: 
 

1. If a  >  0  and b  >  0, then a + b  >  0  and a b  >  0. 

2. For all a, b in RRRR, we have a  >  b if and only if a – b  >  0. 

 
Basic rules for completeness of the ordering.   The ordering on the real numbers 
satisfies an additional fundamental condition called the Dedekind completeness axiom 
after R. Dedekind (1831 – 1916), who formulated this property.  In order to state this 
axiom it is necessary to introduce some additional standard definitions. 
 
Definitions.    Let (L,  ≤ ) be a linearly ordered set, and let A be a subset of L.  An 

element x ∈∈∈∈ L is said to be an upper bound for A in L if for each a  ∈∈∈∈ A we have a  ≤≤≤≤  x; 
note that the definition contains no information on whether x belongs to L.  An upper 
bound x is said to be a least upper bound (for A in L) if for every upper bound y for A 

we have x  ≤≤≤≤  y. 
 

Proposition 1.   If x and z are least upper bounds for a subset A as above, then x  =  z. 
 

Proof.    Since x is a least upper bound and z is an upper bound, we have x  ≤  z.  
Similarly, since x is a least upper bound and z is an upper bound, we have z  ≤  x.    
Combining these, we conclude that x  =  z.���� 
 

If a set A has a least upper bound x, then we often write x  =  L. U. B. (A) or x  =  sup(A).  
The symbolism sup is an abbreviation for the quasi – Latin term for the least upper 
bound; namely, the supremum. 
 

There are dual notions for the reverse ordering on a linearly ordered set.  Specifically, if 

B is a subset of L then a lower bound is a number y such that y  ≤  b for all b  ∈∈∈∈  B; note 
that the definition contains no information on whether x belongs to L.  A greatest lower 
bound is a lower bound y such that x  ≤  y for every lower bound x.  It follows as above 
that if a greatest lower bound exist then it is unique.   If a set B has a greatest lower 
bound y, then we often write y  =  G. L. B. (B) or x  =  inf(B).  The symbolism inf is an 
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abbreviation for the quasi – Latin term for the greatest lower bound; namely, the 
infimum. 
 

Notice that the least upper bound is a lower bound for the set of upper bounds and a 
greatest lower bound is an upper bound for the set of lower bounds. 
 

DEDEKIND COMPLETENESS AXIOM FOR THE REAL NUMBERS.  If A is a nonempty 

subset of RRRR which has an upper bound, then A has a least upper bound. 
 

Corollary 2.  If B is a nonempty subset of RRRR which has a lower bound, then B has a 

greatest lower bound. 
 

The proof of this corollary depends upon the following elementary observation. 
 

Lemma 3.  If x and y are distinct real numbers and x  <  y, then – y  <  – x.   
 

Proof of Lemma 3.   By the axioms we know that y – x  >  0.  However, the left hand 
side is equal to   – (x – y), and therefore we have  – y  <  – x as required.    
 

Proof of Corollary 2.   Let A be the set of all negatives of elements of B.  Then the 
assumption that B has a lower bound implies that A has an upper bound, and hence by 
the Dedekind Completeness Axiom the set A has a least upper bound, say u.  We claim 
that – u is a greatest lower bound for B.  First of all, the lemma implies that since u is an 
upper bound for A the element – u is a lower bound for B.  Suppose now that v is an 
arbitrary lower bound for B.  Then the lemma implies that – v is an upper bound for A, 
and therefore since u is a least upper bound it follows that u   ≤  – v.   Therefore the 
lemma implies that  v   ≤  – u, so that – u is a greatest lower bound for B.     
 

Remarks.  (1)  If a set A does not have an upper bound, then this is often expressed 

symbolically as sup(A)   =   + ∞∞∞∞.  Notice that in this context the symbol “∞∞∞∞” is not a 
number, but rather It is a short way to say that there is no number which is an upper 

bound for A.   Similarly, if B has no lower bound, then inf(B)   =   – ∞∞∞∞. 
 

(2)  Two curious implications of the preceding notation are the “paradoxical” identities 

sup( Ø )  =  – ∞∞∞∞  and  inf( Ø )     =  + ∞∞∞∞. To see the first of these, notice that every M ∈∈∈∈ RRRR     

is an upper bound for the empty set.  This holds because, given M, there is no x ∈∈∈∈ Ø 
such that x   ≥   M.   Therefore, the set of upper bounds for Ø has no lower bound.  To 

see the second, notice that every M ∈∈∈∈ RRRR is a lower bound for the empty set.  This holds 

because, given M, there is no  x ∈∈∈∈  Ø such that x   ≤   M.   Therefore, the set of lower 
bounds for Ø has no upper bound.  —  In contrast to this result, if A is a nonempty 

subset of L then we always have inf( A )  ≤  sup( A )    if we agree that  – ∞∞∞∞  is less than 

every real number and  + ∞∞∞∞ is greater than every real number (and of course  – ∞∞∞∞  <  + 

∞∞∞∞ ).  In fact, if x is an arbitrary element of A then we have  inf( A )  ≤  x  ≤  sup( A ). 
 

Clearly we want the real number system to contain the integers or a system equivalent 
to the integers.  Here is one way of formulating this: 
 

INTEGRAL COMPATIBILITY AXIOM.   There Is a 1 – 1 mapping J from the integers ZZZZ 

to the real numbers RRRR with the following properties: 



 

 103 

 

1. J maps the zero element of ZZZZ to the zero element of RRRR. 

2. J maps the multiplicative unit of ZZZZ to the multiplicative unit of RRRR. 

3. For all integers x and y, we have J(x + y)  =  J(x) + J(y) . 
 

4. For all integers x and y, we have J(x y)  =  J(x) J(y) . 
 

5. For all integers x and y, we have J( x )  <  J(y )  if and only if x  <  y. 
  

Of course, the real numbers are also supposed to contain the rational numbers, which 
are all numbers expressible as quotients of integers a/b where b is nonzero.   Usually 

the rational numbers are denoted by QQQQ (presumably for quotients).  Note that the rational 

numbers clear satisfy all the properties of the real numbers aside from the Dedekind 
Completeness Property.   Strictly speaking, we cannot say formally that this property 
fails for the rational numbers, but if we grant that there should be a real number that is 
the square root of 2, then an argument going back to the ancient Greeks (possibly even 
to the Pythagoreans in the 6th century B. C. E.)  implies that some real numbers, 

including the square root of 2, are not rational.  Incidentally, the classical number ππππ, 
denoting the ration of a circle’s circumference to its diameter, is also irrational, but this 
was first established in relatively modern times by J. H. Lambert (1728 – 1777); it should 

be noted that the first use of the symbol ππππ for the number was due to W. Jones (1675 – 
1749) in 1706.   As noted at the beginning of these notes, one of the important features 
of set theory is that it provided a mathematically sound way of describing such irrational 
numbers as well as their relation to the rationals, thus completing the answer to a 
question that first arose in ancient Greek mathematics. 

 
Uniqueness of the real numbers 

 
We have given a list of properties that the real number system is assumed to satisfy.  In 
the next section we shall prove that any system satisfying these properties also has 
many other familiar properties we expect from real numbers.  However, as in Section 1 
(and the discussion at the beginning of this unit), we would like to say that if we are 
given two systems which satisfy our axioms for the real numbers, then they are the 
same for all mathematical purposes; in the terminology of Section 1, the mathematical 
way of saying this is that there is an isomorphism between the two systems.  Here is 
the formal statement.   
 

Theorem 4.  Suppose that X and Y are sets with notions of addition, multiplication, 
ordering and “integers” which satisfy all the conditions for the real number system.  

Then there exists a unique 1 – 1 correspondence from h from X to Y that is an 

isomorphism in the sense of Section 1:  For all elements u, v  ∈∈∈∈ X we have h(u + v)  =  

h(u) + h(v), h(u ⋅⋅⋅⋅ v)  =  h(u) ⋅⋅⋅⋅ h(v), and h(u)  <  h(v)  if and only if u  <  v.  Furthermore, 
the map h sends the zero and unit of X to the zero and unit of Y, and accordingly it also 
sends the “integers” in X to the “integers” in Y (and similarly for the “rationals” in the 
appropriate systems). 
  

By the “integers” in X and Y we mean the subsets described in the integral compatibility 
axiom, and the “rationals” denote the smallest subsets that are closed under addition, 
subtraction and multiplication and also contain both the integers and the reciprocals of 
nonzero integers. 
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As before, the existence of an isomorphism has the following implication: 
 

Every true reasonable mathematical statement about the addition, 
multiplication and linear ordering of X is also true about Y and conversely.   

 

A proof of Theorem 4 appears in Unit V I I I.  The proof itself is relatively straightforward 
and elementary but somewhat tedious; however, it is absolutely necessary to establish 
such a result if we want to talk about THE real number system.  

 

 

 

 V . 5 :  Familiar properties of the real numbers 
 

 

(Lipschutz, §§ 2.2, 4.5) 
 

 
The crucial justification for the Dedekind approach to the real number system is that it 
yields all the known properties of the real numbers.  In this section we shall consider a 
few important examples: 
 

Density of the rationals.  If x and y are rational numbers such that x  <  y, then there is 
a rational number q such that x  <  q  <  y. 
 

Existence of positive n
th

 roots.  If x is a positive real number and n is a positive 

integer, then there is a unique positive real number y such that y n  =  x. 
 

Base 10 and decimal expansions.  The axioms for real numbers developed above are 
adequate to prove all the familiar facts about base 10 and infinite decimal expansions. 
 
A reasonable mathematical theory of the real numbers should be required to yield all of 
these properties in a fairly straightforward fashion. 
 
As we have already noted, it is possible to go much further and develop everything done 

in calculus courses (and beyond!) using the given axioms for the real number system.  
Deriving all these fundamental results in calculus from our axioms is beyond the scope 
of these notes and this course (it properly belongs to courses on functions of a real 
variable); one standard reference which contains all the details is the following classic 
text: 
 

W. Rudin, Principles of Mathematical Analysis (3rd Ed.), International 
Series in Pure and Applied Mathematics). McGraw-Hill, New York, 1976.  
ISBN: 0 – 07 – 054235 – X.  

 

We shall refer to Rudin at various points in this section as needed. 

 
Density of the rational numbers 

 
Even though numbers like the square root of 2 are irrational, it is still possible to 
approximate them to any desired degree of accuracy by rational numbers.  This fact was 
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understood intuitively in most if not all ancient civilizations, and it was formalized and 
generalized by Eudoxus of Cnidus in the 4th century B. C. E..  Subsequently, Euclid’s 
Elements used one formulation of this principle as the basis for its theory of geometric 
proportions.  The first step in proving this rigorously for our formulation of the real 
numbers is named after Archimedes, who used it extensively in his writings during the 
3rd century B. C. E., but it had also been known to Eudoxus and other earlier Greek 
mathematicians. 
 

Theorem 1. (Archimedean Law)  If a and b are positive real numbers, then there is a 
positive integer n such that n a   >   b. 
 

By the well – ordering of the positive integers, there will be a (unique) minimal value of 
n for which this holds. 
 

Proof.   Assume the conclusion is false, so that for every positive integer n we have the 

inequality n a  ≤   b.  If A denotes the set of all products n a,  where n is a positive 
integer, it follows that b is an upper bound for A, and by the Dedekind Completeness 
Property the set A must have a least upper bound, which we shall call c.  Since we have 

m a   ≤   c for every positive integer m, if we set m  =  n + 1 we see that (n + 1) a   ≤   c  

for every positive integer n.  If we subtract a from both sides, we see that n a   ≤  c – a 
for every positive integer n.  But this implies that c – a is also an upper bound for A, and 
we had chosen c to be the least upper bound, so we have obtained a contradiction.  The 
latter arises from our assumption that b was an upper bound for A, and therefore this 
must be false, which means that the conclusion of the theorem must be true.�  
 

With this result at our disposal, we can prove the density of the rationals. 
 

Theorem 2.  If a and b are positive real numbers such that a  <  b, then there is a 
rational number q such that a  <  q  <  b. 
 

One can easily obtain the same result when a and b are not both positive from the 
theorem as follows.  If a is negative and b is positive, then we may simply take q  =  0.  
On the other hand, if a  <  b  <  0 then we have  – a  >  – b  > 0, and therefore by the 
theorem there is a rational number s such that  – b  <  s  <  – a.  If we take q  =  – s, 
then it will follow that  a  <  q  <  b. 
 

The proof of the theorem requires the following elementary facts. 
 

Proposition 3.  If x is a positive real number, then its reciprocal x 

–
 

1
 is also positive.  

 

Proposition 4.  If x and y are positive real numbers such that x  <  y, then their 

reciprocals satisfy the reverse inequalities  x 
 
–

 

1  >  y 
–

 

1.  
 

Proof of Proposition 3.   Suppose this is false, so that x 

–
 

1 is negative. Then  
 

– x 

–
 

1    =    ( –1) x 
– 1 

 

Is positive, and therefore so is  
 

– 1    =    x 
 ( – x 

–
 

1
 ). 

 

Since the number –1 is not positive we have a contradiction, which arises from our 
assumption that the reciprocal of x was negative, and therefore it follows that the 
reciprocal of x must be positive as claimed.� 
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Proof of Proposition 4.   Suppose this is false, so that we have either x 

–
 

1  =  y 

–
 

1 or else 

x 
–

 

1  <  y 

–
 

1.  The first of these implies that  
 

y  =  x x 

–
 

1
 y  =  x y 

–
 

1
 y  =  x 

 

which contradicts our assumption that x  <  y.   To prove that x 

–
 

1  <  y 

–
 

1  is impossible, 
note first that if positive real numbers satisfy a  <  b  and c  <  d then  
 

b d – a c  =  (b d – a d)  + (a d – a c)  =  (b – a) d  +  a (d – c)   >  0 
 

and hence b d > a c.  Therefore  x  <  y and x 

–
 

1  <  y 

–
 

1 combine to imply that  x x 

–
 

1 is 

strictly less than y y 

–
 

1.  However, each of the preceding two products is equal to 1 and 

thus we have a contradiction.  Thus x 
–

 

1  <  y 
–

 

1  is impossible, and the only remaining 
possibility is the one stated in the conclusion of the result.� 
   
Proof of Theorem 2.   By Proposition 3, if a is positive then so is its reciprocal, and thus 
the Archimedean law implies there is some positive integer p such that p  =  p ·1  >  a 

 

–
 

1.   

Taking reciprocals, we find that 0  <  1/p  <  a.   The Archimedean Law similarly implies 

the existence of some positive integer r such that 0  <  1/r  <  b – a.   If we take m to be 

the larger of p and r, then it will follow that both 0  <  1/m  <  a  and  0  <  1/m  <  b – a.  
Applying the Archimedean Law one more time, we can find a first positive integer n 

such that a  <  n/m.  If we also have n/m  <  b, then we may take q  =  n / m and the 

proof will be complete.  To see that n/m  <  b, proceed as follows.  Since n is the first 

positive integer such that a  <  n/m, it follows that (n – 1) /m  ≤≤≤≤  a, and therefore we also 

have 
 

n/m  =  ( (n – 1)/m )  +  (1/m)   <  a  + (b – a)  =  b 
 

which is exactly what we needed.� 
 

A statement and proof of the Condition of Eudoxus are given in the online document 
 

http://math.ucr.edu/~res/math153/history03a.pdf 
 

and the application of the condition to proportionality questions as in Euclid’s Elements 
appears in the following related document: 
 

http://math.ucr.edu/~res/math153/history03b.pdf 

  
Existence of positive nth roots 

  
The main result is exactly what we would expect: 
 
Theorem 5.   If r is a positive real number and n  >  1 is an integer, then there is a 
unique positive real number y such that y 

n  =  r. 
 
The idea of the proof is simple.  Given r and n, consider the set A of all positive real 
numbers y such that y 

n  <   r.  In order to prove the theorem, it will suffice to establish 
the following two points. 
 

1. The set A has an upper bound (hence a least upper bound). 
 

2. If z is the least upper bound of A, then z 

n  =  r. 
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Proof of the first step.   There are two separate cases, depending upon whether r  ≤  1 
or r  >  1.  In the first case, if z belongs to A then we also have y  ≤  1, for if  y  >  1 then 
we have z 

n  >  1.    Suppose now that r  >  1, and let n be an integer such that n  >  r .  
We claim that n is an upper bound for A; as before, it suffices to show that if y  >  n then 
y does not belong to A.  This follows because z  >  n and n  >  1 imply z 

n  >  n 
n  >  n.   

 

The proof of the second step of Theorem 5 will rely on the following standard algebraic 
fact. 
 

Theorem 6. (Binomial Theorem).  Let x and y be real numbers, and let n be a positive 
integer.  Then we have  

 
 

where the numbers 
 

 
 

the usual binomial coefficients and n! denotes the factorial of n, which is formally defined 

by 0 !  =  1  and the usual description for n  >  0: 
 

 
 

The proof of this result proceeds by induction on n and is based upon the standard 
triangular identities named after B. Pascal (1623 – 1662), which state that 
 

 
 

for non-negative integers n and k where n  ≥≥≥≥  k and with the initial condition 
 

 
 

In principle (at least), mathematicians in China and India had discovered the preceding 
identities centuries earlier, but we shall not elaborate on this point.  Observe that if we 
take x  =  y  = 1, then the formula states that the corresponding sum of  binomial 
coefficients is equal to 2n.  We shall use this fact at a few steps in the proof of Theorem 
5.  Some of these steps will be stated separately before we proof the second part of 
Theorem 5. 
 
Proofs  of the Binomial Theorem appear in many precalculus and discrete structures 

textbooks (e.g., see pages 327 – 328 of Rosen for an argument that is somewhat 
different from the inductive proof mentioned above), and therefore we shall not give a 
proof here.  
 

Lemma 7.   If  1   >   t   >   0  then  (1 – t) n  >  1 – 2 
n t .  
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Lemma 8.  If  1 >  y  >  0 and z  >  1 then (z + y) n  <  z 
n  + 2 

n
 z 

n
 y, and if 1 >  y  >  0 and  

z  <  1  then (z + y) 

n  <  z 
n  + 2 

n
 y.  

 

Proof of Lemma 7.   In the Binomial Theorem take  x  =  1 and  y  =  – t .  Let C(n, k) 
denote the (n, k) binomial coefficient to avoid typesetting problems.  For each k  >  0 , a 
lower estimate for the kth term of the expansion for (1 – t) 

n  is given by – C(n, k) t .  If we 
add these terms over all nonnegative values of k and use the fact that the sum of all the 
coefficients C(n, k) is 2 

n, we obtain the lower estimate in the statement of the lemma.� 
 

Proof of Lemma 8.   In this case we take z  =  x.  Once again let k  >  0.  Then an upper 
estimate for the kth term of the expansion is given by C(n, k) z 

n
 
 y  if  z  >  1, and by the 

expression C(n, k) y  if  z  <  1.  Adding these terms over all nonnegative values of k and 
using the fact that the sum of all the coefficients C(n, k) is 2 

n, we obtain the desired 
upper estimates.� 
 

We are now prepared to complete the proof of the result on the existence of n 

th roots. 
 

Proof of the second part of Theorem 5.   We again have separate cases where r ≤≤≤≤ 1 
or r  >  1, and in each case we need to show that both  z 

n  <  r and z 
n  >  r are 

impossible.   
 

Before proceeding we make some elementary observations.  If r  =  1 then z  = 1 and 
there is nothing to prove.  We CLAIM that if r  <  1 or  r  >  1 then z also satisfies z  <  1 
or  z  >  1 respectively.  —  If r  <  1 then we claim there is a v such that 0  <  v  <  1 and 
v 

n   >  r. If this is true then r is an upper bound for S and therefore the least upper bound 
z must be strictly less than 1 (in fact, it must be strictly less than v).    By Lemma 7 we 
know that if 1   >   t   >   0 then (1 – t) 

n  >  1 – 2 
n 

 and therefore if we choose v such that 
x  =  1 – v satisfies 2 

n x  <  1 –  r  then v 
n  will be strictly greater than r.  Finally, if r  >  1 

then  r 

–
 
1
 <  1, and hence there is some w such that  0  <  w  <  1  and  w 

n   >  r 

–
 
1
.   If we 

set  v  =  w 

–
 
1
, we then obtain the inequalities  v  >  1  and  v 

n   <  r.  But this means that  

1  <  v  ≤  z.  
 

Suppose now that 1  <  r  and z 
n  <  r , where z   >   1 by the preceding paragraph.   If we 

have w  >  z then w n  ≥≥≥≥   r because z is the least upper bound of all x such that x 
n <  r.  

Let s   =   r  –  z  
n

 ; it will suffice to find a number v such that v 
n lies between z n and r.  If 

1  >   y   >  0 then Lemma 8 implies that (z + y) 
n is less than z 

n  + 2 
n

 z 
n

 y, and if we now 

choose y so that 2 
n

 z 
n

 y   <   s, then v   =   z   +  y  will satisfy  z 
n  <  v 

n  <   r.  Now 
suppose we have 1    >   r  and z 

n  <   r, so that z  <   1 by the preceding paragraph.   Let 

w and s be as before.  Then we still have w 
n  ≥≥≥≥   r and we would again like to find some 

v such that  z n  <   v 
n  <   r and r.   Taking y as before, we can use Lemma 8 to conclude 

that (z + y)  
n   <    z 

n  + 2 
n

 y, and if we choose y so that 2 
n y   <   s then v   =   z   +  y  

satisfies the desired condition z 
n   <   v 

n   <    r.   Observe that the main difference in the 

arguments for the two cases 1   <   r and 1   >   r  is the estimate for (z + y) n  given by the 
Binomial Theorem. 
 

Suppose now that  z 
n   >   r .   By the definition of a least upper bound, for every h  >  0 

there is some w  such that  z  –  w  >  h  and  w 
n  <   r.  Hence if x   <   z and h  =   z  – x  

then we can find a w such that  x  <  w  <  z  and  w n <  r.  The latter in turn implies that 
x 

n  <   w 
n  <   r .   Thus we have shown that if x  <  z  then w 

n <  r ,  while if x  >  z   then 
w n  >  z 

n  >   r .  Once again it will suffice to find a number v such that v n lies between z 
n 

and r.  Let  s  =  z 
n  –  r  and let  y  >  0 as before, but now consider the quantity (z – y) 

n.   
If  r   >  1 we then obtain the inequality 
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(z – y) 

n   >   z 
n   –  2 

n
  z 

n
  y 

 

while if r   >  1 we obtain the inequality 
 

(z + y) 

n   >   z 
n  + 2 

n
  y . 

 

In each case if we choose y sufficiently small the right hand side will be strictly greater 
than r, which contradicts our previous observation that  x  <  z  implies  w 

n  <   r .  This 
completes the proof of Theorem 5.� 
 

The next result is a simple consequence of Theorem 5 and the proof of Lemma V.1.3, 
but it provides an important relation between the algebraic and order structures on the 
real number system. 
 

Corollary 8.  A real number x is nonnegative if and only if there is another real number y 

such that  y 

2
  =  x. 

 

Proof.    The proof of Lemma V.1.2 only depends upon algebraic and ordering 
properties that hold for both the integers and the real numbers, and thus it follows that 

Lemma V.1.2 is also true for the real numbers; therefore for every real number y we see 

that the square y 

2  is nonnegative.  Conversely, by Theorem 5 we know that every 
nonnegative number is the square of some other real number.� 
 

Section 4.5 of Lipschutz discusses the use of Theorem 5 to define rational and irrational 
powers of a positive real number (in particular, see the subheading, “Exponential 
Functions,” at the bottom of page 101). 

  
Base 10 and decimal expansions 

  
We shall only summarize the main points here, leaving the proofs to an Appendix for this 
section of the notes.   
 

One of the most elementary facts about a positive real number x is that it can be written 

as the sum [ x ]  +  ( x )  of a nonnegative integer [ x ] and a nonnegative real number ( x ) 
that is strictly less than one, and this decomposition is unique.  The integer [ x ] is often 
called the greatest integer function of x or the integral part of x or the characteristic of x, 
and the remaining number ( x ) is often called the fractional part or mantissa of x.   The 
characteristic – mantissa terminology dates back to the original tables of base 10 
logarithms published by H. Briggs (1561 – 1630); the literal meaning of the Latin root 
word mantisa is “makeweight,” and it denotes something small that is placed onto a 
scale to bring the weight up to a desired value.  We shall derive the decomposition of a 
nonnegative real number into a characteristic and mantissa from the axiomatic 
properties of the real numbers. 
 

Theorem 9.  Let r  be an arbitrary nonnegative real number.  Then there is a unique 

decomposition of r as a sum n + s,  where n  is a nonnegative integer and  0  ≤  s  <  1. 
 

Here is the standard result on base  N  or  N – adic expansions of positive integers.  In 
the standard case when N  =  10,  this yields the standard way of writing a nonnegative 
integer in terms of the usual Hindu – Arabic numerals, while if n  =   2  or  8  or  16  this 
yields the binary or octal or hexadecimal expansion respectively. 
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Theorem 10.  Let k be a positive integer, and let N  >  1 be another positive integer.  
Then there are unique integers aj such that   0   ≤   aj   ≤   N – 1 and  
 

k    =    a0   +  a1 ⋅⋅⋅⋅ N   +   …   +  am ⋅⋅⋅⋅ Nm 
 

for a suitable nonnegative integer m. 
 

For both practical and theoretical reasons, a mathematically sound definition of the real 
numbers should yield the usual decimal expansions for base 10 as well as the 
corresponding expansions for other choices of the base N.   We shall verify this here and 
show that decimal expansions have several properties that are well – known from our 
everyday experience in working with decimals. 
 

Although decimal expansions of real numbers are extremely useful for computational 
purposes, they are not particularly convenient for theoretical or conceptual purposes.  
For example, although every nonzero real number should have a reciprocal, describing 
this reciprocal completely and explicitly by infinite decimal expansions is awkward and 
generally unrealistic.  Another difficulty is that decimal expansions are not necessarily 
unique; for example, the relation  
 

1. 0    =    0. 999999999999999999999 … 
 

reflects the classical geometric series formula 
 

a  /(1 – r )    =     a   +   a r    +  a r 

2  + …   +  a r 

k  + … 
 

when a   =  9/10 and r   =   1/10.  A third issue is whether one gets an equivalent 
number system if one switches from base 10 arithmetic to some other base.  It is natural 
to expect that the answer to this question is yes, but any attempt to establish this directly 
runs into all sorts of difficulties almost immediately.   
 

These are not just abstract, theoretical questions.  The use of digital computers to 
carry out numerical computations implicitly assumes that one can work with real 
numbers equally well using infinite expansions with base 2 (or base 8 or 16 as in many 
computer codes, or even base 60 as in ancient Babylonian mathematics).  One test of 
the usefulness of the abstract approach to real numbers is whether it yields such 
consequences and is base independent. 
 

The preceding discussion justifies the standard method for expressing the integral part 
of a positive real number.  Of course, the next step is to justify the standard expression 
for the fractional part.  A natural first step is to verify that the usual types of infinite 
decimal expansions always yield real numbers. 
 

Theorem 11. (Decimal Expansion Theorem).   Every infinite series of real numbers 
having the form  

 

a N ⋅⋅⋅⋅ 10 

N
  +  a N–1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  a 0  +  b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

(with  0  ≤   a i , b j  ≤  9) 
 

is convergent.   Conversely, every positive real number is the sum of an infinite series of 
this type where the coefficients of the powers of  10  are integers satisfying the basic 
inequalities  0  ≤   a i , b j   ≤  9.   
 

This turns out to be a fairly direct consequence of standard results on convergence of 
infinite series whose terms are all nonnegative (see Rudin, Theorem 3.25, page 60, for a 
proof): 
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COMPARISON TEST.  Suppose that 
 

 
 

are two series whose terms are nonnegative and satisfy  an   <  bn   for all  n.   If the 
second series converges, then the first one does also.  
 
Theorem 10 immediately yields the standard “scientific notation” for a positive real 
number: 
 

Corollary 12. (Scientific Notation Representation).  Every positive real number has a 

unique expression of the form a ⋅ 10 

M, where  1  ≤        a  <  10  and  M  is an integer.     

  
Decimal expansions of rational numbers 

 
One basic test for the effectiveness of a mathematical theory is whether one can use it 
to shed light on patterns that run through many basic examples.  The decimal 
expansions for rational numbers are an example of this type.  If one computes the 
decimal expansions for some simple fractions, the results turn out to yield decimal 
expansions that are eventually repeating.  Here are some examples: 

 

  1/3   =   0.333333333333333333333333333333333333 … 

  1/6   =   0.166666666666666666666666666666666666 … 

  1/7   =   0.142857142857142857142857142857142857 … 

1/11   =   0.010101010101010101010101010101010101 … 

1/12   =   0.083333333333333333333333333333333333 … 

1/13   =   0.076923076923076923076923076923076923 … 

1/17   =   0.058823529411764705882352941176470588 … 

1/18   =   0.055555555555555555555555555555555555 … 

1/19   =   0.052631578947368421052631578947368421 … 

1/23   =   0.043478260869565217391304347826087695 … 

1/27   =   0.037037037037037037037037037037037037 … 

1/29   =   0.034482758620689655172413793103448275 … 

1/31   =   0.032258064516129032258064516129032258 … 

1/34   =   0.029411764705882352941176470588235294 … 

1/37   =   0.027027027027027027027027027027027027 … 
 

Motivated by such examples, it is natural to ask whether the decimal expansions for an 
arbitrary rational number must have the following special property: 
 

Theorem 13. (Eventual Periodicity Property).  Suppose that  r  is a rational number such 
that 0   <   r   <   1, and let  

 

r    =    b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

be a decimal expansion.  Then the sequence { bk } is eventually periodic ; i.e.,  there are 
positive integers M and Q such that  b k  =   b k + Q  for all  k  >  M. 
 
CONVERSELY, suppose that the statement in the claim holds for the decimal expansion 
of some number, and choose m and Q as above.  Let  s  be given by the first m – 1 
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terms in the decimal expansion of  y, and let  t  be the sum of the next  Q  terms.  It then 
follows that  y  is equal to s  +  t (1 + 10 

– Q  + 10 

– 2Q  + 10 

– 3Q  + … ).  Now  s,  t  and the 
geometric series in parentheses are all rational numbers, and therefore it follows that y 
is also a rational number.  Therefore we have the following result: 
 

Theorem 14.   A real number between 0 and 1 has a decimal expansion that is 
eventually periodic if and only if it is a rational number. 
 

Similar results hold if the numerical base 10 is replaced by an arbitrary integer N  >  1. 

 
Uniqueness properties of decimal expansions 

 
Finally, here is the standard criterion for two decimal expressions to be equal: 
 
Theorem 15.   Suppose that we are given two decimal expansions 

 

a N ⋅⋅⋅⋅ 10 

N
  +  a N–1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  a 0  +  b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

c N ⋅⋅⋅⋅ 10 

N
  +  c N–1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  c 0  +  d 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  d 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  d k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

which yield the same real number.  Then a j   =   c j  for all j , and (exactly) one of the 
following mutually exclusive statements is also true: 
 

(1)   For each k we have b k  =  d k. 
 

(2)   There is an L  >  0  such that b k  =  d k for every k  <  L but b L + 1  =  d L  + 1,  with b k  
=  0 for  k  >  L and d k  =  9 for all  k  >  L. 
 

(3)   There is an L  >  0  such that b k  =  d k for every k  <  L but  d L + 1 =  b L  + 1,  with d k  
=  0 for  k  >  L and b k  =  9 for all  k  >  L (the analog of the previous possibility with the 
roles of the two expansions switched). 
 

One can reformulate the preceding into a strict uniqueness result as follows: 
 
Corollary 16.  Every positive real number has a unique decimal expansion of the form 

 

a N ⋅⋅⋅⋅ 10 

N
  +  a N–1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  a 0  +  b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

such that b k  is nonzero for infinitely many choices of  k. 
 
EXAMPLE.  We can use the preceding result to define real valued functions on an 
interval in terms of decimal expansions.  In particular, if we express an arbitrary real 

number x  ∈∈∈∈  (  0, 1] as an infinite decimal  
 

x   =   0  . b  1   b  2   b  3  b  4  b  5  b  6  b  7  b  8  b 9 … 
 

where infinitely many digits b k  are nonzero, then we may define a function f from (  0, 1] 
to itself by the formula 
 

f  (  x  )   =   0  .  b  1  0  b  2  0  b  3  0  b  4  0  b  5   0  b 6  0  b  7  0  b  8  0  b  9  0 … 
 

and if we extend this function by setting f  (  0  )  =  0  then we obtain a strictly increasing 
function on the closed unit interval (verify that the function is strictly increasing!).  Note 
that this function has a jump discontinuity at every finite decimal fraction. 
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Since every nondecreasing real valued function on a closed interval is Riemann 
integrable, we know that f can be integrated.  It turns out that the value of this integral is 
a fairly simple rational number; finding the precise value is left as an exercise for the 
reader (this is a good illustration of the use of Riemann sums — a natural strategy is to 
partition the unit interval into pieces whose endpoints are finite decimal fractions with at 
most n nonzero terms and to see what happens to the Riemann sums as n increases). 
 
 

 

V. 5.  Appendix A :     Proofs of results on number expansions 
 
 

This appendix contains proofs of several results from Section 5: 
 

   Theorem V. 5. 9 

   Theorem V. 5.10 

   Theorem V. 5.11 

   Theorem V. 5.12 

   Corollary V. 5.13 

   Theorem V. 5.14 

   Theorem V. 5.15 

   Corollary V. 5.16 
  

We begin by proving that a positive real number can be written in an essentially unique 
manner as the sum of an integral part and a fractional part which lies between 0 and 1.  
 

Theorem V. 5. 9.  Let r be an arbitrary nonnegative real number.  Then there is a unique 
decomposition of  r  as a sum of the form  n  +  s  such that  n  is a nonnegative integer 
and  0  ≤  s  <  1. 
 

Proof.  By the Archimedean Law there is a nonnegative integer m such that m  >  r , and 
since the nonnegative integers are well – ordered there is a  minimum  such integer m1 .  
Since r is nonnegative it follows that m1 cannot be zero and hence must also be positive.  
Therefore m1 – 1 is also nonnegative and by the minimal nature of the positive integer 
m1  we must have  m1 – 1  ≤  r.  If we take  n  =  m1 – 1  and s  =  r – n  then  r  =  n + s 
where n and s have the desired properties.  Suppose that we also have r  =  q + v,   
where q is a nonnegative integer and 0  ≤  q  <  1.   By hypothesis we have   
 

q    ≤    r    <    q + 1 
 

and the right hand inequality implies n + 1   ≤   q + 1, or equivalently n  ≤  q.  The 
equation r  =  n  +  s   =  q  +  v  can therefore be rewritten in the form  
 

0   ≤   q – n   =   s  –  v 
 

and since ( i )  s – v   ≤    s  <  1  and ( i i )  q – n  is an integer, it follows that n  =  q  and 
s  =  v.���� 
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Base N expansions for natural numbers 

 
We shall use the long division property for natural numbers to derive the standard result 
on base N expansions of positive integers.  In the standard case when N  =  10,  this 
yields the standard way of writing a nonnegative integer.  
 

Theorem V. 5. 10.   Let k be a positive integer, and let N   >   1 be another positive 

integer.  Then there are unique integers a j such that   0   ≤   a j   ≤   N – 1  and  
 

k    =    a0   +  a1  N   +   …   +  am  N
m 

 

for a suitable nonnegative integer m. 
 

In the course of proving this result it will be useful to know the following: 
 
Lemma 1.    Suppose that integers N, k, and aj are given as above.  Then we have 

 

a0   +  a1  N   +   …   +  am  N
m  ≤   N 

m
 

+
 

1. 
 

Proof of Lemma 1.    Since a j  ≤≤≤≤  N – 1 for each j we have   
 

a j  N 
j   ≤   (N – 1) N 

j    =   N j
 

+
 

1  –  N 
j 

 

and therefore we have the inequality 
 

a0  +  a1  N  +  …  +  am  N
m    ≤    (N – 1)  +  (N 2 – N)   +   …   +  (N 

m
 

+
 

1 – Nm)   =  
 

N 

m
 

+
 

1  –  1   <    N 

m
 

+
 

1.���� 
 

Proof of Theorem V. 5. 10.   It is always possible to find an exponent q such that 2 

q
  >  

k, and since k  ≥  2  it follows that we also have   N 

q
   >   2 

q
   >   k.   Let [ Sm ] be the 

statement of the statement that every positive integer less than  N 

m
 

+
 

1  has a unique 
expression as above.   If  m  =  0  then the result follows immediately from the long 

division theorem, for then k    =    a 0.    Suppose now that [ S p – 1 ] is true and consider the 
statement  [ Sp ].  If k   <   N 

p
 

+
 

1  then we can use long division to write  k  uniquely in the 
form  
 

k    =    k 0  +  a p  N 

p 
 

where a p    ≥   0  and  0   ≤   k 0   <   N 

p.   We claim that  a p  <  N .  If this were false then 

we would have k   ≥   a p  N 

p   ≥   N N 

p   =   N 

p
 

+
 

1, contradicting the assumption  k  <   N 

p
 

+
 

1.     
 

By induction we know that  k0   has a unique expression as a sum  
 

k 0    =    a 0   +  a 1  N   +   …   +  a p – 1  N 
p

 

–
 

1  
 

for suitable a j .  This proves existence.  To prove uniqueness, suppose that we have   
 

k    =    a 0   +  a 1  N   +   …   +  a p  N 
p   =    b 0   +  b 1  N   +   …   +  b p  N 

p
 . 

 

Denote all but the last terms of these sums by  A  =  a 0   +  a 1  N   +   …   +  a p – 1  N 
p

 

–
 

1 

and  B  =    b0   +  b1  N   +   …   +  b p – 1  N 
p

 

–
 

1.  Then we have 0  ≤  A , B  ≤   N 

p – 1 by the 

lemma, and therefore by the uniqueness of the long division expansion of k it follows that 
a p  =  b p    and   A   =   B.    By the induction hypothesis the latter implies that  a j  =  b j   
for all j  <  p.  Therefore we have also shown uniqueness.���� 
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Decimal expansions for real numbers 

As we have already noted, a mathematically sound definition of the real numbers should 
yield the usual decimal expansions for base 10 as well as the corresponding expansions 
for other choices of the base N.   We shall verify this and show that decimal expansions 
have many properties that are more or less predictable on empirical grounds.  
 

One such property is the well – known decimal equality 1. 0  =  0. 9999999 …  so we 
begin by noting this reflects the geometric series formula 
 

a/(1 – r )    =     a   +   a r    +  a r 

2  + …   +  a r 

k  + … 
 

when  a   =   9/10  and  r   =   1/10.   In fact, the geometric series plays a key role in 
proving that infinite decimal expansions always yield real numbers. 
 

Theorem   V. 5. 11  (Decimal Expansion Theorem).   Every infinite series of real 
numbers having the form  

 

  a N ⋅⋅⋅⋅ 10 

N
  +  a N–1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  a 0  +  b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

(with  0  ≤   a i ,  b j   ≤  9) 
 

is convergent.   Conversely, every positive real number is the sum of an infinite series of 
this type where the coefficients of the powers of  10  are integers satisfying the basic 

inequalities  0  ≤   a i ,  b j   ≤  9.   
 

As noted above, there are two ways of writing 1 as an infinite series of this type, so such 
a representation is not unique, but empirical evidence suggest that all ambiguities in 
decimal expansions arise from this example, and we shall verify this later.  
 

PROOF OF THE DECIMAL EXPANSION THEOREM.  The proof of this result splits 
naturally into two parts, one for each implication direction.   
 

Formal infinite decimal expansions determine real numbers:   If one can show this 
for positive decimal expansions, it will follow easily for negative ones as well, so we shall 
restrict attention to the positive case.   Consider the formal expression given above:  

 

  ( a N ⋅⋅⋅⋅ 10 

N
  +  a N–1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  a 0  +  b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  … ) 

 

For each integer p  >  0, define s p  to be the sum of all terms in this expression up to and 

including b p 10 
–

 

p
 and let  S  be the set of all such numbers s p .  Then the set S has an 

upper bound, and in fact we claim that 10 

N
 

+
 

1 is an upper bound for S.  To see this, 

observe that  a N ⋅⋅⋅⋅ 10 

N
  +  a N–1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  a 0     ≤       10  

N
 

+
 

1  – 1 by a previous lemma and  
 

b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  …   ≤       

9 ⋅⋅⋅⋅ (10  

–
 

1
  +  10 – 2

  + …  +  10  

–
 

k
  +  … )  =  1    

 

and the assertion about an upper bound follows immediately from this.  The least upper 

bound r for S turns out to be the limit of the sequence of partial sums { s p } . 
 
Real numbers determine infinite decimal expansions:  Given (say) a positive real 

number r , the basic idea is to find a sequence of finite decimal fractions { s p }  such that 

for every value of  p the number s p  is expressible as a fraction whose denominator is 

given by 10 

p
 and  
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s p      ≤           r    <   s p   +   10 

–
 

p
. 

 

More precisely, suppose that we already have s p and we want to find the next term.  By 

construction 10 

p
 s p   is a positive integer and   10 

p
 s p     ≤           10 

p r    <   10 

p
 s p   +   1, so that    

 

10 

p
 

+
 

1
 s p      ≤      10 

p
 

+
 

1
 r    <   10 

p
 

+
 

1
 s p   +   10 . 

 

Choose  b p + 1  to be the largest integer such that  
 

b p + 1    ≤    10 

p
 

+
 

1
 r  –  10 

p
 

+
 

1
 s p . 

 

The right hand side is positive so this means that bp + 1   ≥   0.  On the other hand, the 

previous inequalities also show that  b p + 1   <  10 and since  b p + 1   is an integer this 

implies  b p + 1    ≤    9.   If we now take s p + 1    =   10 s p  +   b p + 1    then it will follow that  
 

s p + 1    ≤    r  <   s p + 1   +   10 

– (p
 

+
 

1)
. 

 

To see that the sequence converges, note that it corresponds to the infinite series 
 

s p    +   ΣΣΣΣ p  (b p + 1 10 

–
 

p
) , 

 

which converges by comparison with the modified geometric series  s p    +  ΣΣΣΣ p 10
(1

 

–
 

p)
.���� 

 

Corollary      V. 5. 12  (Scientific Notation Representation).   Every positive real number 

has a unique expansion of the form  a  ⋅⋅⋅⋅ 10 

M
, where  1  ≤  a  <  10 and  M  is an integer.   

 

Existence.  If x has the decimal expansion 
 

  a N ⋅⋅⋅⋅ 10 

N
  +  a N–1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  a 0  +  b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

(with  0  ≤   a i ,  b j   ≤  9) 
 

then x ⋅⋅⋅⋅ 10  

–
 

N  lies in the interval [1, 10) by construction.  
 

Uniqueness.   Suppose that we can write  x  as a ⋅⋅⋅⋅ 10 

M
   and  b ⋅⋅⋅⋅ 10 

N
 .   Then by the 

conditions on the coefficients, we know that x  ∈∈∈∈  [10 

M
 , 10 

M
 

+
 

1
)  ∩∩∩∩  [10 

N
 , 10 

N
 

+
 

1
) .  Since 

the half open intervals [10 

M
 , 10 

M
 

+
 

1
) and  [10 

N
 , 10 

N
 

+
 

1
)  are disjoint unless M  =  N, it 

follows that the latter must hold.  Therefore the equations x  =  a ⋅⋅⋅⋅ 10 

M  =  b ⋅⋅⋅⋅ 10 

N and M  =  
N  imply  a  =  b.���� 

 
Decimal expansions of rational numbers 

 
In working with decimals one eventually notices that the decimal expansions for rational 
numbers have the following special property: 
  

Theorem V. 5. 13  (Eventual Periodicity Property).  Suppose that  r  is a rational number 
such that 0   <   r   <   1, and let  

 

r    =    b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

be a decimal expansion.  Then the sequence { bk } is eventually periodic ; i.e.,  there are 
positive integers M and Q such that  b k  =   b k + Q  for all  k  >  M. 
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Proof.   Let a/b  be a rational number between 0 and 1, where a and b are integers 
satisfying  0   <   a   <   b.  Define sequences of numbers rn and xn recursively, beginning 
with r0   =   a  and  x0   =   0.  Given rn and xn express the product 10 r n by long division 

in the form 10 r n   =  b x n + 1  +  r n + 1 where x n + 1  ≥≥≥≥  0 and  0   ≤≤≤≤    r n + 1   <   b .  
 
CLAIMS:   

1. Both of these numbers only depend upon r n . 
 

2. We have  x n + 1   <  10. 
 

The first part is immediate from the definition in terms of long division, and to see the 

second note that xn + 1  ≥≥≥≥   10 would imply 10 rn   ≥≥≥≥  10 b, which contradicts the 
fundamental remainder condition rn   <   b. 
 

Since rn can only take integral values between 0 and b – 1, it follows that there are some 
numbers Q and m such that rm   =   rm + Q.   
 

CLAIM:   r k   =   r k + Q   for all  k  ≥≥≥≥   m. 
 

We already know this for p   =   m, so assume it is true for p   ≤≤≤≤    k.  Now each term in 
the sequence r n depends only on the previous term, and hence the relation rk   =   r k + Q   
implies r k + 1   =   r k + Q + 1.  Therefore the claim is true by finite induction.���� 
 
CONVERSELY, suppose that the statement in the claim holds for the decimal expansion 
of some number, and choose m and Q as above.  Let s be given by the first m – 1 terms 
in the decimal expansion of y, and let  t  be the sum of the next  Q  terms.  It then follows 
that y is equal to s   +   t (1 + 10 – Q  + 10 – 2Q  + 10 – 3Q  + … ).  Now s, t and the 
geometric series in parentheses are all rational numbers, and therefore it follows that y 
is also a rational number.  Therefore we have the following result: 
 

Theorem V. 5. 14.   A real number between 0 and 1 has a decimal expansion that is 
eventually periodic if and only if it is a rational number.���� 
 

In Section 5 we gave the following examples to illustrate the theorem:  
 

  1/3   =   0.333333333333333333333333333333333333 … 

  1/6   =   0.166666666666666666666666666666666666 … 

  1/7   =   0.142857142857142857142857142857142857 … 

1/11   =   0.010101010101010101010101010101010101 … 

1/12   =   0.083333333333333333333333333333333333 … 

1/13   =   0.076923076923076923076923076923076923 … 

1/17   =   0.058823529411764705882352941176470588 … 

1/18   =   0.055555555555555555555555555555555555 … 

1/19   =   0.052631578947368421052631578947368421 … 

1/23   =   0.043478260869565217391304347826087695 … 

1/27   =   0.037037037037037037037037037037037037 … 

1/29   =   0.034482758620689655172413793103448275 … 

1/31   =   0.032258064516129032258064516129032258 … 

1/34   =   0.029411764705882352941176470588235294 … 

1/37   =   0.027027027027027027027027027027027027 … 
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Note that the minimal period lengths in these examples are 1, 1, 6, 2, 1, 6, 16, 1, 18, 22, 
3, 28, 15, 16 and 3.  One is naturally led to the following question: 
 

Given a fraction a/b between 0 and 1, what determines the (minimal) period length Q? 
 

To illustrate the ideas, we shall restrict attention to the special case where a/b  =  1/p, 
where p is a prime not equal to 2 or 5 (the two prime divisors of 10).  In this case the 
methods of abstract algebra yield the following result: 
 

Theorem 2.  If  p  ≠≠≠≠  2, 5 is a prime, then the least period Q for the decimal expansion of 

1/p is equal to the multiplicative order of 10 in the (finite cyclic) group of multiplicative 
units for the integers mod p.���� 
 

We shall not verify this result here, but the proof is not difficult. 
 

Corollary 3.  The least period Q divides p – 1. 
 

The corollary follows because the order of the group of units is equal to p – 1 and the 
order of an element in a finite group always divides the order of the group.���� 
 
One is now led to ask when the period is actually equal to this maximum possible value.  
Our examples show this is true for the primes 7, 19, 23 and 29 but not for the primes 11, 
13, 31 or 37.   
 

More generally, one can define a primitive root of unity in the integers mod p to be an 
integer a mod p such that  a  is not divisible by p and the multiplicative order of the class 
of  a  in the integers mod  p  is precisely p – 1.  Since the group of units is cyclic, such 
primitive roots always exist, and one can use the concept of primitive root to rephrase 
the question about maximum periods for decimal expansions in the following terms: 
 

For which primes p is 10 a primitive root of unity mod p? 
 

A simple answer to this question does not seem to exist.  In the 1920s E. Artin (1898 – 
1962) stated the following conjecture: 
 

Every integer a   > 1  is a primitive root of unity mod p for infinitely many primes p. 
 

This means that 10  should  be the primitive root for infinitely many primes p, and hence 
there should be infinitely many full – period primes.  Quantitatively, the conjecture 
amounts to showing that about 37% of all primes asymptotically have 10 as primitive 
root.  The percentage is really an approximation to Artin’s constant  
 

 
 

where p k denotes the kth prime.  Further information about this number and related 
topics appears in the following online reference: 
 

http://mathworld.wolfram.com/ArtinsConstant.html 

 
Uniqueness of decimal expansions 

 
The criterion for two decimal expressions to be equal is well understood. 
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Theorem V. 5. 15.   Suppose that we are given two decimal expansions 
 

a N ⋅⋅⋅⋅ 10 

N
  +  a N–1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  a 0  +  b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

c N ⋅⋅⋅⋅ 10 

N
  +  c N–1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  c 0  +  d 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  d 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  d k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

which yield the same real number.  Then a j   =   c j  for all  j , and (exactly) one of the 
following mutually exclusive statements is also true: 
 

(1)   For each k we have b k  =  d k. 
 

(2)   There is an L  >  0  such that b k  =  d k for every k  <  L but b L + 1  =  d L  + 1,  with b k  
=  0 for  k  >  L and d k  =  9 for all  k  >  L. 
 

(3)   There is an L  >  0  such that b k  =  d k for every k  <  L but  d L + 1 =  b L  + 1,  with d k  
=  0 for  k  >  L and b k  =  9 for all  k  >  L (the analog of the previous possibility with the 
roles of the two expansions switched). 
 

If x and y are given by the respective decimal expansions above, then x   =   y   implies 
the greatest integer functions satisfy [ x ]   =   [ y ] ,  which in turn implies that a j   =   c j  for 
all j .  Furthermore, we then also have ( x )   =   ( y ) and accordingly the proof reduces to 
showing the result for numbers that are between 0 and 1.     
 
The following special uniqueness result will be helpful at one point in the general proof. 
 

Lemma 4.  For each positive integer k let t k be an integer between 0 and  9.  Then we 
have 

 

1   =   t 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  t 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  t k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

if and only if  t k   =   9  for all  k. 
 
Proof.   Let  t be the summation on the right hand side.  If tk   =   9 for all k then t  =  1  by 

the geometric series formula.  Conversely, if t m   <   9 for a specific value of  m  then 
 

t 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  t 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  t k ⋅⋅⋅⋅ 10  

–
 

k
  +  …   <   u 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  u 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  u k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

where u k  =   9 for k  ≠≠≠≠  m and   u m   ≤   8.  The latter implies that the right hand side is 

less than or equal to  1 – 10 

–
 

m
, which is strictly less than 1.���� 

 

Theorem 5.  If we are given two decimal expansions 
 

x   =   x 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  x 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  x k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

y   =   y 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  y 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  y k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

then  x  =  y  if and only if one of the following is true: 
 

(1)  For all positive integers k we have xk   =   yk . 
 

(2)  There is some positive integer M such that [ i ] xk   =   yk   for all  k   <   M,  [ i i ]  xM    =    
yM   +  1, [ i i i ]  xk   =   0  for  k   >   M,  and  [ i v ]   yk   =   9  for  k   >   M. 
 

(3)  A statement analogous to (2) holds in which the roles of xk   and  yk   are switched;  
namely, there is a positive integer M such that [ i ] yk   =   xk   for all  k  <  M ,  [ i i ]  yM    =    
xM   +  1, [ i i i ]  yk   =   0  for  k  >  M ,  and  [ i v ]   xk   =   9  for  k   >   M. 
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Proof.   Suppose that the first alternative does not happen, and let  L be the first positive 

integer such that  x L   ≠≠≠≠   y L .  Without loss of generality, we may as well assume that  

the inequality is x L   >   y L    (if the inequality points in the opposite direction, then one can 

apply the same argument reversing the roles of x k and y k throughout).  Let z be given by 

the first L – 1 terms of either x or y (these are equal). 
 

CASE 1.  Suppose that x L   ≥    y L  +  2.  Note that y L   ≤   7 is true in this case.   We 

then have  
 

y   ≤   z  + 10 

–
  

L
 y L  +  9⋅⋅⋅⋅ 10 

–
  

L
 (10  

–
 

1 + 10  

–
 

2 + … +  10  

–
 

k  + …  )   = 
 

z + 10 

–
  

L
 (y L + 1 )    <   z  + 10 

–
  

L (x L )    ≤   
 

z + 10  

–
    

L
 (x L +  x L + 1 10  

–
 

1 +  x L + 2 10  

–
 

2 + … +  x  L + k 10  

–
 

k  + … )   =   x. 
 

Therefore x  >  y  if we have x L   ≥    y L  +  2.   
 

CASE 2.  Suppose that x L   =  y L + 1, and let  w  =  10  

–
    

L
 y L, so that  x L   =   w  + 10  

–
    

L
. 

We may then write 
 

x    =    z  +  (w  + 10  

–
    

L
 )   +  10  

–
    

L
 u     and     y    =    z  +  w  + 10  

–
    

L
 v 

 

where by construction u and v satisfy 0   ≤  u,  v   ≤   1.  If x  =  y  then the displayed 

equations imply that  10  

–
    

L
  +  10  

–
    

L
 u    =  10  

–
    

L
 v.  The only way such an equation can 

hold is if u   =   0  and  v   =   1.    The first of these implies that the decimal expansion 
coefficients for the sum  

 

0     =     u     =      x L + 1 10  

–
 

1 +  x L + 2 10  

–
 

2 + … +  x  L + k 10  

–
 

k  + … 
 

must satisfy x k  =  0 for all k  >  L, and by the lemma the second of these can only 
happen if the decimal expansion coefficients for the sum  

 

1     =     v     =     y L + 1 10  

–
 

1 +  y L + 2 10  

–
 

2 + … +  y  L + k 10  

–
 

k  + … 
 

satisfy y k  =  9 for all k  >  L .  Therefore the second alternative holds in Case 2. 
 

Conversely, the standard geometric series argument shows that two numbers with 
decimal expansions given by the second or third alternatives must be equal.   Of course, 
the two numbers are equal if the first alternative holds, so this completes the proof of the 
theorem.����  
 

One can reformulate the preceding into a strict uniqueness result as follows: 
 

Corollary V. 5. 16.   Every positive real number has a unique decimal expansion of the 
form 

 

a N ⋅⋅⋅⋅ 10 

N
  +  a N – 1 ⋅⋅⋅⋅ 10  

N
 

–
 

1
  +  …  +  a 0  +  b 1 ⋅⋅⋅⋅ 10  

–
 

1
  +  b 2 ⋅⋅⋅⋅ 10  

–
 

2
  +  …  +  b k ⋅⋅⋅⋅ 10  

–
 

k
  +  … 

 

such that  b k  is nonzero for infinitely many choices of  k. 
 

This follows immediately from the preceding results on different ways of expressing the 
same real number in decimal form; there is more than one way of writing a number in 
decimal form if and only if it is an integer plus a finite decimal fraction, and in this case 
there is only one other way of doing so and all, but finitely many digits of the alternate 
expansion are equal to 9.���� 
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VI :    Infinite constructions in set theory 
 

 
In elementary accounts of set theory, examples of finite collections of objects receive a 
great deal of attention for several reasons.  For example, they provide relatively simple 
illustrations of the abstract formal concepts in the subject.   However, Cantor’s original 
motivation for studying set theory involved infinite collections of objects, and the real 
breakthrough of set theory was its ability to provide a framework for studying infinite 
collections and limits that were previously difficult or out of reach.   
 

We shall begin with a variation on the material in Section I I I.3, describing unions and 
intersections of indexed families of sets; a typical example of this sort is a sequence of 

sets A n, where n runs through all positive integers.  In the second section we define a 
notion of (possibly infinite) Cartesian product for such indexed families.  This 
definition has some aspects that may seem unmotivated, and therefore we shall also 

describe an axiomatic approach to products such that ( i ) there is essentially only one 

set – theoretic construction satisfying the axioms, (i i ) the construction in these notes 
satisfies the axioms.   In the next two sections we shall present Cantor’s landmark 
results on comparing infinite sets, including proofs of the following, 
 

1. There is a  1 – 1 correspondence between the nonnegative integers NNNN 

and the integers ZZZZ.  
 

2. There is a  1 – 1 correspondence between the nonnegative integers NNNN 

and the rational numbers QQQQ.  
 

3. There is NO  1 – 1 correspondence between the nonnegative integers NNNN 

and the real numbers RRRR.  
 

We should note that a few aspects of Cantor’s discoveries (in particular, the first of the 
displayed statements) had been anticipated three centuries earlier by Galileo. 
 

Section 5 is a commentary on the impact of set theory, and Section 6 looks at 
generalizations of finite induction and recursion for sets that are larger than the natural 

numbers NNNN.  The latter is included mainly as background for the sake of completeness. 

 

 

 

VI .1 :     Indexed families and set – theoretic operations 
 

 

(Halmos, §§ 4, 8 – 9;  Lipschutz, §§ 5.3 – 5.4) 
 
 

One can summarize this section very quickly as follows:  In Unit I I I we introduced 
several ways of constructing a third set out of two given ones, and in this section we 
shall describe similar ways of constructing a new set out of a more or less arbitrary list of 
other ones. 
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We have frequently considered finite and infinite sequences of sets having the form A n 
where the indexing subscript n runs through some finite or infinite set S of nonnegative 
integers.   Formally, such a sequence of sets corresponds to a function for which the 

value at a given integer n in S is equal to A n .  We can generalize this as follows: 
 

Definition.  Let  I  be a set.  An indexed family of sets with indexing set  I is a 

function from I to some other set X; very often X is the set P(Y) of subsets of some other 

set Y.  Such an indexed family is usually described by notation such as { A i } i ∈∈∈∈ I . In such 

cases I is generally called the index set, while I( i )  =  A i is the mapping or (Halmos’ 

terminology) family, and A i is the element belonging to the index value i, which is 
sometimes also called the i 

th element or term of the indexed family. 
 

Given any sort of mathematical objects (e.g., partially ordered sets), one can define an 
indexed family of such objects similarly. 
 

As indicated on page 34 of Halmos, in mathematical writings the notation for an indexed 
family is often abbreviated to { A i }, and this is described by the phrase, “unacceptable 
but generally accepted way of communicating the notation and indicating the emphasis.”  
A more concise description would be a “slight abuse of language.”  Such an 
abbreviation should only be used if the indexing set it obvious from the context (for 
example, a subscript of n almost always denotes an integer) or its precise nature is 
relatively unimportant and there is no significant danger that the notation will be 
misinterpreted.   
 

Subfamilies.  An indexed family { B i  } i ∈∈∈∈ J is a subfamily of a family of { A i }i ∈∈∈∈ I , if and 

only if J is a subset of I and for all i in J we have B i  =  A i. 

 
Indexed unions and intersections 

 
Given a set C, in Unit I I I we considered the union $(C), which is the collection of all x 

such that x  ∈∈∈∈  A for some  A  ∈∈∈∈  C, and we introduced the usual ways of writing these 

sets as  ∪∪∪∪ { A  |  A  ∈∈∈∈  C } or  ∪∪∪∪ A ∈∈∈∈ C  A.  If we have an indexed family of sets { A i } i ∈∈∈∈ I ,  
then the indexed union 
 

 
 

will refer to the union of the collection { B | B  =  A i for some i ∈∈∈∈ I }.  Recall that here I is 

a set, and A i is a set for every i ∈∈∈∈ I.  In the case that the index set I is the set of natural 
numbers, one also uses notation is analogous to that of infinite series: 

 

 
 

Similarly, given a nonempty set C (recall the extra condition is important!), in Unit I I I 

we considered the intersection of the sets in C, which is the set of all x such that x  ∈∈∈∈  A 

for every A  ∈∈∈∈  C, and we similarly introduced the analogous ways of writing these sets 
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as  ∩∩∩∩ { A | A  ∈∈∈∈  C } or  ∩∩∩∩ A  ∈∈∈∈  C  A.  If we have an indexed family of sets { A i } i ∈∈∈∈ I , then we 

also have the corresponding indexed intersection  
 

 
 

As one might expect, this will be the intersection of the indexed collection { B | B  =  A i 

for some i ∈∈∈∈ I }. As before, in the case that the index set I is the set of natural numbers, 
one also uses notation is analogous to that infinite series: 
  

 
 

These indexed unions and intersections satisfy analogs of the basic formal properties of 
ordinary unions and intersections which are stated formally on pages 35 – 36 of Halmos. 
 

Numerous properties of unions and intersections of indexed families are developed in 
the exercises. 

 

 

VI .2 :     Infinite Cartesian products 
 

 

(Halmos, § 9;  Lipschutz, §§ 5.4, 9.2) 

 
We have already considered n – fold Cartesian products of n sets X1, ... , Xn : 
 

X1 × ... × Xn   =   { (x1, ...,xn) | x1 ∈∈∈∈ X1 &  ...  &  xn ∈∈∈∈ Xn } 
 

At least intuitively, this construction can be identified with (X1 ×  ...  × Xn–1) × Xn.  We 
shall not attempt to make this precise here because one can easily do so using the 
discussion below for general Cartesian products. 
 

Infinite products.  For the most common mathematical applications, finite products 
suffice. However, for some purposes  —  in particular, many graduate courses in 
mathematics  —  it is necessary to define the general Cartesian product over an arbitrary 
(possibly infinite) collection of sets. Typical examples of this sort arise in the study of 
infinite sequences.   
 

Definition.  Let I be an arbitrary index set, and let  { X i | i  ∈∈∈∈  I } be a collection of sets 

indexed by I.  The general Cartesian product of the indexed family { X i | i  ∈∈∈∈  I } is 
denoted by symbolism such as  

 

ΠΠΠΠ {X i | i  ∈∈∈∈  I }      or      ΠΠΠΠ i  ∈∈∈∈  I  X i 
 

and is formally specified as follows: 
  

 
 

In other words, the general product is the set of all functions defined on the index set I 

such that the value of the function at a particular index i is an element of X i.  Since 
functions are determined by their values at the points of their domains, it follows that the 
element  f  in the general Cartesian product is completely determined by the indexed 
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family of elements f( i )  ∈∈∈∈  X i .  In a sense to be made precise later in this section, these 

elements x i   =  f( i ) generalize the coordinates of an ordered pair (x, y) in the usual 
Cartesian product of two sets.  
 

We have already noted that the collection of functions from one set to another is always 
a set, and this yields the corresponding result for general Cartesian products.  
 

Proposition 1.  Let I be an arbitrary index set, and let { X i | i  ∈∈∈∈  I } be a family of sets 

indexed by I.  Then the general Cartesian product of the indexed family { X i | i  ∈∈∈∈  I } is 
also a set.  
 

Proof.   As noted in the paragraph preceding the statement of the proposition, the 

collection of all functions from the set I to the union X  =  ∪∪∪∪  { X i | i  ∈∈∈∈  I } is a set.  By 
definition, the general Cartesian product is contained in this set, and therefore it is also a 
set.����   
 

An  n – tuple can be viewed as a function on { 1, 2, ... , n } that takes its value at  i  to be 

the i 

th element of the n – tuple.  Therefore, when I is { 1, 2, ... , n } the general definition 
coincides with the definition for the finite case.  
 

One particular and familiar infinite case arises when the index set is the set NNNN of natural 

numbers; this is just the set of all infinite sequences with the i 

th term in its corresponding 

set X i.  An even more specialized case occurs when all the factors X i involved in the 
product are the same, in which case the construction has an interpretation as “Cartesian 
exponentiation.” Then the big union in the definition is just the set itself, and the other 

condition is trivially satisfied, so this is just the set of all functions from I to X, which is 

the object we have previously called X 

I
.  

 

In the ordinary Cartesian product of two sets, an element is completely specified by its 
coordinates, and the same is true for our general definition.  
 

Proposition 2.  Let  I  be an arbitrary index set, and let  { X i | i  ∈∈∈∈  I }  be a collection of 

sets indexed by I,  and let x and y be elements of the Cartesian product of the indexed 

family { X i | i  ∈∈∈∈  I }.  Then  x  =  y if and only if  x i   =  y i  for all  i.  
 

This follows immediately from the definition of the elements of the Cartesian product as 
functions defined on the indexing set.���� 

 
Formal characterizations of large products 

 
For many purposes it is more convenient to look at large Cartesian products in terms of 
their functional behavior rather than their set – theoretic construction.  In effect, this 
amounts to giving an axiomatic characterization of such products; from this viewpoint the 
main point of the previous construction is that it establishes the existence of an object 
which satisfies the axioms.  
 

Definition.  Let { X j } be an indexed family of sets with indexing set J.  An abstract 

direct product of the indexed family  { X j }  is pair (P, { p j } ), where P is a set and { p j } is 

an indexed family of functions from  p j : P  →→→→  X j  such that the following Universal 
Mapping Property holds: 
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[UMP]  Given an arbitrary set Y and functions f j : Y  →→→→  X j  for each j, 

there is a unique function  f : Y  →→→→  P  such that  p j   f   =   f j  for each j.  
 

Footnote.  Such characterizations of mathematical constructions by universal mapping 
properties are fundamental to a topic in the foundations of mathematics known as 
category theory, which was developed by S. Eilenberg (1913 – 1998) and S. MacLane 
(1909 – 2005).  This subject may be described as an abstract study of functions in 
mathematics, and among other things it can be used as alternative to set theory for 
constructing the logical foundations of mathematics (compare the comments at the 

beginning of Section I V .3).   We shall not formally discuss the history, motivations and 
applications of category theory in these notes, but we shall give some online references 
for such topics.  The first reference is a general discussion, the next few give some 
information about R. Carnap (1891 – 1970), a philosopher whose term functor was 
adopted to describe a fundamental concept of category theory, and the final reference is 
a summary of the main ideas from a slightly more advanced viewpoint. 

 

http://plato.stanford.edu/entries/category-theory/ 
 

http://www.iep.utm.edu/c/carnap.htm 
 

http://en.wikipedia.org/wiki/Rudolf_Carnap 
 

http://www.rbjones.com/rbjpub/philos/history/rcp000.htm 
 

http://math.ucr.edu/~res/math205A/categories.pdf 
 

Universal mapping properties like [UMP] generally turn out to characterize mathematical 
constructions uniquely up to a suitably defined notion of equivalence.  For our abstract 
definition of direct products, here is a formal statement of the appropriate uniqueness 
result. 
  
Theorem 3. (Uniqueness of Direct Products).   Let  { X j }  be an indexed family of sets 

with indexing set J, and suppose that  (P, { p j } ) and  (Q, { q j } ) are direct products of the 

indexed family { X j }.  Then there is a unique  1 – 1 correspondence h : Q  →→→→  P such 

that  p j   h  =  q j  for all j. 
  
Proof. (∗∗∗∗∗∗∗∗)   First of all, we claim that a function T : P  →→→→  P is the identity if and only if  

p j   T  =  p j  for all j,  and likewise  S : Q  →→→→  Q  the the identity if and only if  q j S  =  q j  
for all j.  These are immediate consequences of the Universal Mapping Property, for in 

the first case we have  p j   1X   =   p j  for all j, and in the second we have the 

corresponding equations q j   1Y   =   q j  for all j . 
  
Since (P, { p j } ) is a direct product, the Universal Mapping Property implies there is a 

unique function  h : Q  →→→→  P  such that p j   h  =  q j  for all j,  and likewise since (Q, { q j } ) 

is a direct product, there also exists a unique function  k : P  →→→→  Q  such that  q j   k  =  p j  
for all j.  We claim that h and k are inverse to each other; this is equivalent to the pair of 

identities h   k  =  1Q  and k   h  =  1P.  
  
To verify these identities, first note that for all j we have  
 

p j   1X   =   p j   =    q j   k   =    p j   h   k 
 

for all j and similarly 
 

q j   1Y   =   q j   =    p j   h   =    q j   k   h 
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for all j .  By the observations in the first paragraph of the proof, it follows that k h  =  1P 

and h   k  =  1Q.���� 
  
We now need to show that the axiomatic description of direct products is valid for the 
product construction described above.  However, before doing so we verify that the 
ordinary Cartesian product of two sets also satisfies this property. 
 

Proposition 4.  If A and B are sets and pA and pB denote the standard coordinate 

projections from A × B to A and B respectively, then (A × B;  pA, pB)  is a direct product 
in the sense described above. 
 

Proof.  We need to verify the Universal Mapping Property.  Suppose that f : C  →→→→  A and 

g : C  →→→→  B are functions.  Then we may define a function H : C  →→→→  A × B by the formula 

H(c)   =   ( f(c), g(c) ), and by construction this function satisfies pA   H  =  f and pB   H  =  
g.  To conclude the proof we need to prove there is a unique function of this type, so 

assume that K : C  →→→→  A × B also satisfies pA K  =  f and pB K  =  g.   Now write K(c)  =  

(a, b), and note that a  =  pA   K(c)  =   f(c) and  b  =  pB   K(c)  =   g(c).  Thus we have 
K(c)   =   ( f(c), g(c) )  =   H(c).   Since c was arbitrary it follows that  H  =  K.����   
 

Theorem 5.  Let { X j } be an indexed family of sets with indexing set J, let  
 

ΠΠΠΠ { X j |  j  ∈∈∈∈  J }    =    ΠΠΠΠ i  ∈∈∈∈  J X j 
 

be the generalized Cartesian product defined above, and for each  k ∈∈∈∈  J  let 
 

p k : ΠΠΠΠ { X j |  j  ∈∈∈∈  J }     →→→→     X k  
 

be the coordinate projection map such that p k ( f )  =  f( k ) for all k.  Then the system 
 

(ΠΠΠΠ i  ∈∈∈∈  J X j, { p j } ) 
 

Is a direct product of the indexed family { X j } . 
 

The following “associativity property” of the ordinary Cartesian product will be useful in 
the proof of the theorem. 
 

Lemma 6.  Let A, B and C be sets.  Then there is a canonical  1 – 1 correspondence T 
from  (A × B) × C  to  A × (B × C)  defined by the formula 
 

T( (a, b) , c )    =    ( a, (b, c) ) 
 

for all a ∈∈∈∈ A, b ∈∈∈∈ B, and c ∈∈∈∈ C. 
 

Proof of Lemma 6. (∗∗∗∗∗∗∗∗)   The formula for T is given in the lemma; we need to show this 

map is 1 – 1 and onto.  To see that it is 1 – 1, suppose that  
 

T( (a, b) , c )    =    T( (x, y) , z ). 
 

By construction this means that  (a, (b , c) )    =    (x, (y , z) ).  Since ordered pairs are 
equal if and only if their respective coordinates are equal, it follows that we have a  =  x  
and (b, c)  =  (y, z).  The second equation then implies b  =  y and c  =  z, and from 

these we conclude that ( (a, b) , c )    =    ( (x, y) , z ).  Therefore the mapping T is 1 – 1.  
To see that it is onto, note that every element of the codomain has the form ( (a, b) , c )   
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for suitable choices of a, b and c, and by the definition of T each such element belongs 
to the image of T.� 
 

Proof of Theorem 5. (∗∗∗∗∗∗∗∗∗∗∗∗)   All we need to do is verify the Universal Mapping Property.  

Suppose that we are given functions f j : Y  →→→→  X j  for each j.  
 

For each j let G j denote the subset of all (j, y, x) in { j } × (Y × X j ) such that (y, x) lies in 

the graph of f j .  Denote the union ∪∪∪∪ j  X j of all the sets X j by X, and let G  ⊂⊂⊂⊂ J × (Y × X ) 

be the union  ∪∪∪∪ j  G j .  Let G′′′′ ⊂⊂⊂⊂  (J × Y ) × X  denote the image of the set G under the 
associativity map in the lemma. CLAIM:  For each (j, y) there is a unique x such that the 

object ( (j, y), x) belongs to G′′′′.   This follows immediately from the fact that each f j is a 
function.  
 

Consider now the 1 – 1 correspondence 
 

J × (Y × X )   →→→→   J × (X × Y )   →→→→   (J × X ) × Y  →→→→   Y × (J × X ) 
 

which takes ( (j, y) , x) to ( (y, j) , x).   The middle step of this map is the associativity 
map in the lemma, and the outside steps merely transpose the coordinates in the 

appropriate ordered pairs.  Let G
∗
 denote the image of G under this mapping, and for 

each y in Y let Gy

∗
  denote the intersection of G

∗ 
 with the set { y } × (J × X ).  By the final 

two sentences of the preceding paragraph, it follows that Gy

∗
  is the graph of a function 

Hy from J to X, and in fact the assumption on  the functions f j imply that H y is the graph 
of a function such that H y (j) belongs to f j for each j . The definition of the general 

Cartesian product then implies that H y defines an element of the product ΠΠΠΠ {X j |  j  ∈∈∈∈  J }.  
By construction we have H y (j)  =  fj ( y ), and this verifies the projection identities for the 
function we have constructed, proving the existence of a function from Y into the general 
Cartesian product with the required properties. 
 

We now need to prove uniqueness.  Suppose that H and K are functions from Y into the 
product which satisfy the basic projection identities.  The latter imply that H y (j)  =  f j ( y ) 
and K y (j)  =  f j ( y )   for all j and y.  But the latter equations mean that H and K define the 

same functions from J to X for each y, so that H y  =  K y  for all y, which in turn implies 
that H  =  K.���� 
 
Technical note.  Our definition of function differs from that of Halmos (we are including 
the codomain as part of the structure).  Because of this, the first sentence in the exercise 
on page 37 of Halmos must be modified to as follows in order to match our formulation:  

Instead of saying that the sets in question are equal, we need to say that there is a 1 – 1 
correspondence between them.   More precisely, if J is an index set, with {X j |  j  ∈∈∈∈  J } a 

collection of sets indexed by J and for each j ∈∈∈∈  J we are given a subset A j  of  X j , then 
according to Halmos’ definition we know that 
 

ΠΠΠΠ {A j |  j  ∈∈∈∈  J }    is a subset of    ΠΠΠΠ {X j |  j  ∈∈∈∈  J } 
 

but in our formulation one only has the following weaker statement, which is entirely 
adequate for all practical purposes:  
 

Proposition 7.  In the setting above, let e j denote the inclusion mapping from A j to X I .  
Then there is a unique canonical 1 – 1 mapping  
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e : ΠΠΠΠ { A j |  j  ∈∈∈∈  J }     →→→→    ΠΠΠΠ { X j |  j  ∈∈∈∈  J } 
 

such that for each element a of the domain and each indexing variable j we have the 

coordinate identity e(a) j   =   e j ( a j ) .  
 

This mapping is often denoted by ΠΠΠΠ { e j |  j  ∈∈∈∈  J } or more simply by ΠΠΠΠ e j . 
 

Using the map e we may naturally identify the domain with the elements of the codomain 

such that for each j, the j 
th coordinate lies in A j.   

 

Proof. (∗∗∗∗)   Usually the fastest way of proving such a result is to apply the Universal 
Mapping Property, and doing so will also give us an opportunity to illustrate how the 
latter is used in mathematical work.  
 

Let { p j } denote the family of coordinate projection maps for ΠΠΠΠ { X j |  j  ∈∈∈∈  J }, and 

similarly let { q j } denote the corresponding coordinate projection maps for the other 

product ΠΠΠΠ { A j |  j  ∈∈∈∈  J }.  For each indexing variable k, define a mapping   
 

f k : ΠΠΠΠ { A j |  j  ∈∈∈∈  J }     →→→→      X k 
 

by setting  f k  equal to the composite e k   q k . The Universal Mapping Property then 
implies the existence of a unique function  
 

e : ΠΠΠΠ { A j |  j  ∈∈∈∈  J }     →→→→    ΠΠΠΠ { X j |  j  ∈∈∈∈  J } 
 

such that for each j  ∈∈∈∈  J  we have p j   e  =  e j   q j .  This is equivalent to the condition on 

coordinates, so all that remains is to verify that e is a 1 – 1 mapping.  Since elements of 
a Cartesian product are determined by their coordinates, the latter reduces to showing 

that if e(x)  =  e(y), then for each j  ∈∈∈∈  J we have x j   =  y j .   Let J be fixed but arbitrary, 
and consider the following string of equations which follows from e(x)  =  e(y):  
 

e j ( x j )   =   e(x) j   =   e(y) j   =   e j ( y j ) 
 

Since the inclusion map e j is 1 – 1 by construction, it follows that x j  =  y j .  Since j was 
arbitrary, this means that all the corresponding coordinates of x and y are equal and 

consequently that x  =  y, proving that e is also a 1 – 1  mapping.����  

  
Applications of the Universal Mapping Property 

 
We shall conclude this section with a few examples illustrating the use of the Universal 
Mapping Property for products to answer some basic questions.  We shall begin with a 
version of the recursive property for finite Cartesian products mentioned at the beginning 
of this section.  
 

Proposition 8.   Let A, B, C be sets. Denote the projections from (A × B) × C to A × B 

and C by p 1, 2 and p 3 respectively, and for i = 1 or 2 let p i denote the projection of A × B 

to A and B respectively.  Define maps q i by q i  =  p i    p 1, 2 for i = 1 or 2, and q 3 = p 3 . 

Then the system ( (A × B) × C,  { q 1, q 2, q 3} ) satisfies the Universal Mapping Property 

for products. 
 

Proof.  Suppose that f 1 :D →→→→ A, f 2 :D →→→→ B, f 3 :D →→→→ C are functions. By the Universal 

Mapping Property for twofold products there is a unique function f  1, 2 : D →→→→ A × B such 
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that p i  f  1, 2  = f i for i = 1, 2.  Similarly, there is a unique function f :D →→→→ (A × B) × C such 

that p 1, 2  f = f 1, 2 and p 3  f = f 3 .  Since q 3 = p 3 , clearly q 3  f  =  f 3 .   Furthermore, if i = 1, 

2 then q i  f  =  p i   p 1, 2  f   =  p i  f 1, 2   =  f i , proving the existence part of the Universal 
Mapping Property. 
 

To prove uniqueness, suppose that the projections of h, k : B →→→→ (A × B) × C onto the 

sets A, B, C are equal to the mappings f i .   We first claim that the projections of h and k 

onto A × B are equal. The projections of h and k onto A × B satisfy q i h  =   f i  =  q i   k 
for i = 1 or 2, and thus by the Universal Mapping Property for twofold products it follows 

that p 1, 2   h  =  p 1, 2   k.  
 

By assumption we also have q 3   h  =   f 3  =  q 3   k, and hence by the Universal Mapping 
Property for the twofold product (A × B) × C it follows that h  =  k.���� 
 

Here is another example, which is also a good illustration of proving that a mapping is 
bijective. 
 

Proposition 9.   Let A, B, C be sets.  
 

(1) There is a unique mapping T from (A × B) × C to (C × A) × B such that T(x, y, z)  
=  (z, x, y)  for all x, y, z.  
 

(2) The mapping T is bijective, and if A  =  B  =  C the inverse is given by T   T. 
 

Proof.   By the Universal Mapping Property for products there is a unique mapping T 

from (A × B) × C to (C × A) × B such that p 1   T = p 3 , p 2   T = p 1 , and p 3    T = p 2 .   By 
construction, such a map satisfies T(x, y, z)  =  (z, x, y)  for all x, y, z. 
   

We first show that T is injective. If T(x, y, z)  =  T(x', y', z'), then by definition of T we 
have (z, x, y)  =  (z', x', y') and the latter implies x = x', y = y', and z = z'.  Next we prove 
that T is surjective. To solve the equation T(x, y, z)  =  (u, v, w) we need to find (x, y, z) 
so that (z, x, y)  =  (u, v, w).  Clearly x = v, y = w, z = u gives a solution, so that map is 
surjective as claimed.  
 

If we have A  =  B  =  C  then T
–1

(u, v, w)  =  (x, y, z)  implies  (z, x, y) = (u, v, w), so 

that T
–1

(u, v, w)  =  (v, w, u).  But the latter is equal to T(w, u, v) = T  T(u, v, w), and 

therefore T
–1

  =  T   T as required.���� 

 

 

 

V .3 :  Transfinite cardinal numbers 
 

 

(Halmos, §§ 22 – 23;  Lipschutz, §§ 6.1 – 6.3, 6.5) 

  
Early in his work on infinite sets, Cantor considered the problem of comparing the 
relative sizes of such sets.  Specifically, given two infinite sets, the goal is to determine if 
one has the same size as the other or if there are different orders of infinity such that 
one set is of a lower order than the other.  Many of Cantor’s results were entirely 
unanticipated, and ultimately his findings led mathematicians to make major changes to 
their perspectives on infinite objects.  In several respects the material in this section is 
the central part of these notes.  
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Definition.   If A and B are sets, we write |A|  =  |B|, and say that the cardinality of A is 

equal to the cardinality of  B (or they have the same cardinality, etc.) if there is a 1 – 1 

onto mapping f :  A →→→→ B .  
 

The relationship |A|  =  |B| is clearly reflexive because the identity on A is a 1 – 1 onto 
map from A to itself, and if  |A|  =  |B|, then |B|  =  |A| is also true because the inverse of 

f is a 1 – 1 onto mapping from B to A.  Finally, if |A|  =  |B| and |B|  =  |C|, then we also 

have |A|  =  |C|, for if we have 1 – 1 onto mappings f : A  →→→→  B  and g : B  →→→→  C , then 

the composite g   f is a 1 – 1 onto mapping from A to C.  In particular, if X is a set and we 
define a binary relation of “having the same cardinality” on P(X) to mean that |A|  =  |B|, 
then having the same cardinality defines an equivalence relation on P(X).  In such a 
setting, the cardinal number of a subset A may be interpreted as the equivalence class 
of all sets B which have the same cardinality as A.  This relation is actually independent 
of the choice of set X containing A and B, for if Y contains X then A and B determine the 
same equivalence class in  P(X)  if and only if they determine the same equivalence 
class in  P(Y). 
 

The restriction to subsets of a given set is awkward, but some restrictive condition is 
needed and we have chosen one that is relatively simple to state.  Initially, many 
mathematicians and logicians including Cantor, B. Russell and G. Frege (1848 – 1925), 
attempted to define the cardinal number of a set X as the equivalence class of all sets Y 

that can be put into a 1 – 1 correspondence with X, but a definition of this type cannot be 
made logically rigorous because the family of all such objects is “too large” to be a set. 

 
Finite and infinite sets 

 
For finite sets, the notion of cardinality has been understood for thousands of years.   
 

Definition.  If n is a positive integer, then a nonempty set X has cardinal number equal 

to  n  if there is a 1 – 1 correspondence between X and { 0, ... , n – 1 }.   By the results 

of Section V.3, it follows that there is at most one n such that a set has cardinal number 
equal to n.   The definition is extended to nonnegative integers by taking the cardinality 

of the empty set to be 0.  We say that a set X is finite if it has cardinal number equal to 
n for some n and that X is infinite otherwise. 
 

Cantor’s important  —  and in fact revolutionary  —  insight was that one can define 
transfinite cardinal numbers to measure the relative sizes of infinite sets.  

  
Partial ordering of cardinalities 

 
Definition.   If A and B are sets, we write |A|  ≤  |B|, and say that the cardinality of A is 

less than or equal to the cardinality of B if there is a 1 – 1 map from A to B. 
   

The notation suggests that this relationship should behave like a partial ordering (in 
analogy with finite sets we would like it to be a linear ordering, but reasons for being 
more modest in the infinite case will be discussed later).  It follows immediately that the 
relation we have defined is reflexive (take the identity map on a set A) and transitive 
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(given 1 – 1 maps  f : A     →→→→  B and  g : B     →→→→  C, the composite g   f is also 1 – 1), but the 
proof that it is antisymmetric is decidedly nontrivial: 
  
Theorem 1. (Schröder – Bernstein Theorem.)  If A and B are sets such that there are 

1 – 1 maps  A  →→→→  B  and  B  →→→→  A, then  |A|  =  |B|. 
  
Proof. (∗∗∗∗∗∗∗∗)   We shall give the classic argument from the (third edition of the) book by G. 
[= Garrett] Birkhoff (1911 – 1996) and S. MacLane (1909 – 2005) cited below; the 
precise reference is page 340. 
 

G. Birkhoff and S. MacLane, A Survey of Modern Algebra. (Reprint of the 
Third 1968 Edition).  Chelsea Publishing, New York, NY, 1988.  ISBN: 0 – 
023 – 74310 – 7. 

 

Let f : A  →→→→  B and g : B  →→→→  A be the 1 – 1 mappings which exist by the assumptions.  

Each a  ∈∈∈∈  A is the image of at most one parent element b  ∈∈∈∈  B such that a  =  g(b); in 

turn, the element b (if it exists) has at most one parent element in A, and so on.  The 
idea is to trace back the ancestry of each element as far as possible.  For each point in 
A or B there are exactly three possibilities:  
 

1. The ancestral chain may go back forever.  
 

2. The ancestral chain may end in A.  
 

3. The ancestral chain may end in B. 
 

We can then split A and B into three pairwise disjoint pieces corresponding to these 
cases, and we shall call the pieces A1, A2, A3 and B1, B2, B3 (where the possibilities are 
ordered as in the list). 
  

The map f defines a 1 – 1 correspondence between A1 and B1 (and likewise for g).  

Furthermore,  g defines a 1 – 1 correspondence from B2 to A2, and f defines a 1 – 1 

correspondence from A3 to B3.  If we combine these 1 – 1 correspondences A1     ↔↔↔↔  B1, 

A2     ↔↔↔↔  B2, and A3     ↔↔↔↔  B3, we get a 1 – 1 correspondence between all of A and all of B.���� 
 
Here is an immediate consequence of the Schröder – Bernstein Theorem: 
 

Proposition 2.  If A is an infinite subset of the nonnegative integers NNNN, then | A |  =  | NNNN |. 
 

Proof.  (∗∗∗∗)   We shall define a 1 – 1 mapping from NNNN to A recursively; the existence of 

such a map will imply | A |  ≤  | NNNN |.  Since  A  is a subset of  NNNN  we also have the reverse 

inequality | NNNN |  ≤  | A |, and therefore  | A |  =  | NNNN |  by the Schröder – Bernstein Theorem. 
 

Since NNNN is well – ordered, it follows that every nonempty subset of A has a least 

element.  Define f recursively by setting  f(0) equal to the least element of A, and if we 

are given a partial 1 – 1 function gn: { 0, … , n – 1 }  →→→→        A, extend the definition to the 

set { 0, … , n }  by noting that the image of gn is a proper subset of A (which is infinite) 

and taking g n + 1 (n) to be the first element in  A  –  Image ( gn ).  The increasing union of 

these functions will be the required function from NNNN to A.  It is 1 – 1 because it is 1 – 1 

on each subset { 0, … , n – 1 }; if f( x )  =  f( y ), then there is some n such that x and y 

both belong to { 0, … , n – 1 }, and therefore it follows that x and y must be equal.���� 
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Definition.  A set is countable if it is in 1 – 1 correspondence with a subset of the 

natural numbers, and it is denumerable if it is in 1 – 1 correspondence with the natural 
numbers.  However, many writers also use countable as a synonym for denumerable, so 
one must be careful.  Frequently one also sees the phrase “countably infinite” 
employed as a synonym for denumerable. 
 

Following Cantor, it is customary to denote the cardinal number of the natural numbers 

by ℵℵℵℵ0 (verbalized as aleph – null). 
 

The next result generalizes a simple fact about cardinal numbers from finite sets to 
countable sets. 
 

Proposition 3.  Suppose that A is a nonempty countable set and there is a surjective 
mapping  f  from  A  to  B.  Then  B  is also countable, and in fact  | B |  ≤  | A | . 
 

Proof.    By hypothesis there is a 1 – 1 correspondence between A and a subset of the 

nonnegative integers NNNN, and thus one can use the standard ordering of the latter to 

make A into a well – ordered set.  Define a function  h : B →→→→ A  as follows:  Given a 

typical element b  ∈∈∈∈  B, take h( b ) to be the least element in the inverse image f 

–
 

1
 [ { b } ].  

Then by definition we have f   h( b )  =  b.  The result will follow from the Proposition  2 

provided we can show that  h is a 1 – 1 mapping, and this holds because  h( x )  =  h( y )  
implies x  =  f   h( x )  =  f   h( y ) =  y.���� 

 

 

 

VI .3 :      Countable and uncountable sets 
 

 

(Halmos, §§ 23 – 23;  Lipschutz, §§ 6.3 – 6.7) 
 
 
A theory of transfinite cardinal numbers might not be particularly useful if all infinite sets 
had the same cardinality.  In the first paragraphs of this unit we indicated that the 

cardinalities of RRRR and NNNN are different, and the goal of this section is to prove this result.  

The first step in this process is to extend some basic arithmetic operations on NNNN to 

arbitrary transfinite cardinal numbers. 

  
Binary operations on cardinal numbers 

 
One can perform a limited number of arithmetic operations with cardinal numbers, but it 
is necessary to realize that these do not enjoy all the familiar properties of the 
corresponding operations on positive integers.  Before doing so, it is convenient to 

introduce a set – theoretic construction which associates to two sets A and B a third set 
which is a union of disjoint isomorphic copies of A and B.  Formally, the disjoint sum (or 
disjoint union) is defined to be the set 

 

A  | |  B   =   A ×××× {1}  ∪∪∪∪  B ×××× {2} 
 



 

 133

and the standard injection mappings  iA : A   →→→→   A | |    B  and  iB : B   →→→→   A | | B  are 
defined by  
 

iA (a)  =  (a, 1)      and       iB (b)  =  (b, 2) 
 

respectively.  By construction, we have the following elementary consequences of the 
definition: 
 

Proposition 1.   Suppose that we are given the setting and constructions described 
above. 
 

(1)  The injection maps iA and iB   determine 1 – 1 correspondences jA from A  

to  iA [A] and jB from B  to  iB [B]. 
 

(2)  The images of A and  B are disjoint. 
 

(3)  The union of the images of A and  B  is all of  A  | |     B . 
 

The proof of this result is fairly simple, but we shall include it for the sake of 
completeness and because it is not necessarily easy to locate in the literature. 
 

Proof of (1).  The sets iA [A] and iB [B] are equal to A ×××× {1}  and  B ×××× {2} respectively, 

and we have jA (a)  =  (a, 1) and jB (b)  =  (b, 2).  It follows that inverse maps are given by 
projection onto A and B respectively.���� 
 

Proof of (2).  The first coordinate of an element in the image of iA is equal to 1, and the 
first coordinate of an element in the image of iB is equal to 2.  Therefore points in the 
image of one map cannot lie in the image of the other.����  
 

Proof of (3).  Clearly the union is contained in A  | |     B .  Conversely, if we are given a 
point in the latter, then either it has the form (a, 1)  =  iA (a)  or (b, 2)  =  iB (b).����   
 
Definition. (Addition of cardinal numbers).  If A and B are sets with cardinal numbers 

|A| and |B| respectively, then the sum  |A| + |B| is equal to | A  | |     B |. 
 
Definition. (Multiplication of cardinal numbers).  If A and B are sets with cardinal 

numbers |A| and |B| respectively, then the product   |A| ×××× |B| = |A|⋅⋅⋅⋅|B| = |A|  |B| 

is equal to | A ×××× B |. 
 

Definition. (Exponentiation of cardinal numbers).  If A and B are sets with cardinal 

numbers |A| and |B| respectively, then the power operation |A|
|B|

 is equal to | A 

B
 |, 

where  A 

B  denotes the set of functions from B to A (as in Unit I V). 
 

In order to justify these definitions we need to verify two things; namely, that [ i ] these 

definitions agree with the counting results Section V.3 if A and B are finite sets, and also 

[ i i ] that the construction is well – defined.  We have defined the operations by 
choosing specific sets A and B with given cardinal numbers, and we need to make sure 
that if choose another pair of sets, say C and D, then we obtain the same cardinal 
numbers.  The first point is easy to check; if A and B are finite sets, then the formulas in 

Section V.3 show that the numbers of elements in A  | |     B ,  A ×××× B ,  and A 
B are 

respectively equal to |A| + |B|,  |A|⋅⋅⋅⋅|B|  and  |A|
|B|

 .  The following elementary 

result disposes of the second issue. 
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Proposition 2.  Suppose that we are given sets A, B, C, D and we also have 1 – 1 

correspondences f : A  →→→→  C and  g : B  →→→→  D.   Then there are 1 – 1 correspondences 

from A | |    B ,  A ×××× B ,  and A 

B
  to  C | |    D ,  C ×××× D ,  and  C 

D
 respectively. 

 

Proof.  Define mappings 
 

H : A  | |     B   →→→→    C  | |     D ,    J : A ×××× B  →→→→  C ×××× D ,    K : A 
B
  →→→→  C 

D
 

 

by the following formulas: 
 

H(a, 1)    =    ( f(a), 1 ) ,     H(b, 2)  =  ( g(b), 2 ) 
 

J( a, b )    =   ( f(a), g(b) ) 
 

[ K(ϕϕϕϕ) ] ( c )  =  f   ϕϕϕϕ   g 

–
 

1
 ( c ) 

 

Define mappings in the opposite direction(s) 
 

L : C | |    D  →→→→  A | |    B ,      M : C ×××× D  →→→→  A ×××× B ,      N : C 
D
  →→→→   A 

B
 

 

by substituting  f –
 

1
,  g 

–
 

1
, and  g  for the variables f, g, and g 

–
 

1
 in the corresponding 

definitions of H, J and K respectively.  Routine calculations  (left to the reader)  show 
that the maps L, M and N are inverses to the corresponding mappings H, J and K.����  
 

We shall see that operations on transfinite cardinal numbers do not satisfy some of the 
fundamental properties that hold for integers; for example, we shall see below that an 

equation of the form x + y  =  x  does not necessarily imply that x  =  0.  However, here 
is one important relationship that does generalize: 
 

Proposition 3.  If A is a set then |P(A)|   =   2 
|A|

 . 
 

Proof.   We need to define a 1 – 1 correspondence χχχχ from P(A) to the set of functions 

from A to the set { 0, 1 }.  Given a subset B, its characteristic function XB : A  →→→→ { 0, 1 } 

is defined by XB (x)  =  1  if x  ∈∈∈∈  B and 0 otherwise.  The map sending a subset to its 

characteristic function is 1 – 1 because B   =  XB
 – 1

 [ {1} ], so that XB  =  XC  implies B   =  

XB
 – 1

 [ {1} ]   =  XC
 – 1

 [ {1} ]  =  C.  To see this is onto, let f : A  →→→→  { 0, 1 } and note that 

by definition we have f  =  XB where B   =  f – 1
 [ {1} ] .���� 

 

Finally, we have the following fundamentally important result due to Cantor. 
 

Theorem 4.  If  A  is a set then |A|  <  |P(A)|   =   2 
|A|

 . 
 

Proof. (∗∗∗∗)   Define a 1 – 1 mapping from  A  to  P(A)  sending an element a ∈∈∈∈    A  to the 

one point subset { a }.  This shows that |A|  ≤  |P(A)|.   
 

The proof that |A|  ≠≠≠≠  |P(A)| is given by the Cantor diagonal process.  Suppose that 

there is a 1 – 1 correspondence F: A  →→→→     {0, 1} 

A
.   The idea is to construct a new 

function  g ∈∈∈∈    { 0, 1 } 

A
 that is not in the image of F .  Specifically, choose g such that, for 

each a ∈∈∈∈    A , the value g(a) will be the unique element of { 0, 1 } which is not equal to  

[ F(a) ] (a) ;  recall that  F(a) is also a function from  A to { 0, 1 } and as such it can be 

evaluated at a.  Since the values of g and F(a) at a ∈∈∈∈    A are different, these two functions 

are distinct, and since  a  ∈∈∈∈        A  is arbitrary it follows that g cannot lie in the image of F.  
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However, we were assuming that F was onto, so this yields a contradiction.  Therefore 

there cannot be a  1 – 1  correspondence between A and P(A) .����   
 

Comments on the method of proof.  The reason for the name diagonal process is 

illustrated below when A is the set NNNN + of positive integers.  One assumes the existence 

of a 1 – 1 correspondence between NNNN + and P(NNNN +) and identifies the latter with the set of 

functions from NNNN + to {0, 1} in the standard fashion.  Then for each positive integer one 

has an associated sequence of 0’s and 1’s that are indexed by the positive integers, 
and one can represent them in a table or matrix form as illustrated below, in which each 

of the terms x j (where x is a letter and j is a positive integer) is equal to either 0 or 1. 
 

 
 

The existence of a 1 – 1 correspondence implies that all sequences appear on the list.  

However, if we change each of the bold entries (i.e., the entry in the nth row and nth 

column for each n) by taking 0 if the original entry is 1 and vice versa, we obtain a new 

sequence that is not already on the list, showing that P(NNNN +) cannot be put into 

correspondence with NNNN +
 and thus represents a higher order of infinity.����  

 

The preceding result implies that “there is no set of all cardinal numbers.”  Stated 

differently, there is no set S such that every set A is in 1 – 1 correspondence with a 

subset of S.  If such a set existed, then the set P(S) would be in 1 – 1 correspondence 

with some subset T  ⊂⊂⊂⊂     S,  and hence we would obtain the contradiction  
 

|P(S)|   =   |T|   ≤   |S|   <   |P(S)|.���� 
 

This observation is often called Cantor’s Paradox, and was noted by Cantor in 1899; it 
is very close to the original set – theoretic paradox that was discovered by C. Burali – 
Forti (1861 – 1931) a few years earlier and will be discussed in the next section. 

  
Some basic rules of cardinal arithmetic 

 
Addition and multiplication of cardinal numbers satisfy many of the same basic equations 
and inequalities that hold for nonnegative integers.  Here is a list of the most 
fundamental examples: 
 

Theorem 5.  The sum and product operations on cardinal numbers have the following 

properties for all cardinal numbers        αααα , ββββ and     γγγγ    : 
 

(Associative law of addition)        (αααα  +  ββββ)  +  γγγγ        =    αααα     +  (ββββ    +  γγγγ)     
 

(Commutative law of addition)        αααα  +  ββββ        =    ββββ  +  αααα     
 

(Associative law of multiplication)      (αααα⋅⋅⋅⋅ ββββ) ⋅⋅⋅⋅ γγγγ        =    αααα ⋅⋅⋅⋅ (ββββ⋅⋅⋅⋅ γγγγ)       
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(Commutative law of multiplication)        αααα ⋅⋅⋅⋅ ββββ        =    ββββ ⋅⋅⋅⋅ αααα 
 

(Distributive law)        αααα ⋅⋅⋅⋅ (ββββ    +  γγγγ)            =    (αααα ⋅⋅⋅⋅ ββββ)  +  (αααα ⋅⋅⋅⋅ γγγγ) 
 

(Equals added to unequals)    αααα  ≤≤≤≤     ββββ       ⇒⇒⇒⇒         αααα  +  γγγγ  ≤≤≤≤       ββββ  +  γγγγ 
 

(Equals multiplied by unequals)        αααα  ≤≤≤≤     ββββ       ⇒⇒⇒⇒         αααα ⋅⋅⋅⋅ γγγγ  ≤≤≤≤       ββββ ⋅⋅⋅⋅ γγγγ 
 

The verifications of all these equations and inequalities are extremely straightforward.  
For example, the commutative law of addition merely reflects the commutative law for 
set – theoretic unions, and the commutative law of multiplication reflects the existence of 

the canonical 1 – 1 correspondence from the Cartesian product A ×××× B to the analogous 

product with interchanged factors B ×××× A, which sends (a, b) to (b, a).   All the details are 

worked out on page 161 of Lipschutz.  These proofs do not use our formal definition for 
the sum of two cardinal numbers, but instead they use the following characterization: 
 

Lemma 6.  If X and Y are disjoint sets, then |X  ∪∪∪∪  Y|  =  |X| + |Y|.  Furthermore, if A and 
B  are arbitrary sets, then there exist sets X and Y such that |X|  =  |A|, |Y|  =  |B|, and 

also  X  ∩∩∩∩  Y  =  Ø. 
 

Proof.   The second part of the lemma follows from our disjoint union construction.  The 

first part will follow if there is a  1 – 1 correspondence H from X  | |     Y  to X  ∪∪∪∪  Y.  An 
explicit construction of such a map is given by H(x, 1)  =  x  and H(y, 2)  =  y.  Since the 

image of this map contains both X and Y, it follows that H is onto.  To see it is 1 – 1, 

note that the restrictions to X ×××× {1}  and  Y ×××× {2} are both 1 – 1 so the only way the map 

might not be 1 – 1 is if one has x  ∈∈∈∈  X  and  y  ∈∈∈∈  Y such that  H(x, 1)  =  H(y, 2).   The 
latter would imply that X and Y are not disjoint, and since we know they are disjoint it 

follows that there are no such elements x and y, so that H must also be 1 – 1 as 
required.���� 
 

Although arbitrary cardinal numbers satisfy many of the same basic equations and 
inequalities as nonnegative integers, it is important to recognize that some algebraic 
properties of the latter do not extend.  In particular, the results below prove that a  

cardinal number equation of the form αααα  +  ββββ  =  αααα does not necessarily imply ββββ  =  0.  

Similarly, an equation of the form αααα ⋅⋅⋅⋅ ββββ  =  αααα does not necessarily imply that either ββββ  =  1 

or  αααα  =  0.     

 
Identities and inequalities for cardinal numbers 

 
The following simple result illustrates a major difference between finite and transfinite 
cardinals: 
 

Proposition 7.  If  A  is finite, then  |A| + ℵℵℵℵ0   =   ℵℵℵℵ0. 
 

Proof.  If |A|  =  0 this is trivial.  Suppose now that |A|  =  1, and let a be the unique 

element of A.  Let NNNN be the natural numbers, and define a mapping h from  A | | NNNN  to  NNNN 

by setting h(a, 1)  =  0 and h(n, 2)  =  n + 1  for  n  ∈∈∈∈  NNNN.  By the Peano Axioms for the 

natural numbers, the restriction of h to NNNN ×××× { 2 } is injective, and its image is the set of all 
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positive integers.  Since h(a, 1) = 0, it follows that h is 1 – 1 and onto.  Therefore we 

have 1 + ℵℵℵℵ0  =  ℵℵℵℵ0.   
 

From this point on we proceed by induction on k  =  |A|.  Suppose we know the result in 

this case; we need to prove it is also true for |A|  =  k + 1.  This is an direct consequence 
of the following chain of equations: 
 

(k + 1) + ℵℵℵℵ0    =    (1 + k) + ℵℵℵℵ0    =    1 + (k + ℵℵℵℵ0)    =    1 + ℵℵℵℵ0    =    ℵℵℵℵ0 
 

This completes the proof of the inductive step and hence of the result itself.� 
  

The following standard identities involving ℵℵℵℵ0 were first noted by Galileo (thus is 
frequently known as Galileo’s Paradox) and Cantor respectively. 
 

Theorem 8. (Idempotent Laws).    We have ℵℵℵℵ0 + ℵℵℵℵ0   =   ℵℵℵℵ0  and  ℵℵℵℵ0 ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0. 
 

Proof.   Let NNNN be the nonnegative integers, and let N(0) and N(1) denote the subsets of 

even and odd nonnegative integers respectively.  Then the mappings sending n to 2 n 

and 2 n + 1 define 1 – 1 correspondences from NNNN to N(0) and N(1) respectively.  Since 

N(0)  ∪∪∪∪  N(1)   =   NNNN and N(0)  ∩∩∩∩  N(1)    =   Ø, it follows that 
 

ℵℵℵℵ0   =   |    NNNN    |   =   |    N(0)    |  +  |    N(1)    |   =   |    NNNN    |  +  |    NNNN    |   =   ℵℵℵℵ0 + ℵℵℵℵ0 
 

proving the first assertion in the theorem.   
 

To prove the second assertion, we shall first define a 1 – 1 mapping from NNNN ×××× NNNN to NNNN by 

defining an equivalent map from NNNN + ×××× NNNN + to  NNNN + by a diagonal construction due to 

Cantor (also see Halmos, page 92).  The following picture illustrates the idea behind the 

function’s definition; the explicit formula is  f(m, n)  =  ½ (m + n – 1)(m + n – 2) + m. 
 

 
 

 

(Source:  http://www.cut-the-knot.org/do_you_know/numbers.shtml ) 
   

A verification that f is 1 – 1  is sketched in the exercises.  We also have an easily 

defined 1 – 1 mapping in the opposite direction sending n  to  (n, 0).  We can now use 

the Schröder – Bernstein Theorem to prove the equality |    NNNN    |  =  |    NNNN ×××× NNNN    |, or equivalently 

that ℵℵℵℵ0 ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0.���� 

 

Corollary 9.  For each positive integer n we have n ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0  and  (ℵℵℵℵ0 ) 
n   =  ℵℵℵℵ0. 
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Proof.   The main result proves the result for n  =  2 , and it is trivial if n  =  1.   
 

The proof that the special case n  =  2 implies the general case can be done abstractly 
as follows:  Suppose that we are given any associative binary operation and an element 

a  such that  a 

2
  =  a.   Under this condition we claim that  a

n
  =  a  for all  n  >  1.  The 

case n  =  2 is given, so assume that the result is true for some  k  >  1.  Then we have  
 

a 

k
 

+
 

1
    =    a 

k
 a    =    a a    =    a 

 

completing the inductive step of the derivation.  We have written the binary operation 
multiplicatively, but of course we also could have written it additively, and thus the whole 
argument works for both addition and multiplication of cardinal numbers.���� 
 

We now have the following standard consequences.  
 

Proposition 10.  Let C be a countable family of sets, each of which is countable.  Then 

the countable union of the countable sets  $(C)  =  ∪∪∪∪ B ∈∈∈∈ C  B is also countable. 
 

Proof.   Let A be the set of all ordered pairs (x, B) such that x  ∈∈∈∈  B and B  ∈∈∈∈ C.  If we 

define g : A →→→→ $(C) by projection onto the first coordinate, then g is onto.  By Proposition 

3, it will suffice to prove that A is countable.  Let f : C →→→→ NNNN be a 1 – 1 mapping, and for 

each B ∈∈∈∈ C define a 1 – 1 mapping gB :  B →→→→ NNNN.  All these maps exist because C is 

countable and each subset B in C is countable.  Next, define a mapping h: A →→→→ NNNN ×××× NNNN  

by  h(x, B)  =  ( gB(x) , f(B) ) .  We claim that h is 1 – 1.  Suppose that we have h(x, B)  =  

h(y, D) .  By definition we then have f(B)  =  f(D) , and since f is 1 – 1 it follows that B  =  

D.  Once again using the definitions we see that gB( x )  =  gB( y ), and since gB is 1 – 1 it 

follows that x  =  y.  This completes the proof that  h  is 1 – 1, which implies the key 
assertion that A  is countable; as noted earlier in the discussion, this completes the 
proof.���� 
 

Proposition 11.  If ZZZZ and QQQQ are the integers and rational numbers respectively, then we 

have  |ZZZZ|  =  |QQQQ|  =   ℵℵℵℵ0 .  
 

The result for the integers was anticipated in Galileo’s writings on infinite sets, but the 
result regarding the rational numbers was something of a surprise to mathematicians 
when it was discovered by Cantor in the 1870s. 
 

Proof.    The standard inclusions NNNN   ⊂⊂⊂⊂  ZZZZ   ⊂⊂⊂⊂     QQQQ  imply a chain of corresponding 

inequalities  ℵℵℵℵ0   =   |NNNN|   ≤   |ZZZZ |   ≤      |QQQQ |.   Define a surjective mapping  NNNN    | |    NNNN →→→→    ZZZZ 

sending  (n, 1) to  n and (n, 2) to  – n.  By Theorem 8 it follows that  
 

| ZZZZ |   ≤         | NNNN    | |    NNNN |   =   ℵℵℵℵ0  +  ℵℵℵℵ0   =   ℵℵℵℵ0, 
 

so the result for |ZZZZ | follows from the Schröder – Bernstein Theorem.   
 

Next define a surjective mapping  ZZZZ ×××× (ZZZZ – {0})     →→→→            QQQQ  sending (a, b) to a/b.  We then 

have | QQQQ |   ≤      |    ZZZZ ×××× (ZZZZ – {0} ) |   ≤       ℵℵℵℵ0 ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0.  Once again the Schröder – 

Bernstein Theorem implies that |    QQQQ |   =   ℵℵℵℵ0.����     
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The next natural question concerns the cardinality of the set of the real numbers, and the 
result is again due to Cantor. 
  

Theorem 12.  If  RRRR denotes the real numbers, then its cardinality satisfies |RRRR|  =   2 
ℵℵℵℵ0  

and therefore we have  |RRRR|   >   ℵℵℵℵ0.  

 
Proof.   Usually this is derived using decimal expansions of real numbers, but we shall 
give a proof that does not involve decimals (although the idea is similar).  The idea is to 

construct 1 – 1 maps from RRRR to P(NNNN) and vice versa and then to apply the Schröder – 

Bernstein Theorem. 
 

Let D : RRRR  →→→→  P(QQQQ) be the Dedekind cut map sending a real number r to the set of all 

rational numbers less than r .  Since there is always a rational number between any two 

distinct real numbers, it follows that this map is 1 – 1.   Since | QQQQ     |  =   ℵℵℵℵ0 , it follows that 

there is a 1 – 1 correspondence from P(QQQQ) to P(NNNN),  and the composite of D with this 

map gives the desired 1 – 1 map from RRRR to P(NNNN). 
  

Let P∞∞∞∞(NNNN) denote the set of all infinite subsets of NNNN, and define a function from  P∞∞∞∞(NNNN)  

to RRRR as follows:  Given an infinite subset B, let  XB  be its characteristic function and 

consider the infinite series 
 

ΣΣΣΣB    =   ΣΣΣΣk  XB (k) ⋅⋅⋅⋅ 2 

–
 

k
 . 

 

This series always converges by the Comparison Test because its terms are 

nonnegative and less than or equal to those of the geometric series ΣΣΣΣk  2 

–
 

k
, which we 

know is convergent. Furthermore, different infinite subsets will yield different values 
(look at the first value of k that is in one subset but not in the other; if, say, k lies in A but 

not in B, then we have ΣΣΣΣA  >  ΣΣΣΣ B. Note that all these sums lie in the interval [0, 1] 

because ΣΣΣΣk  2
 – k  =  1. 

 

If A is a finite subset, consider the finite sum 
 

ΣΣΣΣB    =   2  +  ΣΣΣΣk  XB (k) ⋅⋅⋅⋅ 2
 – k

 . 
 

Once again it follows that different finite subsets determine different real (in fact, rational) 

numbers.  Furthermore, since the value associated to a finite set lies in the interval [2, 3] 
it is clear that a finite set and an infinite set cannot go to the same real number. 

Therefore we have constructed a 1 – 1 function from P(NNNN) to RRRR.����  
 

Since we have constructed 1 – 1 mappings in both directions, we can apply the 
Schröder – Bernstein Theorem to complete the proof. 
  

Finally, we prove another fundamental, well – known result about the cardinality of RRRR  

n
 :  

 

Theorem 13.   Given a set A, let A 

n denote the n – fold product of A with itself.  If  RRRR 

denotes the real numbers, then for all positive integers n we have |RRRR 

n|  =  |RRRR|. 
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One slightly nonintuitive consequence of this theorem is the existence of a 1 – 1 
correspondence between the points of the number line and the points on the coordinate 
plane.   Of course, these objects with all their standard mathematical structures are quite 
different, but the theorem says that they cannot be shown to be distinct simply by means 
of transfinite cardinal numbers. 
   

Using axiom(s) introduced in the next section, one can show that  n ⋅⋅⋅⋅ |A|  =  |A|  and  | A 

n
 |  

=  |A| as above for every infinite set  A  and positive integer n, but here we shall outline 
a direct and relatively standard argument which does not depend upon the additional 
axiom(s). 
 
Proof.  There are two parts to the proof.  The first is to verify the result when n  =  2 and 
the second is to show that the case n  =  2 implies the general case.  The argument to 
prove the latter is essentially the same as in the Corollary to the Idempotent Laws for the 

cardinal number ℵℵℵℵ0 (specifically, see Corollary 9). 
 

We now concentrate on the case n  =  2.  The argument is based upon the existence of 

a  1 – 1 correspondence  
 

{ 0, 1 } 

NNNN   →→→→  { 0, 1 } 

N(0)
 ×××× { 0, 1 } 

N(1)
 

 

sending a function NNNN  →→→→  { 0, 1 } to the ordered pair given by its restrictions to the even 

and odd natural numbers; clearly a function is completely determined by these 
restrictions, and conversely given functions on the even and odd natural numbers there 
is a unique way of assembling them into a function defined on all the natural numbers.  
This observation yields the cardinal number identity 
 

2
ℵℵℵℵ0    =    2

ℵℵℵℵ0  ××××  2
ℵℵℵℵ0 

 

and the validity of the theorem for n  =  2 follows from this and the previously established 

identity  |RRRR|  =   2
ℵℵℵℵ0 .���� 

 

Corollary 14.   We also have 2
ℵℵℵℵ0    =    2

ℵℵℵℵ0  +  2
ℵℵℵℵ0  and  2

ℵℵℵℵ0    =    ℵℵℵℵ0  ××××  2
ℵℵℵℵ0 . 

 
Proof.   These are consequences of the following chain of inequalities: 
 

2
ℵℵℵℵ0    ≤    2

ℵℵℵℵ0  +  2
ℵℵℵℵ0    ≤    ℵℵℵℵ0  ××××  2

ℵℵℵℵ0    ≤    2
ℵℵℵℵ0  ××××  2

ℵℵℵℵ0    =    2
ℵℵℵℵ0 ���� 

 
Remark.  The following generalizations of the usual laws of exponents also hold for 
cardinal numbers: 
 

Theorem 15.  (Transfinite Laws of Exponents).  If αααα,,,,  ββββ  and  γγγγ  are (finite or 

transfinite) cardinal numbers, then we have  γγγγ
 αααα

 

++++ ββββ            =            γγγγ αααα
 ⋅⋅⋅⋅  γγγγ

 ββββ
,,,,        ((((γγγγ 

αααα
 )))) 

ββββ            =            γγγγ 

αααα
 

ββββ
,  ,  ,  ,  and      

((((ββββ ⋅⋅⋅⋅ γγγγ)))) 

αααα
         =            ββββ 

αααα
 ⋅⋅⋅⋅ γγγγ 

αααα
 .    

 

The last two equations follow from the 1 – 1 correspondences for function sets that were 

discussed in Section I V. 5 (see Theorem I V. 5.7), and the proof of the first follows from 

the analogous 1 – 1 correspondence between C 
A

  

| |    
  

B
 and C 

A
 ×××× C 

B
 ,  a special case of 

which was discussed in the proof of Theorem 13 in this section.����  
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Applications to transcendental numbers 

 
Cantor was led to develop set theory in his study of some basic questions about 
trigonometric series, and a few years after beginning this work he found a striking 
application to a longstanding problem of independent interest.  We begin with the 
definitions needed to formulate the problem.  
 

Definition.  Let x be a real number.  Then x is said to be algebraic if there is a nontrivial 

polynomial with rational coefficients (equivalently, integral coefficients; cf. the next 
paragraph) for which x is a root.  A real number is said to be transcendental if it is not a 
root of any such polynomial. 
 

Since every polynomial over the rational numbers can be written as an integral 
polynomial divided by a nonzero integer, it follows that a number is a root of a nontrivial 
polynomial over the rational numbers if and only if it is a root of a nontrivial polynomial 

over the integers. 
 

Lemma 16.  If x and y are real numbers such that x is rational and y is transcendental, 

then their sum x + y is transcendental. 
 

Proof.    Suppose that x + y is algebraic.  Then there is a nontrivial polynomial p with 

rational coefficients which has x + y as a root.  Dividing through by the (nonzero) 
coefficient of the highest degree term of p if necessary, we can assume that p is a monic 

polynomial.  Express this monic polynomial as  t 
n +  q( t ), where q has lower degree.  

Our hypotheses then imply that (x + y) 
n  +  q(x + y)  =  0.  By the Binomial Theorem we 

may rewrite this as y 
n + r( y )  =  0, where r( t ) is another polynomial of lower degree with 

rational coefficients.  This implies that y is algebraic, contradicting our original 

assumption, and hence the only possibility is that x + y must be transcendental.���� 

 

Corollary 17.  If there is at least one transcendental real number, then the cardinality of 

the set T of transcendental real numbers satisfies ℵℵℵℵ0   ≤   |T|. 
 

Proof.  Suppose that y is transcendental.  Then one can define a mapping from the 

rational numbers QQQQ to T sending x ∈∈∈∈ QQQQ  to x + y ∈∈∈∈ T.  This mapping must be 1 – 1 

because x + y  =  z + y implies x  =  z.���� 
 

In the next unit we shall prove a more general result about infinite cardinal numbers, but 
the preceding corollary gives us what we need for the time being. 
 

In order to compare the algebraic and transcendental real numbers, we need to know 
the cardinality of the former, and it is given by the following result: 
 

Theorem 18.  The set of all algebraic real numbers is countably infinite. 
 

Proof. (∗∗∗∗)  Since the set of algebraic real numbers contains the integers, it will suffice to 
show that the set of algebraic numbers is countable.  For each positive integer n let A n 
be the set of all real numbers r such that r is a root of a polynomial of degree n with 
rational coefficients.  Since a countable union of countable sets is countable, it will 
suffice to show that each set A n is countable.   
 

Let Pn denote the set of all polynomials of degree n, and for each p  ∈∈∈∈  Pn  let  W(p) 
denote the set of real roots for p.  Basic results on roots of polynomials show that each 
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set W(p) is finite.  If we can show that |W(p)|  =  ℵℵℵℵ0 , it will follow that An is a countable 
union of the finite sets W(p), where p runs through the elements of Pn ,  and hence A n is 
countable. 
 

Now a polynomial in Pn has the form 
 

p(t)    =    an t
n  +  …  +  a1 t  +  a0 

 

where an  ≠≠≠≠     0, and hence it is completely determined by the coefficients of the powers 

of the indeterminate, say t, ranging from 0 to the degree, which in this case is n.  This 

means there is a canonical 1 – 1 correspondence between Pn  and (QQQQ – {0}) ×××× QQQQ 
n 

(where as usual QQQQ denotes the rational numbers) which is given by taking the 

coefficients of t 

k
 as k runs from n to 0.  Now we know that  |QQQQ|   =  ℵℵℵℵ0 by Proposition 11, 

and we also know that  |QQQQ – {0}|  =  |QQQQ|  by Propositions 7 and 11, so that we have 

|W(p)|  =  (ℵℵℵℵ0  ) 

n
 

+
 

1
.  However, by Corollary 9 we also know that (ℵℵℵℵ0  ) 

k
   =  ℵℵℵℵ0  for all 

values of k, and this means that |W(p)|  =  ℵℵℵℵ0 must be true.  As noted before, this 
completes the proof of the theorem.���� 
 

Historical remarks on transcendental numbers.  It is not clear when mathematicians 
first considered the concept of a transcendental number, but various historical facts 
strongly suggest that this took place near the middle of the 17th century in connection 

with the results and viewpoints of R. Descartes (cf. page 343 of Burton).   A few years 

later, J. Gregory (1638 – 1675) tried to show that both ππππ and e were transcendental; 

however, his work had a small but irreparable error.  Leibniz also concluded that ππππ was 

transcendental but did not make a significant effort to prove this.  Several 18
th

 century 
mathematicians such as C. Goldbach (1690 – 1764), D. Bernoulli (1700 – 1782), J. H. 
Lambert (1728 – 1777), and A. – M. Legendre (1752 – 1833) had considered the 
possible existence of transcendental numbers, and there was a general agreement that 

numbers ππππ and e should be transcendental although it was not clear how one might 

actually prove these statements.   One important piece of evidence was the 

understanding at the time that some of the standard functions in calculus like  sin x  and 

e
x
 were not algebraic functions (i.e., there is no nontrivial polynomial in two variables 

such that P( x, f(x) ) is identically zero).  We shall discuss this point in greater detail 
below.   The existence transcendental numbers was first shown rigorously by J. Liouville 
(1809 – 1882) in the 1840s.  Probably the best known example arising from his work is 
the so – called Liouville constant : 
 

 
 

The following online sites provide further information about Liouville’s methods and 
results:  
 

http://planetmath.org/encyclopedia/ExampleOfTranscendentalNumber.html 
 

http://en.wikipedia.org/wiki/Liouville_number 
 

During the next few decades, proofs that e and ππππ were transcendental finally appeared; 
these results were due to C. Hermite (1822 – 1901) and F. Lindemann (1852 – 1939) 
respectively.  Many other easily constructed numbers have been shown to be 
transcendental numbers since the original results of Liouville, but there are still many 
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open questions that are very easy to state but seem unlikely to be answered in the near 
future.  The current state of affairs is summarized in the following online site: 

 

http://mathworld.wolfram.com/TranscendentalNumber.html 
 

The purpose of the preceding discussion is to put Cantor’s result on transcendental 
numbers into perspective.  At the time, the existence of such numbers had only recently 
been established, and the proofs required delicate manipulations of equations and 
inequalities.  In contrast, Cantor’s existence proof did not require any significant 
computations, but it also did not produce any explicit examples (although one can 
combine Cantor’s diagonal process argument with Liouville’s construction to describe an 
uncountable family of transcendental numbers).  We should note that currently known 
results are still not adequate to answer many very easily stated questions; for example, 

whether ππππ e or ππππ    + e is transcendental (however, we do know that at least one of these 
numbers is transcendental).   
 

Theorem 19. (Strong existence theorem for real transcendental numbers – 
Cantor).  The set of transcendental real numbers is nonempty, and its cardinality is 

equal to 2
ℵℵℵℵ0 . 

 

Proof.  As in the preceding discussion, the set of real numbers RRRR splits into a union of 

the disjoint subsets A of algebraic real numbers and T of transcendental real numbers.  

Thus we have |    RRRR |  =  |A| + |T|  =  ℵℵℵℵ0  +  |T|.   If T were empty we would have |    RRRR |  =  ℵℵℵℵ0, 

and we know this is false by the results of Section 4.  Therefore T must be nonempty, 

and by the lemma above it follows that there is a 1 – 1 mapping from A into T; let T0 

denote the complement of its image, so that |T|  =  |A| +  |T0|  =  ℵℵℵℵ0  +  |T0| .  Therefore 
we have  
 

|T|    =     ℵℵℵℵ0  +  |T0|    =     ℵℵℵℵ0  +  ℵℵℵℵ0  +  |T0|    =     ℵℵℵℵ0  +   |T|  =   |    RRRR |  =  2ℵℵℵℵ0 . 
 

We now indicate how one can use Cantor’s result to answer one of the questions at the 
beginning of these notes in the very strong informal sense: 
 

Almost every real number is transcendental.  In particular, if one “chooses a 
real number at random,” it will almost certainly be transcendental. 

 

Giving a mathematically precise definition of random choice is far beyond the scope of 
this course, but here is a discussion that can be made mathematically rigorous.  Let us 

agree to restrict attention to real numbers in the closed unit interval [0, 1].  Given a 
reasonable subset A of the latter (these will include all countable subsets), one would 
like to estimate the probability that an element of the interval chosen at random will 
belong to A.  If, say, we divide the interval into n nonoverlapping pieces of equal length, 

then the likelihood of choosing an element from one of the pieces should be just 1/n.  
More generally, if we are given a subinterval of length L then the likelihood of choosing a 
point from the subinterval should be L.   
 

How does this apply in our situation?  Suppose that B denotes the algebraic numbers in 

the closed unit interval, so that B is countable by our previous results.  Choose a 1 – 1 
correspondence with the natural numbers, and let m  >  0 be an integer.  For each n, let 

Jn be a subinterval of length 2 
–

 

(m
 

+
 

n)
 containing the nth point in B.  The likelihood that a 

chosen element will lie in B should be no greater than the likelihood that it will lie in the 
union of the intervals Jn and hence it should be no greater than the sums of the lengths 
of these intervals.  We can use a geometric series argument to see that the latter sum is 
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equal to  2 
1

 

–
 

m
.   Now m is arbitrary, so this means that the likelihood of randomly 

choosing an element from  B  is no greater than  2 
1

 

–
 

m  for every positive integer m, and 
hence (since it is nonnegative) this likelihood must be equal to zero.  Informally, this 
means that if we pick a number from the unit interval at random, it is almost certain to be 
a transcendental number.����  
 

Footnote on transcendental functions.  In the discussion above we have asserted 
that certain basic functions such as trigonometric functions and exponential functions are 
transcendental.  Since it is difficult to find statements or proofs of these facts written out 
explicitly, we shall explain how the proof for the usual exponential function follows from 
standard results on solutions to ordinary differential equations which are covered in 
lower division undergraduate courses and we shall give an online reference that 
considers the remaining elementary transcendental functions.  
 

The first step is fairly simple.  
 

Lemma 20.  Let f(x) be a continuous function on some interval.  Then f is transcendental 

if and only if for every positive integer m the (m + 1) 

2 functions x 

p 
·
 f ( x ) 

q  are linearly 

independent over the real numbers, where 0  ≤     p , q  ≤  m .   
 

Proof.  The (m + 1) 2 functions x 

p 
·
 f ( x ) 

q are linearly dependent over the reals if and 

only if there are coefficients c p, q which are not all zero such that  ΣΣΣΣ  c p, q x 

p 
·
 f ( x ) 

q  =  0.  
Thus if they are linearly dependent for some m, then there will be a nontrivial polynomial 

G( x, y )  =  ΣΣΣΣ  c p, q x 

p
 y 

q  such that  G( x, f(x) )  =  0.  Conversely, if we are given such a 

polynomial G and m is the highest power of x or y that appears, then it follows that the 

(m + 1) 

2 functions x 

p 
·
 f ( x ) 

q are linearly dependent over the real numbers. By the 
lemma, proving that the exponential function  e 

x  is transcendental amounts to showing 

that the functions  x 

p 
·
 e 

q
 

x  are linearly independent functions for 0  ≤     p , q  ≤  m, where 
m is an arbitrary positive integer.   One relatively quick way to see this is to notice that 
the functions in question all satisfy an Nth order homogeneous linear (ordinary) 
differential equation with constant coefficients  
 

D 

N
 y  +  a N – 1 D 

N
 

–
 

1
 y  +  …  +  a1 D y  +  a0 y  =  0 

 

where N  =  (m + 1) 

(m
 

+
 

1)
  and D 

k
 y denotes the kth derivative of  y.  Specifically, this is 

the equation for which the associated characteristic polynomial  
 

p(t)    =    a N t 

N
  +  a N – 1 t 

N
 

–
 

1
  +  …  +  a1 t  +  a0 

 

is given by the following product: 
 

p(t)    =    t 

m
 

+
 

1
 (t – 1) 

m
 

+
 

1
 …  (t – m) 

m
 

+
 

1
 

 

The linear independence of these solutions is a standard fact in the theory of ordinary 
differential equations, and in particular, the proof is described in Section 9.2 of the 
following representative textbook on the subject:  

 

W. F. Trench, Elementary Differential Equations.  Brooks/Cole (Thomson 
Learning), Pacific Grove CA, 2000. ISBN: 0–534–36841–7.  

 

More specific references for the proof are essentially the entire content of pages 453 – 
454 as well as Exercise 40 on page 457. 
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This linear independence result was essentially known in the 18th century to L. Euler 
(1707 – 1783), with some refinements of the concepts due to G. Monge (1746 – 1818) 
and A. – L. Cauchy (1789 – 1857).   
 

The online document   
 

http://math.ucr.edu/~res/math144/transcendentals.pdf 
 

establishes similar results for the other so – called elementary transcendental 
functions that are studied in precalculus and calculus, and it provides some additional 
general perspective on determining when a function is algebraic or transcendental.  
Since the cited document uses material on extension fields from advanced 
undergraduate and beginning graduate courses, it is included mainly for reference 
purposes; although the main results are extremely well – known, it is extremely difficult 
to find a reference in which the various functions are actually proven to be 
transcendental.  

 
Cardinal number problems for further consideration 

 
Here are some natural questions that arise in connection with the results of this section.  
Some involve generalizations of these results, and others are simple questions about the 
arithmetic and ordering properties of cardinal numbers. 
 

1. Is the partial ordering of cardinal numbers a linear ordering? 
 

2. Is ℵℵℵℵ0 the smallest transfinite cardinal number? 
 

3. If A is an infinite set, does it follow that the idempotent identities 

|A| ⋅⋅⋅⋅ |A|  =  |A|  and  |A| + |A|  =  |A|  always hold? 
 

4. If there is a surjection from A to B, does it follow that |B|  ≤  |A|?  
 

5. Given a cardinal number αααα, is there a unique minimal cardinal 

number ββββ    such that ββββ        >        αααα? 
 

Most of these seem likely, and the final question is closely related to Cantor’s 
terminology for transfinite cardinal numbers.  For example, if the answers to this 

question and the first one are yes, then one can define  ℵℵℵℵ1 to be the unique minimal 

cardinal number strictly greater than  ℵℵℵℵ0 ,  then take  ℵℵℵℵ2 to be the unique minimal 

cardinal number strictly greater than  ℵℵℵℵ1 , and so on.  
 

However, despite strong intuitive feelings that the preceding questions have affirmative 
answers, we are not yet equipped to answer such questions, and the material in the next 
two units is needed to provide answers.  Before introducing this material, we shall 
devote the next section to a discussion of some ways in which Cantor’s theory of sets 
was a radical departure from previous views of infinite objects in mathematics.   
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VI .5 :     The impact of set theory on mathematics  
 
 
Given the routine use of set theory throughout modern mathematics, it is easy to 
overlook the precedent – shattering nature of Cantor’s legacy.  The rest of this section 
provides some historical perspective. 
 

It is not known exactly when questions about the concept of infinity first arose, but the 

well – known paradoxes due to Zeno of Elea (c. 490 – 430 B. C. E) indicate that ancient 
Greek philosophers and mathematicians recognized that difficulties arise when one 
attempts to discuss the infinite.  The writings of Aristotle (384 – 322 B. C. E.) provided an 
effective way of confronting such questions by arguing that there were two kinds of 
infinity.  
 

1. Actual infinity, or completed infinity, which Aristotle believed could not exist, is 
endlessness fully realized at some point in time. 
  

2. Potential infinity, which Aristotle maintained was manifest in nature — for 
example, in the unending cycle of the seasons or the indefinite divisibility of 
measurements — is infinitude spread over unlimited time and space.  

 

This fundamental distinction between potential and actual infinity persisted in European 
mathematics for more than 2000 years.  
 

However, the adoption of this distinction did not mean that speculation about infinity was 
absent from all of mathematics during that time.  Speculations about infinity appeared in 
classical Indian mathematics, particularly in the writings of Bhaskara (also known as 

Bhaskara I I or Bhaskaracharya, 1114 – 1185).   By the end of the Middle Ages, various 
scientific, philosophical and theological questions about infinity received considerable 
attention in Europe as well as India and China.  Many of the mathematical advances 
concerned summations of infinite series.  With hindsight, it is apparent that the 
summation formulas for many series obtained during these centuries showed that the 
concept of completed infinity could be mathematically meaningful, at least in some 
contexts.   Certain basic paradoxes and puzzles arose and provided further evidence 
that actual infinity was not an issue to be dismissed easily.  Specific problems arise from 

many standard 1 – 1 correspondences between infinite sets and certain proper subsets; 
for example, between the nonnegative integers and the even nonnegative integers.  
These constructions seemed to contradict a commonsense idea that appears in Euclid: 
The whole is always greater than any of its (proper) parts.  The writings of Galileo 
(G. Galilei, 1564 – 1642) on such problems were the first to suggest a more enlightened 
attitude toward the infinite; in particular, he proposed that “infinity should obey a different 
arithmetic than finite numbers.”   We have seen that one version of Galileo’s idea plays 
an important role in Cantor’s work.  However, during the nearly three centuries between 
Galileo and Cantor, mathematicians managed to avoid confronting questions about 
infinity for the most part.  By confining their attention to Aristotle’s potential infinity, 
mathematicians were able to address problems and develop crucial concepts including 

infinite series, limit, and infinitesimals [sic], and thus to develop calculus without having 
to grant that infinity itself was a mathematical object.  In fact, early in the 19th century the 
highly eminent mathematician C. F. Gauss (1777 – 1855) expressed his “horror of the 
actual infinite” in the following terms: 
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I protest most vehemently against the use of infinite magnitude as 
something completed, which is never permissible in mathematics. The 
infinite is merely a figure of speech, the true meaning being a limit which 
certain ratios approach as closely as we wish, while others may be 
permitted to increase beyond all bounds. 

 

Even Cantor admitted that considering infinite sets as single entities — not as merely 
going on forever but as completed objects — was a concept to which he had been 
“logically forced, almost against my will.”  This erasing of the distinction between 
potential and actual infinities was “in opposition to traditions that had become valued.”  
 

Cantor’s ideas generated considerable opposition and controversy for several reasons.  
For many mathematicians, the sets themselves were less disturbing than the uses to 
which Cantor put them; some mathematicians were particularly uneasy with Cantor’s 

proof showing that “almost every” real number is transcendental; i.e., they are not roots 
of polynomial equations with rational coefficients.   As noted in the discussion of Cantor’s 
result, a considerable amount of intricate calculation is needed to prove that there are 

transcendental numbers and to verify the “obvious facts” that familiar numbers like e 

and ππππ are transcendental.  Cantor’s existence proof required no significant computations 
at all, and in some respects it looks as if one is getting something for nothing.  Of course, 
one reason the argument is so simple is that it does not provide any way of deciding 
whether a given number is algebraic or transcendental. 
 

Cantor's result on transcendental numbers was the first important example of what has 
come to be called a pure – existence proof.  Giving not the slightest hint of how to 
construct even a single transcendental number, it established the existence of a host of 
such numbers by proving that it would be contradictory for them not to exist.  Once again 
the basic issue is infinity.   A proof by reductio ad absurdum  that establishes the 
existence of an object in a finite set is perfectly acceptable to any mathematician; in 
principle, one can always produce the object by checking all the members of the set.  
 

But the same is not true for, say, the transcendental numbers, which belong to the 
infinite set of real numbers.  For this reason many mathematicians rejected Cantor’s 
proof completely, objecting that a contradiction was no substitute for a tangible example. 
   

In fact, some mathematicians were unwilling to accept Cantor’s entire approach, which 
challenged established mathematical principles like the previously mentioned avoidance 
of actual or completed infinity.  For example, H. Poincaré (1854 – 1912) expressed his 
disapproval in a statement that Cantor’s set theory would be considered by future 
generations as “a disease from which one has recovered.”  Much stronger criticism was 
voiced by L. Kronecker (1823 – 1891), who strongly maintained that the appropriate 
objects for mathematical study were those that could be realized in a fairly concrete 
fashion (for example, his views excluded transcendental numbers entirely). Such a 
perspective leaves little place for the explicit treatment of “actual infinity” that permeates 
Cantor’s work.   
 

On the other hand, not all leading mathematicians were opposed to Cantor’s ideas.  
Some highly eminent mathematicians such as G. Mittag – Leffler (1846 – 1927), K. 
Weierstrass (1815 – 1897), and long – time friend R. Dedekind supported Cantor’s ideas 
and defended them against his critics.  Aside from the revolutionary nature of Cantor’s 
ideas, another reason for reservations about them was that some key concepts were 
initially expressed in a somewhat imprecise fashion, and yet another was that some 
basic questions about manipulating infinite sets turned out to be far more challenging 



 

 148

than they seemed at first; some issues are discussed in the fourth paragraph of Section 
3.  Unfortunately, the strain of the controversy over Cantor’s work ultimately inflicted an 
extremely heavy toll on him, both personally and professionally.    
  

Of course, our use of Cantor’s ideas today and our presentation of his existence proof 
for transcendental numbers both indicate that his methods and results were increasingly 
accepted as mathematically valid (but in many cases this acceptance was reluctant).  In 
particular, during the years immediately following Cantor’s work, some mathematicians 
solved some other fundamental problems using pure, nonconstructive existence proofs; 
the most striking result of this sort called the Hilbert Basis Theorem was obtained by D. 
Hilbert (1862 – 1943) in 1889.   A statement of this result requires concepts well beyond 
the scope of this course, but for the sake of completeness here is an online reference to 
one fundamental but (relatively) elementary class of special cases: 
 

http://en.wikipedia.org/wiki/Hilbert's_basis_theorem 
 

Hilbert was one of the most influential mathematicians of his time, and his acceptance of 
Cantor’s work reflected the incorporation of set theory into the mainstream of 
mathematics.   The following frequently quoted statement states his position strongly but 
concisely:  No one shall expel us from the paradise that Cantor has created. 
 

Hilbert addressed concerns about increasing abstraction by stressing the vast amount 
that could be done if one adopts such an approach in contrast to the relatively limited 
amount that could be done if one does not.  To most mathematicians in the early 20th 
century, Hilbert’s formalist viewpoint offered an attractive viewpoint, and a largely 
dominant majority of present day mathematicians also take a modified formalist view 
towards the subject.  These modifications are necessary because of the fundamental 
incompleteness results due to K. Gödel that will be discussed in the next unit.  

 

 

 

VI . 6 :     Transfinite induction and recursion 
 
 

 

(Halmos, §§ 12 – 13, 17 – 20;  Lipschutz, §§ 8.1 – 8.9, 8.12 – 8.13) 
 
 
This section has two objectives.  The first is to formulate concepts of  
 

(1)    proof by transfinite induction,   
 

(2)    definition by transfinite recursion,  
 

which apply to well – ordered sets that are larger than the nonnegative integers.  The 
second aim is to summarize the basic properties of ordinal numbers that are used most 
often in mathematics.   
 

The proofs of many crucial results on well – ordered sets are considerably less 
elementary than most of the material in these notes.  In particular, at several steps one 
needs slightly stronger versions of some axioms and definitions than we have stated in 
these notes.  Precise statements appear in the book by Goldrei cited at the beginning of 
the first unit of these notes; in cases where we have stated simplified versions of 
axioms, we have done so for the sake of clarity and because the simpler versions are 
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adequate for nearly everything one wishes to do in other branches of mathematics.  
Finally, for most mathematical purposes the theory of well – ordered sets are mainly 
significant as means to some other end, and such objects play less of direct role in other 
branches of mathematics than the other material discussed in these notes.  For these 
reasons, we shall not attempt to give all the details of the more complicated proofs 
here, but instead we shall describe some of the arguments and give references to the 
book by Goldrei.  None of the subsequent material in these notes will depend upon 
the results that are stated without complete proofs. 
 

Given the relative difficulty of some material in this section, the following suggestions 
might be helpful.   The most important thing to do is to concentrate on understanding the 
definitions and statements of the main results.  This should provide enough information 
to read the remaining sections in these notes.  When these points are understood, a 
natural second step is to understand the outlines and main ideas of the proofs well 
enough to be able to summarize or explain them.  For the purposes of this course, the 
final level of mastery is to have a full understanding of all the steps in the proofs.   
 

Traditionally the elements of a well – ordered set are denoted by expressions involving 
nonnegative integers and Greek letters, and we shall follow this convention here. 
 
Notational conventions.  Suppose that X is a well – ordered set.  The least element of 
X will be denoted by 0 or by 0 X when it is necessary to stress the dependence upon X.  

If αααα        ∈∈∈∈     X,  the initial segment associated to αααα    is the set of all β β β β such that  β  β  β  β  <            αααα    ,     and it 

is denoted by  [0, αααα)  or less ambiguously by  [0, αααα) X .  Likewise, we define the closed 

interval  [0, αααα]  to be the set of all  β β β β such that  β  β  β  β      ≤            αααα    .      Given a well – ordered set  X, 

its immediate successor X + 1 is the set X  ∪∪∪∪  { X } with the original well – ordering on X 

and the added element X strictly greater than every αααα        ∈∈∈∈     X.  Recall that we have 
constructed set theory so that no set will be a member of itself, and thus it follows that X 

is distinct from each  αααα    ∈∈∈∈     X.   

 
Transfinite induction and recursion 

 
Transfinite induction is an adaptation of proof by mathematical induction to include 
(large) well-ordered sets.  Before describing this principle it will be useful to make the 
following elementary observation. 
 

Proposition 1.  Let X be a well – ordered set, and let αααα ∈∈∈∈ X.  Then exactly one of the 
following is true: 
 

(1) There is a  ββββ  ∈∈∈∈  X  such that αααα is the first element in X that is strictly larger than 

ββββ, and αααα is not the least upper bound of all elements of X that are strictly less 

than αααα. 
 

(2) For each ββββ such that  ββββ  <  αααα  there is some γγγγ ∈∈∈∈ X such that ββββ  <  γγγγ  <  αααα, and αααα is 

the least upper bound of all elements of X that are strictly less than αααα    . 
 

Proof.  If the first holds, then ββββ is the least upper bound of all elements of X that are 

strictly larger than αααα    .  Suppose now that the second holds.  Clearly αααα is an upper bound 

for the set in question.  To see that it is the least upper bound, note that if  ββββ  <  αααα     then ββββ 

cannot be an upper bound because there is always some  γγγγ     such that  ββββ  <  γγγγ  <  αααα.���� 
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Notation.  Elements of the first type are called (immediate) successor elements (and 

one often writes αααα  =  ββββ + 1 or αααα  =  ββββ
+
 in this case), and elements of the second type are 

called limit elements. 
 

We now proceed to the main results. 
 

Theorem 2  (Principle of transfinite induction).   Let X be a well – ordered set, and 

suppose that for each αααα  ∈∈∈∈     X we are given a statement  S(αααα)  such that the following 
conditions hold: 
 

(1)   If  0X  denotes the unique minimum element of X, then  S(0X) is true. 
 

(2)   For each ββββ     in X, if  S(γγγγ)  is true for all  γγγγ  <  ββββ,  then  S(ββββ)  is also true. 
 

Then  S(αααα)  is true for every αααα  ∈∈∈∈     X. 
 

Proof.  The argument is similar to the one for finite induction.  Suppose that at least one 

of the statements is false.  Then there is a unique minimum  αααα0  such that S(αααα0) is false.  

Since S(0X) is true we know that αααα0  ≠≠≠≠  0X and thus the set of all ββββ such that ββββ  <  αααα must 

be nonempty.  For each such ββββ the statement S(ββββ) is true, and therefore by the second 

condition we know that S(αααα0) is also true.  Now this contradicts our choice of αααα0, and the 

problem arises from our assumption that at least one of the statements S(αααα) is false.  
Thus all of the statements must be true.� 
 

In practice, the verification of the second condition often splits into two cases: One for 
successor elements (those which have an immediate predecessor), where the usual 

inductive approach can be applied to show that P(γγγγ) implies P(γγγγ    + 1), and the case for 
limit elements, which have no predecessor, and thus cannot be handled by such an 
argument. 
 

Typically, the case for limit ordinals is handled by noting that a limit element ββββ is the least 

upper bound of all elements γγγγ  <  ββββ and using this fact to prove P(ββββ) assuming that P(γγγγ) 

holds true for all  γγγγ  <  ββββ. 
 

Transfinite recursion is closely related to transfinite induction, but the latter is a method 
of proof and the former is a method of definition or of construction. The basic idea is 

fairly simple.  We start with a well – ordered set ΛΛΛΛ and specify the object for the zero 

(least element), then assuming we know how to define the object indexed by γγγγ    for every 

γγγγ  <  αααα, we use this partial function to find f ( αααα    ).  In a little more detail, one defines a 

family of objects indexed by the well – ordered set  X  —  say  Bαααα , for every αααα ∈∈∈∈    X, or 

perhaps every αααα less than some bound ξξξξ  —  by specifying three things: 
 

(1) What B0 is. 
 

(2) How to determine B αααα + 1 from Bαααα (or possibly from the entire sequence up to Bαααα). 
 

(3) For a limit element  αααα, how to determine Bαααα  from the sequence of previously 

determined B     γγγγ for γγγγ  <  αααα .  
 

Formally there is not much formal difference between the second and third items, but in 
practice they are so often distinct that it is useful to present them separately. 
 

Here is the formal statement. 
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Theorem 3. (Transfinite Recursive Definition Theorem.)  Suppose that X is a well – 
ordered set and B is a set which does not necessarily have any additional structure.  

Assume also that for  αααα    ∈∈∈∈     X  we have a function  H : B 

[
 

0,
 

αααα
 

)
  →→→→  B,  and let  z0 ∈∈∈∈ B.  Then 

there is a unique function f : X  →→→→ B  such that  f ( 0 )  =  z0 and for all positive n we have 
 
 

f( αααα    )  =  H( f | [ 0, αααα ) ). 
 

Proof.  The approach is parallel to the proof of the (Finite) Recursive Definition Theorem 

in Section V.2.  We first prove existence by defining a sequence of functions g αααα :  [ 0, αααα ]  

→→→→  B  which agree on the overlapping subsets, and then we construct a function g 
whose graph is the union of the graphs of the partial functions.  The uniqueness proof 

will then reduce to proving uniqueness for the restrictions to each subset [ 0, αααα ]. 
 

The function g0 : { 0 }  →→→→ B  is defined by g0 ( 0 )  =   z0.  Suppose we are given the 

functions g ββββ :  [ 0, ββββ ]  →→→→  B for β  β  β  β  <            αααα    , where one has the compatibility  g ββββ  =   g ββββ |  [0,  γγγγ]  

for  γγγγ            <            ββββ     .      Since  [0, αααα)  =  ∪∪∪∪         ββββ    <    α  α  α  α  [0, ββββ ]  it follows that we can define a function k αααα on 

the left hand side whose restriction to each subset  [0, ββββ ]  is g ββββ .  We can extend this to a 

function  g αααα  the closed interval  [0, αααα]  by setting  g αααα ( δδδδ    )  equal to  H( k αααα     ).   Let f be the 

function whose union is the graphs of the functions g αααα    for all αααα        ∈∈∈∈     X    .   By construction 
this function has the properties specified in the theorem. 
 

To conclude the proof, we need to show uniqueness.  Suppose that  f ′′′′  is an arbitrary 
function satisfying the given properties, and let  f  be constructed as in the previous 

paragraphs.  Suppose that f   ≠≠≠≠         f ′′′′.   By hypothesis both agree at zero, so there exists a 

unique minimal element  αααα  >  0  at which their values disagree.   In particular, the 

functions agree on the initial segment [0, αααα ), and thus by the displayed condition we 
have   
 

f (αααα)   =   H( f | [ 0, αααα ) )   =   H( f ′′′′ | [ 0, αααα ) )   =   f ′′′′(αααα), 
 

where the first equation is true by construction, the second is true by the minimality 

hypothesis on αααα,  and the third is true by the assumption on f ′′′′.   This contradicts our 

assumption that the two functions had different values at αααα    , , , , and it follows that there 

cannot be a point where the values of the two functions are unequal.� 

 
Comparison of well – ordered sets 

 
The following basic fact about well – ordered sets is extremely important for many 
purposes, and it illustrates the concept of definition by transfinite recursion. 
 

Theorem 4.  Let X and Y be well – ordered sets.  Then there exists a nondecreasing 

map  f : X →→→→    Y + 1  =  Y  ∪∪∪∪  { Y }  such that the following hold: 
  

(1) If  X 0  =  f 
–

 

1
 [Y],  then  f | X 0  is strictly increasing. 

 

(2) If  αααα  ∈∈∈∈        X 0, then  f  defines a  1 – 1 order – preserving correspondence between 

the initial segments  [0 X,    αααα )  and  [0 X, f(αααα) ). 

(3) If  f ( αααα    )  =  Y  ∈∈∈∈     Y + 1   =   Y  ∪∪∪∪  { Y }  then  f ( ββββ     )  =  Y and  f [ [0 X, αααα) ]  ⊃⊃⊃⊃    Y. 
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Proof.  We construct the map f by transfinite recursion, beginning with f ( 0X )  =   0Y.  

Suppose that αααα  >  0 X  and one has  g αααα =  f | [0,    αααα)  is defined with the given properties on 

[0,    αααα).  By construction, if  g αααα (ββββ)  ∈∈∈∈ Y  then     g αααα [ [0, β β β β) ]        ⊂⊂⊂⊂     Y.  There are now two cases.   
 

Case A.   g αααα (ββββ)  ≠≠≠≠     Y for all ββββ ∈∈∈∈ [0,    αααα).   CLAIM:  Either there is an upper bound for the 

image of g αααα  or else  g αααα ( [0,    αααα) )  =  Y  for some  ββββ  <  αααα.  If the second alternative is false, 

then  g αααα  is not onto, so let  γγγγ     be an element not in the image.  Furthermore, we claim 

that no  δδδδ satisfying  δδδδ  >  γγγγ  can be in the image.  If it were, then the second property 

would imply that γγγγ would also be in the image.  Therefore  γγγγ     must be an upper bound for 

the image of  g αααα.  Extend the definition of g αααα         to include  αααα     by taking g αααα (αααα) to be the 

least element of X that is not in the set  g αααα ( [0,    αααα) ) . 
 

Case B.   g αααα ( ββββ     )  =  Y for some  β β β β  <  αααα    .  In this case we extend the definition of  g αααα  to 

include  αααα  by setting  g αααα (αααα)  =  Y.      
    

Thus we have constructed a map  g αααα   on  [0,    αααα]  and it is an elementary exercise to 
show it has the desired properties.�     
 

The preceding result has the following important consequence; text references are page 
73 of Halmos and Theorem 8.10 on page 207 of Lipschutz. 
 

Theorem 5.  Let X and Y be well – ordered sets.  Then either there is a  1 – 1  order – 

preserving map from  X  to  Y  or else there is a 1 – 1 order – preserving map from  Y  to 
X.  In each case one can choose the mapping so that its image is an initial segment or 
the whole set. 
 

Proof.   Let f be as in the previous result.  There are two possibilities. 
 

Case A.  Suppose that f  [ X ]        ⊂⊂⊂⊂        Y.  —   In this situation there are two subcases.  If the 

image is equal to Y, then f is a 1 – 1 order – preserving correspondence between X and 
Y, so both options are realized in this case.  Suppose now that the image is a proper 

subset.  Then f defines a 1 – 1 order – preserving map from X to Y.  We claim that the 

image is in fact an initial segment.  Let γγγγ    be the least element of Y not in the image, and 

suppose that f ( ββββ     )  <   γγγγ.  By the previous result, we know that  f [ [0, β β β β) ]     ⊂⊂⊂⊂     Y,  and 

therefore it follows that the image of  f  is equal to  [0,    γγγγ).   
 

Case B.   Suppose that Y  ∈∈∈∈     f  [ X ] .  —  Let  γγγγ  be the least element in f  

–
 

1
 [ Y ] .  Then f 

defines a 1 – 1 order – preserving correspondence from [0, α α α α) to Y, and the inverse 

defines a similar map from Y to the initial segment [0, α α α α) of X.���� 

 
Types of well – ordered sets 

 
Definition.  If  (X,    ≤ X)  and  (Y,     ≤ Y)  are well – ordered sets,  then we shall say that they 

have the  same well – order type  if there is an order – preserving 1 – 1 correspondence 

from X to Y.  We frequently denote this relationship by | X,     ≤ X |   =   | Y,     ≤ Y |. 
 

It is probably not surprising that this relation is reflexive, symmetric and transitive, so we 
shall do so right away. 
 



 

 153

Proposition 6.   For every well – ordered set  (X,    ≤ X)  we have  | X,     ≤ X |   =   | X,     ≤ X |.  

Furthermore, if  (X,    ≤ X)  and  (Y,     ≤ Y)  are such that  | X,     ≤ X |   =   | Y,     ≤ Y | ,  then  | Y,     ≤ Y |   

=   | X,     ≤ X |.   Finally,  if  (X,    ≤ X) ,  (Y,     ≤ Y)  and  (Z,     ≤ Z)  satisfy  | X,     ≤ X |   =   | Y,     ≤ Y |   and  

| Y,     ≤ Y |   =   | Z,     ≤ Z |, then  | X,     ≤ X |   =   | Z,     ≤ Z |.   
 

Proof.   For every partially ordered set  (X,    ≤ X), the identity map  id X  is an order – 

preserving 1 – 1 correspondence from  X  to itself, so the relationship is reflexive.  

Similarly,  if we have  | X,     ≤ X |   =   | Y,     ≤ Y |  and f is the associated 1 – 1 correspondence 

from  X  to  Y, then its inverse is an order – preserving 1 – 1 correspondence from  Y  to  

X.   If in addition we have  | Y,     ≤ Y |   =   | Z,     ≤ Z |  with an associated 1 – 1 correspondence  

g  from X to Y, then the composite  g  f  is an order – preserving 1 – 1 correspondence 
from X to Z.���� 
 

Definition.  If  (X,    ≤ X)  and  (Y,     ≤ Y)  are well – ordered sets,  then we shall say that the 

well – order type of  (X,    ≤ X)  is smaller than or equal to the order type of  (Y,     ≤ Y)  if there 

is an order – preserving 1 – 1 map from X to Y whose image is an initial segment of Y.  

We frequently denote this relationship by  | X,     ≤ X |   ≤   | Y,     ≤ Y | .   
 

We shall show that the relationship in the preceding paragraph behaves like a linear 
ordering.  Most of the properties are easy to check, but proving the relationship is 

antisymmetric requires the following input (cf. Lipschutz, Theorem 8.9, page 207): 
 

Proposition 7.  Let X be a well – ordered set.  Then there is no 1 – 1 strictly increasing 

mapping from X to itself whose image is an initial segment [0, α α α α) for some α  α  α  α  ∈∈∈∈     X. 
 

Proof.   Suppose that there is such a map, and denote it by f.  Since f is not onto,  it  

cannot  be the identity.  On the other hand, by hypothesis we also have f( 0X )  =   0X.  

Therefore there must be a first β β β β such that f ( ββββ     )  ≠≠≠≠  β  β  β  β.  Since f ( γγγγ     )  =  γγγγ  for  γγγγ  <  β β β β     and  ββββ  

is the first element which is not in [0, β β β β), it follows that f ( ββββ     )   ≥         ββββ.  In fact, strict inequality 

hold because f ( ββββ     )  ≠≠≠≠  β  β  β  β.   Since  f ( ββββ     )  lies in the image of f, which is equal to [0, α α α α) , it 

follows that f ( ββββ     )  <   αααα    , and thus also that ββββ  ∈∈∈∈     [0, α α α α) so that ββββ lies in the image of f.  

Suppose that f ( γγγγ     )   =   ββββ.  What can we say about γγγγ?  First of all, it cannot be less than  

ββββ, for  γγγγ < ββββ  implies  f ( γγγγ     )  =  γγγγ  <  ββββ.  However, it also cannot be greater than or equal to 

ββββ, for then we must have  ββββ   <   f ( ββββ     )   ≤         f ( γγγγ     ) .  This is a contradiction, which we can 

trace back to our assumption about the image of f.  It follows that every strictly 
increasing mapping from the well – ordered set  X  to itself must be onto.� 
 

Theorem 8.  The relationship  ≤  on well – ordering types has the following properties: 
 

(1)   For every well – ordered set  (X,    ≤ X)  we have | X,     ≤ X |  ≤     | X,     ≤ X |.  

Furthermore, if the well – ordered sets  (X,    ≤ X) ,  (Y,    ≤ Y)  and  (Z,    ≤ Z) 

satisfy  | X,     ≤ X |  ≤     | Y,     ≤ Y |   and  | Y,     ≤ Y |  ≤     | Z,     ≤ Z |,  then  | X,     ≤ X |  ≤ 

    | Z,     ≤ Z |.    
 

(2)   If  (X,    ≤ X)  and  (Y,     ≤ Y)  are well – ordered sets such that     | X,     ≤ X |  

≤     | Y,     ≤ Y |  and  | Y,     ≤ Y |  ≤     | X,     ≤ X |,  then  | Y,     ≤ Y |   =   | X,     ≤ X |.    
 

(3)   If (X,    ≤ X) and (Y,     ≤ Y) are well – ordered sets, then we have either 

| X,     ≤ X |  ≤     | Y,     ≤ Y |  or  | Y,     ≤ Y |  ≤     | X,     ≤ X | . 
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Proof.  The proofs of the first assertions are similar to the corresponding arguments for 
order types.  For the reflexive property we can use the identity mapping on X, and for the 
transitivity property, we are given strictly increasing mappings f and g, and the required 
map from X to Z is the composite g  f.  The dichotomy property in the third assertion is 
an immediate consequence of Theorem 5 from the previous subsection.  Thus it only 
remains to prove the antisymmetric property which is stated in the second assertion. 
 

Suppose that     | X,     ≤ X |  ≤     | Y,     ≤ Y |  and  | Y,     ≤ Y |  ≤     | X,     ≤ X |,  and suppose that f : X →→→→    Y 

and g : Y →→→→     X are the strictly increasing mappings onto the whole set or an initial 
segment.  By the preceding result, the composite g  f is the identity mapping.  If we can 

prove that g is onto, then the conclusion will follow because then g will be a 1 – 1 onto 

order – preserving map, and hence we have | Y,     ≤ Y |   =   | X,     ≤ X |.   To verify that the 

mapping g is onto, let  x ∈∈∈∈    X  be arbitrary and note that g  f  =  id X yields x  =  g( f(x) ).���� 

 
Ordinal numbers 

 
Grammarians distinguish between two types of numbers in a language; namely, the 
cardinal numbers like one, two, three,  …   which we use to count objects, and the 
ordinal numbers like first, second, third,  …  which we use to order objects or concepts.  
Both notions of numbers are also present in set theory, and in fact Cantor introduced 
transfinite ordinal numbers before he introduced transfinite cardinal numbers. 
 

In set theory, the relationship between ordinal and cardinal numbers is not quite the 
same as it is in ordinary language, but the fundamental pairing of cardinals with counting 
and ordinals with ordering carries over.   We have seen that a cardinal number in 

mathematics in some sense corresponds to an equivalence class of sets in 1 – 1 
correspondence with each other.  One way of describing an ordinal number in 
mathematics is that in some sense it corresponds to an equivalence class of well – 
ordered sets.  More precisely, given two well – ordered sets ( A, <A ) and ( B, < B ), then 
we shall say that they have the same ordinal type (or represent the same ordinal 

number) if there is a 1 – 1 order preserving correspondence between them; i.e., there 

is a 1 – 1 correspondence f : A    →→→→ B  that is strictly increasing :   For all x and y,  x  <A  y  

implies f( x )  < B  f( y ) for all x and y in A.  It follows that the inverse map  f 
–

 

1
 : B →→→→    A   

will also be strictly increasing in this case. 
 

The simplest examples of well – ordered sets are given by subsets of the natural 
numbers; specifically, for each nonnegative integer n  we can take the well – ordered set 

with n elements given by { 0, …, n – 1 } or we can take the entire set of natural numbers.   
Not surprisingly, the example with n elements is denoted by n, and following Cantor the 

well – ordered set given by the natural numbers is generally denoted by ωωωω.  However, 
there are also many other examples that one can construct from these.  Perhaps the 

simplest one is the successor ωωωω    + 1, which as before is given by the union 
 

ωωωω        ∪∪∪∪     { ωωωω } 
 

with the original ordering on the elements of  ωωωω and the extra element ωωωω as a unique 
maximal element.  Of course, one can repeat this process and obtain a new successor 

set ωωωω    + 2  =  (ωωωω    + 1) + 1, and this can be taken further to define a sequence of well – 

ordered sets ωωωω    + n  for every positive integer n.   In fact, there are standard, general 
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arithmetic operations for constructing new well – ordered sets out of old ones.  The 
discussions on pages 75 – 77 and 81 – 85 of Halmos and Sections 8.10 – 8.12 on pages 
209 – 213 of Lipschutz provide both simple and complicated examples of how these 
constructions can be combined.   
 

Aside from the successor construction taking a well – ordered set X to its successor set 

X + 1, we shall not need the arithmetic operations on well – ordered sets in these notes.  
However, the previously cited discussions in Halmos and Lipschutz imply the existence 
of many inequivalent well – ordered sets that are countably infinite, and of course it 
would be helpful to have some comprehensive means for keeping track of such objects. 
 

The ordinal numbers will be a special class of well – ordered sets with the following 
crucial property:  Every well – ordered set has the well – ordering type of a unique 
ordinal number. 
 

Originally Cantor attempted to define ordinal numbers using the previously mentioned 
approach with well – ordering types of well – ordered sets.  However, the following 
definition due to J. von Neumann improves on Cantor’s approach in several respects 

and has become the standard mathematical description for ordinal numbers (e.g., it is 
the formulation appearing page 75 of Halmos; in contrast, the formulation on page 208 
of Lipschutz is essentially Cantor’s definition) : 
 

Definition.  A set S is an ordinal if and only if S is well – ordered with respect to set 

membership and every element of S is also a subset of S; in other words, x  ∈∈∈∈  S implies 

x  ⊂⊂⊂⊂  S.  The class of all ordinals (the ordinal numbers) will often be denoted by  ΩΩΩΩ; the 
standard form of the Axiom of Specification (which is slightly different from the one in 

these notes) implies that ΩΩΩΩ  is a class.  In Proposition 11 below shall prove that  ΩΩΩΩ  
cannot be a set (this is the Burali – Forti Paradox that we have previously mentioned). 
 

The motivation for this definition arises from a standard model for the Peano axioms 
in which each nonnegative integer n corresponds to an explicit set with exactly n 
elements:  
 

 0  is represented by the empty set S0  =   Ø. 
 1  is represented by the one element set S1  =   { Ø }. 

 2  is represented by the two element set  S2  =   { Ø,  { Ø } }  =  S1  ∪∪∪∪  { S1 }  

      3  is represented by the set  S3  =   { Ø,  { Ø },  { Ø, { Ø } } }  =  S2 ∪∪∪∪ { S2 } 
 

… 
 

 n  is represented by the n element set  S n  =  S n – 1 ∪∪∪∪ { S n – 1 } 
 

Each of the sets S n satisfies the definition of an ordinal, and the same is true of the 

union S ωωωω  =  ∪∪∪∪ n S n .  Additional motivation for the definition is that if S is an ordinal, then 

the successor set  S + 1  =  S  ∪∪∪∪ { S } is also an ordinal. 
 

Proposition 9.  If  S is an ordinal and  x  ∈∈∈∈  S, then  x  is also an ordinal. 
 

Proof.    By the basic condition on ordinals, x is a subset of S, and therefore y ∈∈∈∈ x 

implies y  ∈∈∈∈  S .  We need to show that x is well – ordered with respect to set 
membership and every element of x is also a subset of x.  If A is a nonempty subset of 

x, then the definition of ordinal number implies that A  ⊂⊂⊂⊂  x  ⊂⊂⊂⊂  S, and therefore the set  
A has a least element with respect to set membership because S is well – ordered.  Now 
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suppose that y  ∈∈∈∈  x ; to show that y  ⊂⊂⊂⊂  x we need to show that if z  ∈∈∈∈  y  then z  ∈∈∈∈  x .  

We claim that z  ∈∈∈∈  S ; if so, then all three of x, y and z lie in S, and since the ordinal S is 

linearly ordered by set membership we must have z  ∈∈∈∈  x .   
 

To prove that z  ∈∈∈∈  S , note that y  ∈∈∈∈  S by the preceding paragraph, and since S is an 

ordinal it follows that  y  is a subset of S, so that  z  ∈∈∈∈  S as required.����  

  
Fundamental properties of ordinal numbers 

 
The first result in this subsection might look as if it should be trivial, and it would be if we 

knew that the class of ordinals ΩΩΩΩ    was a set.  However, at this point we do not know 

whether this is true (and in fact Proposition 11 below will show that  ΩΩΩΩ  is not a set).  
 

Theorem 10.  If ΩΩΩΩ denotes the ordinal numbers with the relation given by set 

membership, then every nonempty subset in ΩΩΩΩ has a least element. 
 

Proof.    Let X be a nonempty set of ordinals, and let αααα        ∈∈∈∈            X.  Take Y to be the set of all 

β  β  β  β  ∈∈∈∈            Y such that β  β  β  β  ∈∈∈∈            αααα    .   If Y is empty, then αααα is the least element of X because X is 

linearly ordered by set membership.  If Y is nonempty, then Y is contained in αααα (using 
linear ordering again) and as such it has a least element.  Thus we have found a least 
element in both cases.� 
 

We have already noted that there is no “set of all ordinal numbers” just as there is no 
“set of all cardinal numbers.”  In fact, the paradox about ordinals was noticed by  C. 
Burali – Forti (1861 – 1931) a few years before Cantor discovered the analogous 
paradox about cardinal numbers.  
 

Proposition 11  (Burali – Forti Paradox).   The class  ΩΩΩΩ        of ordinal numbers is not a set.  
 

Proof.   Suppose that ΩΩΩΩ  is a set.  We claim that it is an ordinal; since we have shown 
that it is well – ordered with respect to set – theoretic membership, it follows that the 

latter describes a well – ordering on  ΩΩΩΩ     .  To prove the second condition for an ordinal, let  

S ∈∈∈∈ ΩΩΩΩ; we need to show that  S  ⊂⊂⊂⊂  ΩΩΩΩ,    or equivalently that x ∈∈∈∈ S implies x ∈∈∈∈ ΩΩΩΩ .  But 
this follows because every element of an ordinal is an ordinal.   
 

Since  ΩΩΩΩ  is an ordinal, it follows that  ΩΩΩΩ    + 1 is also an ordinal, and hence  ΩΩΩΩ    + 1 is an 

element of  ΩΩΩΩ .   By construction we have ΩΩΩΩ        ∈∈∈∈        ΩΩΩΩ    + 1,  and since ΩΩΩΩ    is an ordinal it 

follows that  ΩΩΩΩ        ∈∈∈∈        ΩΩΩΩ     , , , , which contradicts the Axiom of Foundation.  The contradiction 

arises from our assumption that  ΩΩΩΩ  is a set, and therefore the latter must be false.�  
 

The following basic fact has already been mentioned. 
 

Theorem 12 (Classification of Well – Ordered sets).   Let X be a well ordered set.  Then 

there is a unique αααα ∈∈∈∈ ΩΩΩΩ        for which there is a 1 – 1 order – preserving correspondence 

from X  to  αααα    . 
 

Sketch of Proof.   (See Goldrei, Theorem 8.2, pages 206 – 207, and Theorem 8.5, 
pages 212 – 213, for further details.)  We start with existence.  The idea is to construct a 

mapping from  X  to the ordinals by transfinite recursion such that for all  ββββ ∈∈∈∈    X,  the 
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function f maps [0, ββββ) in X to [ 0, f( ββββ     ) ) in  ΩΩΩΩ .  Eventually this process terminates when 

one runs out of elements in  X.   Since ΩΩΩΩ is not a set, there are elements of it that do not 

lie in the image of f, and if αααα is the first element not in the image of f, then the latter 

defines a 1 – 1 order – preserving correspondence from  X  to  αααα    .  
 

Uniqueness follows from our previous result that a well – ordered set cannot be in 1 – 1 
order – preserving correspondence with a proper subset of itself.���� 
 

The following existence result for least upper bounds is important for many purposes. 
 

Theorem 13.  Let  X  be a nonempty set of ordinals.  Then  X  has an upper bound (in 
the class of ordinals).   
 

Corollary 14.  In the above situation, the set  X  has a least upper bound. 
 

The corollary follows because the ordinals are well – ordered.���� 
 

Sketch of proof of upper bound theorem.   (See Goldrei, Theorem 9.4, page 209, or 

Halmos, the first four lines of page 80, for further details.)  Let $(X)    be the union of all 
ordinals in X.  To complete the proof, it is necessary to show that $(X) is an ordinal and 
that it is an upper bound for all the ordinals in X.  The second part uses the fact that two 

ordinals αααα    and        ββββ satisfy the condition  αααα    ∈∈∈∈        ββββ  if and only if  αααα        is a proper subset 

of        ββββ.        This fact is established in (solved) Exercise 8.6 on page 208 of Goldrei.���� 
 

Theorem 15.  (Hartogs’ Theorem.)   Given a set A, there is an ordinal ββββ such that there 

is no 1 – 1 mapping from ββββ into A. 
 

This result strongly suggests that for every set A there is an ordinal λλλλ for which we have 

the cardinal number inequality |A|  ≤  λλλλ.  This will follow from the results of the next 

section, but the proof is considerably less trivial than it might seem at first; the problem 

involves proving the existence the 1 – 1 function from A  to  ββββ    whose existence may 
seem intuitively clear. 
    

Notes.  We have followed Goldrei in calling this result Hartogs’ Theorem, but we must 
add a  STRONG WARNING  that  usually “Hartogs’ Theorem” refers to a major result in 
the theory of functions of several complex variables due to F. Hartogs (1874 – 1943).   

    

Proof of Hartogs’ Theorem on Ordinals.   We shall only sketch the argument; the 
details appear in the proof of Theorem 8.19 of Goldrei on pages 224 – 225 of the latter. 
 

The first crucial observation is that there is a set U of well – ordered sets such that if W 

is a well – ordered set supporting a 1 – 1 mapping into A, then W is in 1 – 1 order – 
preserving correspondence with some well – ordered set in U.  To see this, note that 

every such W is in 1 – 1 order – preserving correspondence with a subset of A and thus 

the collection of such subsets with well – orderings is in 1 – 1 correspondence with a 

subset of the set P(A) ×××× P(A ×××× A). 
 

Each well – ordered set corresponds to a unique ordinal number, so let V be the set of 
all ordinal numbers which correspond to the well – ordered sets in U.  By Theorem 13 
above we know that V has an upper bound, and of course there are also ordinals which 
are strictly larger than this upper bound.  Every such ordinal fulfills the condition in the 
conclusion of the theorem, for each such ordinal is greater than all the ordinals that 

admit 1 – 1 mappings into A.���� 
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VI I :  The Axiom of Choice and related properties 
 

 
Near the end of Section V I.4 we listed several basic questions about transfinite cardinal 
numbers, and we shall restate them here for the sake of convenience:  
 

1. Is the partial ordering of cardinal numbers a linear ordering? 

2. Is ℵℵℵℵ0 the smallest transfinite cardinal number? 

3. If A is an infinite set, does it follow that the idempotent identities 

|A| ⋅⋅⋅⋅ |A|  =  |A|  and  |A| + |A|  =  |A|  always hold? 

4. If there is a surjection from A to B, does it follow that |B|  ≤  |A| ?  

5. Given a cardinal number αααα    , is there a unique minimal cardinal 

number  ββββ        such that  ββββ    >    αααα? 
 

One purpose of this section is to discuss the issues that arise when one studies such 
questions, and the overall answer may be summarized as follows: 
 

If certain valid constructions and operations for subsets of the natural 

numbers NNNN can be extended to arbitrary sets, then the answers to the 

questions stated above (and several others) are all affirmative.   
 

The good news in this statement is that it generates optimism about finding positive 
answers to the sorts of questions we have described.  However, there is also some bad 

news.  The “valid constructions and operations” for subsets of NNNN can be described very 

explicitly, but for arbitrary sets the best we can expect are nonconstructive existence 
principles.  This is particularly well illustrated by the following attempt to prove the 
answer to the fourth question is yes: 
 

Suppose that f is a surjection from A to B.  Then for each b ∈∈∈∈ B we 

know that the inverse image  f 
– 1 

[ {b} ]  is nonempty.  For each b 

pick some element g( b ) ∈∈∈∈  A in this inverse image.   Since g( b ) lies 

in  f 
– 1 

[ {b} ] , it follows that f( g(b) )  =  b for all b and hence the 

composite f g is the identity on B .  But now g must be 1 – 1 by one 

of the exercises for Section V I.3, and therefore we have |B|  ≤  |A| .   
 

There are two important points to notice about this: 
 

1. The ideal of picking an element out of the set has a great deal of intuitive appeal. 
2. On the other hand, there is no information on exactly how one should pick an 

element from the given nonempty subset.  —  In contrast, if we are dealing with 

subsets of NNNN then there is a simple explicit method for making such choices; one 

simply takes the first element of a given nonempty subset. 
 

Taken together, these suggest that we may need to assume it is possible to pick out 
“possibly random” elements from nonempty subsets in some unspecified manner.   
During the first few decades of the 20th century mathematicians studied this question 
extensively.  The first phase of this work produced several logically equivalent versions 
of the crucial assumption described above, the second shows that the logical 
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consistence of set theory is not compromised if one makes such assumptions, and the 
third shows that one has acceptable models for set theory in which such assumptions 
are true and equally acceptable models in which they are false.  Since affirmative 
answers to the given questions (and others) are convenient for many purposes, most 
mathematicians are willing to make the sorts of assumptions need to justify the informal 
argument given above, sometimes reluctantly but generally with few reservations. 
 

We shall begin by motivating and stating three standard ways of formulating the 
nonconstructive existence principle that arises in connection with the questions above.  
This is done in Sections 1 and 2, with equivalence proofs in Section 3; a reader who 
prefers to skip the details of the latter may do so without loss of continuity.  Section 4 
contains answers to those questions in the list which are not answered in Section 2.  The 
final two sections are commentaries on two related issues.   We have noted that 
assuming the nonconstructive existence principles does not compromise the logical 
soundness of set theory, and Section 5 explains the situation in a little more detail, and it 
also discusses the “acceptable models” mentioned above.   Finally, Section 6 deals with 
a question dealing with Cantor’s original work:  All the specific infinite subsets of the real 
numbers that arose in his studies either had the same cardinal number as the integers or 
the real numbers, and Cantor’s Continuum Hypothesis states that there are no 

cardinal numbers  αααα such that |    NNNN |  <  αααα  <  |    RRRR |.  It turns out that the formal status of 

this assumption (and an associated Generalized Continuum Hypothesis)  is 
completely analogous to the nonconstructive existence hypothesis discussed in previous 
sections. 
 

 

 

V I I .1 :  Nonconstructive existence principles 
 

 

(Halmos, §§ 15 – 17;  Lipschutz, §§ 5.9, 9.1 – 9.4) 
 
 

We have repeatedly noted that the initial and most important motivation for set theory 
came from questions about infinite sets.  As research on such sets progressed during 
the late nineteenth and early twentieth century, it eventually became evident that most of 
the underlying principles involved constructing new sets from old ones and the existence 
of the set of natural numbers.   However, it also became clear that some results in set 
theory depended upon some nonconstructive existence principles.   In particular, when 
mathematicians attempted to answer questions like 1 – 5 at the beginning of this unit, 
their arguments used ideas that seemed fairly reasonable but could not be carried out 
explicitly.  In the introduction to this unit, we discussed the role of nonconstructive 
existence principles in analyzing Question 4.  Here we shall begin with a similar analysis 
of Question 2 from the list.  We would like to prove the following result. 
 

Theorem 1.  If A is an infinite set, then A has a countably infinite subset and hence we 

have  ℵℵℵℵ0   ≤   |A| . 
 

It will follow from Theorem 1 that ℵℵℵℵ0 is the unique smallest infinite cardinal number. 
 



 

 160

In Section V.2 we proved a related fact; namely, if A is countably infinite and B is an 

infinite subset of A, then |B|   =  ℵℵℵℵ0 .   One important step in the proof relied on the 

existence of a well – ordering on the standard countably infinite set NNNN; using the 1 – 1 

correspondence between NNNN and A, it follows that A also has a well – ordering if it is 

countably infinite. 
 

The preceding discussion suggests that if an infinite set A has a well – ordering, then 
perhaps one can generalize the previous argument for countably infinite sets A to 
cover other infinite sets as well.  The idea that every set has a well – ordering 
originally appeared in Cantor’s work; he accepted the statement as true but noted that a 
convincing argument (or a postulate) was needed.  Here is a formal statement: 
 

Well – Ordering Principle.  For every nonempty set A, there is a well-ordering of A 
(recall that this is a linear ordering such that each nonempty subset B of A has a least 
element). 
 

Proof that the Well – Ordering Principle implies Theorem 1.   The basic idea is again 

the same.  One defines a 1 – 1 function from NNNN to A recursively as follows:  Let  f ( 0 )  be 

the first element of A, and if  f ( x )  is defined for x <  n then let  f ( n )  be the first element 
not in the set { f ( 0 ), … , f (n – 1 ) }.  Such a first element always exists, for the fact that A 
is infinite implies that  A  –  { f ( 0 ), … , f (n – 1 ) }  is nonempty.���� 
 

In order to illustrate the significance of Theorem 1, we shall use it to prove some 

generalizations of other results from Sections V I.3 and V I.4. 
 

Theorem 2.   If A is a countable set and B is an infinite set, then |A| + |B|  =  |B|. 

 

Corollary 3 (Dedekind – C. S. Peirce).   A set is infinite if and only if it can be put into a 

1 – 1 correspondence with a proper subset of itself.���� 
 

Proof that Theorem 1 implies Theorem 2.   By Theorem 1 we know that B contains a 

countably infinite subset C.  Let D  =  B – C .  It follows immediately that  
 

|B|   =   |C|  +  |D|   =   ℵℵℵℵ0  +  |D|    
 

and therefore we have 
 

|A|  +  |B|    =   |A|  +  |C|  +  |D|   =   |A|  +  ℵℵℵℵ0  +  |D| . 
 

The results of Section VI.4 imply that  ℵℵℵℵ0  =   |A|  +  ℵℵℵℵ0 , and if we combine this with the 

two lines of equations displayed above we conclude that  |A| + |B|  =  |B| , as required.���� 
 

Here is another important implication of the Well – Ordering Principle for transfinite 
cardinal numbers.  Given the simplicity of the statement and its obvious validity for 
countable cardinals, it is somewhat surprising that all known proofs use the Well – 
Ordering Principle or some equivalent statement. 
 

Theorem 4.   If A and B are sets, then either  |A|  ≤  |B|  or  |B|  ≤  |A| . 
 

Informally, this means that the cardinalities of sets are linearly ordered. 
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Proof.   Choose well – orderings for A and B .  The results of Section V I.6 then show 

that either A  is in order – preserving 1 – 1  correspondence with a subset of  B  or vice 
versa.���� 
 

Although Cantor regarded the Well – Ordering Principle as a “fundamental principle of 
thought,” one disadvantage of assuming this is that the result is difficult to illustrate by 
means of nontrivial examples.  In particular, no one has ever constructed a well – 
ordering of the real numbers, and most if not all mathematicians find it very difficult to 
imagine how one might explicitly construct such a relation.  
 

There are many equivalent ways of formulating set – theoretic assumptions that are 
logically equivalent to the Well – Ordering Principle.   Perhaps the most widely used in 
the development of set theory is the following, which was introduced by E. Zermelo as 
an “unobjectionable logical principle.”  
 

AXIOM OF CHOICE  (AC).  If A is a nonempty set and  P+ (A)  denotes the set of all 

nonempty subsets of A,  then there is a function  f : P+ (A)     →→→→  A  such that  f(B)  ∈∈∈∈  B  

for every nonempty subset  B  ⊂⊂⊂⊂  A. 
 

A function of the type described in the conclusion is often called a choice function on 
the nonempty subsets of A. 
 

Most mathematicians subjectively regard this statement as far more plausible than the 
Well – Ordering Principle, but as noted below (and in Section 3) the two statements are 
in fact logically equivalent.   Both the Well – Ordering Principle and the Axiom of 
Choice are nonconstructive existence statements. 
 

The Axiom of Choice is precisely what we need to justify the argument sketched in the 
introduction to prove the following result:     
 

Theorem 5.  Suppose that  A  is a set and f : A →→→→ B is a surjection.  Then  |B|  ≤   |A|. 

 
Proof that the Axiom of Choice implies Theorem 5.   Once again the basic idea is 

similar to the corresponding proof in the previous section.   Let g : P+ (A)  →→→→  A  be a 

choice function for the nonempty subsets of A.  Define a function h : B  →→→→  A  by the 
formula. 
 

h( b )    =    g(f 

–
 

1
 [ {b} ]) . 

 

Then the choice function condition h( b )  =   f 

–
 

1
 [ {b} ] implies that f  h( b )  =  b.  The 

theorem will follow if we can show that  h is a  1 – 1  mapping, and the latter follows 

because  h ( x )  =  h ( y )  implies x  =  f  h ( x )  =  f  h ( y ) =  y.���� 

  
Equivalent statements 

 
For some time there was uncertainty whether the Axiom of Choice, or some equivalent 
statement, should be included in the axioms for set theory.  In an effort to understand the 
situation more clearly, many statements equivalent to the Axiom of Choice were 
introduced.  Each had its own advantages and disadvantages.  The sites listed below 
give 27 different statements that play a significant role in higher mathematics and are 
logically equivalent to the axiom of choice: 
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http://www.math.vanderbilt.edu/~schectex/ccc/excerpts/equivac1.gif 
 

http://www.math.vanderbilt.edu/~schectex/ccc/excerpts/equivac2.gif 
 

A full discussion of these equivalent statements is beyond the scope of these notes, but 
we shall mention one particularly important and frequently used example. 
  

“Zorn’s Lemma.”  If A is a partially ordered set in which linearly ordered subsets have 
upper bounds, then A has a maximal element. 
 

Zorn’s lemma was first discovered by K. Kuratowski (1896 – 1980) and independently a 
decade later by M. Zorn (1906 – 1993); it is also sometimes known as the Kuratowski – 
Zorn Lemma.  This statement is arguably the most useful of all the statements that are 
logically equivalent to the Axiom of Choice for reasons to be discussed in Section 2.   

  
Issues for further consideration 

 
There are several points that arise naturally in connection with the three nonconstructive 
existence statements (the Well – Ordering Principle, the Axiom of Choice and Zorn’s 
Lemma) that we have formulated. 
 

1. How does one show that the three nonconstructive existence principles 
are logically equivalent? 
 

2. Is there a simple example to illustrate the uses of Zorn’s Lemma? 
 

3. What sorts of logical problems, if any, arise if one assumes the three 
statements we have introduced? 
 

4. To what extent are mathematicians willing to accept these statements? 
 

We shall address the first question in Section 3 and the second in Section 2.   A detailed 
discussion of the last two questions appears in Section 5, but for the time being we note 
that any logical problems that might exist in set theory are present regardless of whether 
or not one assumes the three nonconstructive existence statements we have introduced 
in this section; if logical difficulties exist under the assumption of these statements, then 
by results of K. Gödel there are already logical difficulties even if one does not make 
these assumptions.   Also, the general (but not unanimous) acceptance of such 
statements in present day mathematics is reflected by our extensive discussion of them 
in these notes.  

 

 

 

V I I .2 :  Extending partial orderings 
 

 

(Lipschutz, § 7.6) 
 
 

In the previous section we made no attempt to motivate Zorn’s Lemma, but we shall try 
to do so here with an example illustrating its use in mathematics.  The following type of 
problem is standard in discrete mathematics courses: 
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Problem.  Suppose that A is a finite set, and let P  ⊂⊂⊂⊂  A ×××× A be a partial ordering.  Is 

there a linear ordering Q  ⊂⊂⊂⊂  A ×××× A such that P  ⊂⊂⊂⊂  Q ? 
 

The existence of such linear orderings is important for practical purposes.  Suppose one 
has a list of things to be completed that we shall call A, with requirements that certain 
items on the list must be finished before others.  These requirements correspond to a 
partial ordering  P  of the items on the list, and finding a linear ordering Q  containing  P 
then puts the items into a linear sequence in which they can be completed.   An example 
is described in one of the exercises for this section. 
 

It turns out that one can always find a linear ordering  Q  which solves the problem 
stated above, and this is essentially worked out in Lipschutz using equivalent language 
(the concept is called consistent enumeration in Lipschutz).  Specifically, given a 

partial ordering P on a finite set A with n elements, Theorem 7.1 on page 172 of 
Lipschutz proves the existence of a strictly increasing function  f   the set  A  to the 

standard example { 1, … , n }; the proof is given in Problem 7.17 on page 187 (also see 
pages 195 – 196).  If we define a binary relation Q  on A by the rule  x Q y  if and only if  

f ( x )  ≤  f ( y ) , then it is a routine exercise to check that  Q  is a linear ordering which 
contains P. 
 

We shall use Zorn’s Lemma to prove that one can find similar linear orderings even if the 
set A is not finite. 
 

Theorem 1.  Let A be a set, and let P  ⊂⊂⊂⊂  A ×××× A be a partial ordering.  Then there is a 

linear ordering  Q  ⊂⊂⊂⊂  A ×××× A such that  P  ⊂⊂⊂⊂  Q. 
 

We frequently say that Q is a compatible linear ordering or Q  is compatible with  P. 
 

As noted above, a result of this type is useful for many purposes.  For example, if X is a 
finite set and A is a family of subsets of X, then sometimes one wants prove a fact about 
the elements of A by mathematical induction, where A is linearly ordered such that for 

each pair of elements B, C in A such that B  ⊂⊂⊂⊂  C we also have B  <  C.   
 

The nonconstructive nature of Theorem 1 is illustrated by one simple fact:  A compatible 

linear ordering for the set P(NNNN) of subsets of the natural numbers (ordered by inclusion) 

has not been explicitly constructed.  In contrast, given an arbitrary partial ordering on a 
finite set, one can use the proof in Lipschutz to construct an explicit compatible linear 
ordering. 
 

Proof of Theorem 1. (∗∗∗∗∗∗∗∗)   We follow the approach outlined above, first showing that 
there is a maximal partial ordering containing the given one and then showing that such 
a maximal partial ordering must be a linear ordering. 
 

Let C be the collection of all partial orderings of A that contain P.   Then C is partially 
ordered by set – theoretic inclusion.  Let D be a subset of C that is linearly ordered by 
inclusion.  If we can show that D has an upper bound in C, then Zorn’s Lemma will imply 
that C has a maximal element.   
 

Denote the elements of  D  by  Qx  where x runs through some indexing set X, and let Q 

be the union of all the sets Qx.  Clearly Q contains P since each Qx does; we would like 
to show that Q is also a partial ordering.  The relation Q is reflexive because Q contains 
P and P is reflexive.  To verify the relation Q is asymmetric, suppose that both (a, b) and 
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(b, a) belong to Q.  Then there are partial orderings Qx and Qy such that (a, b) belongs 

to Qx and (b, a) belongs to Qy.  Since D is linearly ordered by inclusion it follows that 

one of Qx and Qy contains the other.  If  Qz  is the larger relation, then both (a, b)  and 

(b, a)  belong to Qz, and since the latter is a partial ordering this means that a  =  b.  
Finally, suppose that both (a, b) and (b, c) belong to Q.  Then there are partial orderings 

Qx and Qy such that (a, b) belongs to Qx and (b, c) belongs to Qy.  Since D is linearly 

ordered by inclusion it follows that one of Qx and Qy contains the other.  If Qz is the 

larger relation, then both (a, b) and (b, c) belong to Qy, and since the latter is a partial 

ordering this means that (a, c) belongs to Qz, which is contained in Q.  Therefore Q is a 
partial ordering.  By construction, it is an upper bound for the elements of D, and thus 
Zorn’s lemma implies that C must have a maximal element.� 
 

The second part of the proof of the theorem is contained in the following result. 
 

Proposition 2.   Let A be a set, and let P  ⊂⊂⊂⊂  A ×××× A be a maximal partial ordering.  Then 

P is a linear ordering. 
 

Proof. (∗∗∗)    Suppose that P is not a linear ordering.  Then we can find x, y in A such 

that neither (x, y) nor (y, x) lies in P.   We shall obtain a contradiction by expanding P to 
a partial ordering that contains (x, y).   In order to express the argument in familiar 

notation we shall write u  ≤≤≤≤ P  v to signify that (u, v) lies in P.   
 

Define a new binary relation Q such that (u, v) lies in Q if and only if either u  ≤ P  v or 

else both u  ≤ P  x and y  ≤ P  v.  The proof of the proposition then reduces to showing 

that Q is a partial ordering. 
 

The relation Q is reflexive.   Since P is a partial ordering, for each a  ∈∈∈∈  A we know that 

(a, a)  ∈∈∈∈  P  ⊂⊂⊂⊂  Q. 
 

The relation Q is transitive.   Suppose that (a, b)  ∈∈∈∈  Q  and  (b, c)  ∈∈∈∈  Q.  Then there are 
two options for each of the ordered pairs in the preceding sentence and thus a total of 
four separate cases to consider:   
 

1. We have a  ≤ P  b together with b  ≤ P  c.   
 

2. We have a  ≤ P  b together with both b  ≤ P  x and y  ≤ P  c.  
   

3. We have both a  ≤ P  x and y  ≤ P  b together with b  ≤ P  c. 
   

4. We have both a  ≤ P  x and y  ≤ P  b together with both b  ≤ P  x 

and y  ≤ P  c.   
 

In the first case, since P  is a partial ordering we have  a  ≤ P  c, so that  (a, c)  ∈∈∈∈  Q.  In 

the second case, since P  is a partial ordering we have  a  ≤ P  x, and therefore (a, c)  
satisfies the second criterion to be an element of Q.   In the third case, since P is a 

partial ordering we have  y  ≤ P  c, and therefore (a, c)  satisfies the second criterion to 

be an element of Q.   Finally, in the fourth case since  P  is a partial ordering the middle 

two conditions imply that  y  ≤ P  x, which contradicts our original hypothesis that neither 

of the relations  x  ≤ P  y  or  y  ≤ P  x is valid.  Therefore the fourth case is impossible, 
and this completes the proof of transitivity. 
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The relation Q is antisymmetric.   Suppose that (a, b)  ∈∈∈∈  Q  and  (b, a)  ∈∈∈∈  Q.  Then we 

have the same four cases as in the proof of transitivity, the only difference being that one 
must replace c by a in each case.  In the first case, since P is a partial ordering we must 

have a  =  b.  In all the remaining cases, since P is a partial ordering the given 

conditions combine to imply y  ≤ P  x, which contradicts the assumption on Q.  Thus only 
the first case is possible, and this completes the proof that the relation Q is 
antisymmetric.� 
 
As noted in Section 1, for many decades mathematicians have generally found Zorn’s 
Lemma to be particulary effective for proving theorems that depend upon the Axiom of 
Choice, partly because most of these results translate easily into the existence of a 
maximal object of some sort.  From this perspective, the proofs usually have two distinct 
parts: 
 

1. Showing that a maximal object of some type must exist using 
Zorn’s Lemma. 
 

2. Showing that such maximal objects must have certain desired 
properties. 

 

Here is another application of Zorn’s Lemma to partially ordered sets; as indicated by 
the name, this statement was formulated by F. Hausdorff (1868 – 1942) and in fact was 
known before Zorn’s Lemma was discovered. 
 

Theorem 3 (Hausdorff Maximal Principle).  Every nonempty partially ordered set 
contains a maximal linearly ordered subset. 
 

Proof.   Let X be the nonempty partially ordered set. let R be the partial ordering. and 
consider the family Y of all subsets A of X such that  

 

R|A    =    R  ∩∩∩∩     A ×××× A 
 

Is a linear ordering on A, with the partial ordering of Y given by set – theoretic inclusion.  

The family Y is nonempty, for if x  ∈∈∈∈     X then one has the trivial linear ordering  
 

{ x } ×××× { x }    =    R  ∩∩∩∩  ( { x } ×××× { x } ) 
 

on the one point subset { x }  ⊂⊂⊂⊂     X .   
 

Suppose that we have a linearly ordered subfamily of subsets X a as above.  If we take 

W  =  ∪∪∪∪ a X a then we claim that  T  =  R|W is a linear ordering on W.  By construction it 
is a partial ordering, so the only point to prove is the dichotomy property.  Suppose now 

that x, y  ∈∈∈∈     W.  Then one can find  a  and   b  such that  x  ∈∈∈∈     X a  and  y  ∈∈∈∈     X b .  The 

linear ordering property implies that one of  a  or  b  is greater than or equal to the other; 

if  c  denotes this element, then we have  x, y  ∈∈∈∈     X c .  Since the latter set is linearly 

ordered with respect to 
 

S c   =   R | X c 
 

it follows that either  (x, y)  ∈∈∈∈     S c  or  (y, x)  ∈∈∈∈     S c , and since the latter is contained in T 

it follows that one of the two pairs must lie in T.  Therefore T is a linear ordering, and 

therefore W is an upper bound in Y for all of the linearly ordered subsets X a . 
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We can now use Zorn’s Lemma to conclude that Y has a maximal element, which is 

given by a subset M with the linear ordering L  =  R | M.  It follows immediately that  M  is 
a maximal linearly ordered subset.���� 
 

For the sake of completeness we note that the Hausdorff Maximal Principle is also 
logically equivalent to Zorn’s Lemma (or the Axiom of Choice or the Well – Ordering 
Principle). 

 

 

 

 

V I I .3 :  Equivalence proofs 
 

 

(Halmos, §§ 15 – 20;  Lipschutz, §§ 5.9, 9.1 – 9.5, 9.7) 
 
 
 

[From a purely intuitive viewpoint, it appears 
that] the Axiom of Choice is obviously true, the 
well-ordering principle [is] obviously false, and 
who can tell about Zorn's lemma? 
 

J. Bona (1945 – ) 

 
Although the Axiom of Choice, the Well – Ordering Principle and Zorn’s Lemma are 
logically equivalent, most mathematicians do not view them as equally easy to accept as 
assumptions.  As indicated in the quotation, the Axiom of Choice seems intuitively easier 
to believe than the others, while the Well – Ordering Principle is often seen as counter – 
intuitive and Zorn’s Lemma is viewed as too complex for any intuition.  Therefore, proofs 
that these three statements are logically equivalent are not only needed for the sake of 
logical completeness, for they also provide reassurance that the less intuitive statements 
are equally valid.  The purpose of this section is to give (or at least sketch) the proofs 
that the three basic statements are logically equivalent.  This material will not be used in 
later sections and may be skipped without loss of continuity.  At some points we shall 
need properties of well – ordered sets that were stated without full proofs in Section 

VI.6. 
 

Proving that the Well – Ordering Principle implies the Axiom of Choice.   This is the 
simplest of all the arguments:     Let A be a nonempty set, suppose we are give a well – 

ordering, and let  P+ (A)  denote the set of all nonempty subsets of A.  Define a function  
f : P+ (A)      →→→→  A  such that  for every nonempty subset B  ⊂⊂⊂⊂     A, the image f(B)  is equal to 
the unique minimal element of B with respect to the well – ordering. Then by 

construction we always have f(B) ∈∈∈∈ B.���� 
  
Proving that the Axiom of Choice implies the Well – Ordering Principle. (∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)   A 
fully rigorous proof requires many of the results on ordinals from the previous section as 
well as a strong version of transfinite recursion.  In many ways this is the most difficult 
implication to prove, so we shall merely outline the argument here.   
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Let X be a set, and let  k : P+ (X)     →→→→  X  be a choice function.  By Hartogs’ Theorem there 

is an ordinal λλλλ such that there is no 1 – 1 mapping from λλλλ to X.  Define f : λλλλ  →→→→  X ∪∪∪∪ { X } 

recursively as indicated below for a given αααα    ∈∈∈∈ λλλλ; there are two cases depending upon 

whether or not the set J αααα  =  f [ [0, αααα) ] is a proper subset of X. 
 

1. If J αααα is a proper subset of X, take f ( αααα    )  =  k(X – J αααα). 
 

2. If J αααα is not a proper subset of X, take f ( αααα    )  =  X. 
  

By construction, if f (αααα)        ∈∈∈∈  X, then the restriction of f to the closed interval [0, αααα] is 1 – 1. 

Furthermore, f is 1 – 1 on the inverse image of X. 
 

By the choice of λλλλ, we know there is a  γγγγ ∈∈∈∈    λλλλ    such that f | [0, γγγγ] is not 1 – 1; let ββββ be the 

least such ordinal.  It then follows that f is 1 – 1 on [0, ββββ) and f( γγγγ     )  =  X  for  γγγγ        ≥        ββββ.  

Furthermore, it also follows that f defines a 1 – 1 from [0, ββββ) to X.���� 
  

Proving that the Axiom of Choice and the Well – Ordering Principle imply 

Zorn’sLemma. (∗∗)     If Zorn’s Lemma is false, then there exists a partially ordered set 
X such that every linearly ordered subset has an upper bound, and for each element  u  
of X it is possible to find a larger element  v.   
  

Using Hartogs’ Theorem we can find an ordinal λλλλ     such that there is no 1 – 1 mapping 

from λλλλ     to X; alternatively, we can find λλλλ by taking a well – ordering of the power set 

P(X).   We claim it is possible to define a strictly increasing map f from λλλλ     to X by 
transfinite recursion.  If we can do this, we shall have a contradiction because there is no 

1 – 1 map from λλλλ     to X.  Let k : X  →→→→     P(X) be a choice function.   
 

Define f (0X)  =  k(X) to begin the process.  Suppose now that we have defined the 

function on [0,    αααα), and let J αααα  =  f [ [0,    αααα) ] .   By hypothesis the latter is a linearly ordered 

subset of X and as such it has an upper bound.  Use the choice function k to select a 

particular upper bound u (αααα) .  We are also assuming that X has no maximal element so 

the set of all elements strictly greater than u(αααα)  is nonempty; use the choice function k 

again to select some f (αααα)   >  u (αααα) .  Since f is strictly increasing for ββββ  <  αααα  and f ( αααα    ) is 

greater than every element of J αααα by construction, it follows that f is 1 – 1 on the closed 

interval [0,    αααα].   This completes the recursive step in the definition of the strictly 

increasing map f : λλλλ  →→→→     X .   
 

As noted in the second paragraph of the argument, this yields a contradiction.  Where is 
the problem?  The construction of f relies heavily on the fact that X has no maximal 
element, so this must be false.  Thus X must have a maximal element, and the existence 
of such an element is exactly what is needed to prove Zorn’s Lemma.���� 
 

Proving that Zorn’s Lemma implies the Well – Ordering Principle. (∗∗)   This is a 

typical example of how Zorn’s Lemma is used in mathematics.  General comments on 
this were given in Section 2, so our discussion here will be very brief.  The idea is to start 
with a set  X  and to consider an auxiliary partially ordered set  W  of well – orderings, 

with αααα  ≤  ββββ if and only if αααα corresponds to an initial segment of ββββ....  Then one shows 

that W satisfies the hypotheses of Zorn’s Lemma and hence has a maximal element.  
The final step is to check that this maximal element is a well – ordering for the entire set 
X.���� 
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Here are some online references for more information about the Axiom of Choice and 
related topics: 

  

http://en.wikipedia.org/wiki/Axiom_of_choice 
 

http://www.math.vanderbilt.edu/~schectex/ccc/choice.html 
 

http://planetmath.org/encyclopedia/MultiplicativeAxiom.html 

    

    

    
 

V I I . 4 :     Additional consequences 
 

 

(Halmos, § 15;  Lipschutz, §§ 9.1, 9.7) 
 

 
In this section we shall complete the discussion of the questions about cardinal numbers 
that were raised at the beginning of this unit, and we shall also discuss a few other basic 
mathematical facts which logically depend upon the Axiom of Choice or an equivalent 
statement.  Many other examples arise in virtually all basic graduate level mathematics 
courses. 
 

Some of the preceding online references contain thorough, but not overwhelming, 
summaries of basic mathematical results whose proofs require the Axiom of Choice.  In 
this subsection we shall restrict attention to a few that involve material from lower level 
undergraduate courses in the mathematical sciences or topics previously covered in this 
course.   
 

The first simple result is essentially a restatement of the definition of a general Cartesian 
product; in fact, the conclusion of the theorem is the version of the Axiom of Choice 
stated on page 59 of Halmos, and therefore the theorem implies that our version is 
equivalent to the version in Halmos.  
 

Theorem 1. (Nontriviality Principle for Products.)   If the Axiom of Choice is true, then 
a product of any nonempty family  FFFF  of nonempty sets is nonempty (we assume that the 
elements of  FFFF indexed by  FFFF  itself). 

 

Proof.  Given a family  FFFF  of sets a choice function defines an element of the product  
 

ΠΠΠΠ { B |  B  ∈∈∈∈  FFFF } . 
 

In fact, the converse is also true, for a choice function corresponds to an element of the 
Cartesian product displayed above.����    

  
Consequences for transfinite cardinal numbers 

 
Zorn’s Lemma also provides a particularly effective means for proving the following 
basic property of transfinite cardinals which generalizes an earlier result (Theorem 

VI.4.8) for the first infinite cardinal number ℵℵℵℵ0: 
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Theorem 2 (Idempotent Laws for transfinite cardinals).    If A is an infinite set, then we 

have |A| ++++ |A|   =   |A|  and  |A| ⋅⋅⋅⋅ |A|   =   |A|.  
 

Corollary 3.  If A and B are nonempty sets and at least one is infinite, then  
 

|A|  ++++     |B|   =   |A| ⋅⋅⋅⋅ |B|   =   |C| 
 

where  |C|  is the larger of  |A| and  |B|. 
 

The final portion of this statement relies on the fact that cardinal numbers are linearly 

ordered, which was established in Theorem VI I.2.4 above.  Of course, the corollary is 
generally (in fact, almost always) false if both A and B are finite. 
 

Proof that Theorem 2 implies Corollary 3.   Without loss of generality, we might as 
well assume that  |A|  is the larger of the two cardinal numbers.  If we can prove the 
result in this case, the proof when |B| is the larger will follow by interchanging the roles 
of A and B systematically throughout the argument.  Such “without loss of generality” 
reductions are used frequently in mathematical proofs to simplify the discussion. 
 

Since we are assuming |A|  ≥  |B|, we may combine the conclusion of Theorem 2 with 

the basic formal properties of cardinal addition and multiplication to conclude that  
 

|A|    ≤                |A|  ++++     |B|    ≤                |A| ++++ |A|    =    |A| 
 

so that |A| ++++ |A|   =   |A|,  and similarly  
 

|A|   ≤                |A| ⋅⋅⋅⋅ |B|    ≤                |A| ⋅⋅⋅⋅ |A|    =    |A| 
 

so that |A| ⋅⋅⋅⋅ |B|   =   |A|.���� 

 
Proof of Theorem 2.     We begin with the additive identity, both because it is simpler 
and because it is needed to prove the multiplicative identity.  Both arguments are based 
upon Zorn’s Lemma. 
  

Proof that  |A| ++++ |A|  =  |A| .   —   Let UA be the set of all pairs (B, f) where B  ⊂⊂⊂⊂     A is a 

nonempty subset and f : B | |    B   →→→→  B is a  1 – 1 correspondence.  If we define (B, f)  ≤     

(C, g) to be true if and only if g (b, n)  ====  f (b, n) for n  =  1 or 2,  then routine calculations 

show that  ≤     defines a partial ordering on UA . 
 

The set UA is nonempty because A contains a countably infinite subset C, and by 

Theorem VI.4.8  there is a bijection from  C | |    C  to C. 
 

Suppose now that we have a linearly ordered subset of UA whose elements have the 

form (B t, f t), where t lies in some indexing set.  For each t let G t denote the graph of t, 

let B be the union of the sets B t, and let G be the union of the graphs G t .  We claim that 

G is the graph of a bijection from  B | |    B  to  B.  If so, then (B, f)  ≥     (B t, f t) for all t and 

hence the hypotheses of Zorn’s Lemma apply.   
 

Suppose that z    ∈∈∈∈ B, and choose t such that z    ∈∈∈∈ B t .  Then there is a uniqute w  ∈∈∈∈  B t 

such that (z, w)  ∈∈∈∈     G t; we claim there are no other points in G with first coordinate 

equal to z .  If (z, x)  ∈∈∈∈  G, then there is some s such that (z, x)  ∈∈∈∈     G s .  Choose r so that 

G r is the larger of G s and G t; then (z, w) and (z, x)  ∈∈∈∈     G r  imply w  =  x because G r is 
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the graph of a function.  Thus G is the graph of a function.   What is the domain of G?   If 

(z, w)  ∈∈∈∈ G, then z  ∈∈∈∈     B t  | |     B t   ⊂⊂⊂⊂        B  | |     B for some t, and conversely if  z ∈∈∈∈ B  | |        B 

then for some t we have  z  ∈∈∈∈  B t  | |     B t , and consequently there is an ordered pair of 

the form (z, w) ∈∈∈∈    G t  ⊂⊂⊂⊂     G. 
 

Next, we need to show that the function f with graph G is a bijection.  If f( x )  =  f( y ) then 

as before one can find a single set  t  such that x, y  ∈∈∈∈         B t   ⊂⊂⊂⊂         B  | |     B for this choice of 

t, and conversely if z  ∈∈∈∈  B  | |     B then for some t we have z  ∈∈∈∈  B t  | |     B t .  Then we have  
 

f t ( x )  =   f( x )  =  f( y )   =   f t ( y ) 
 

and since f t is 1 – 1 it follows that x  =  y.  Also, if z ∈∈∈∈ B, choose t such that z  ∈∈∈∈  B t , so 

that z  =  f t ( w )  =  f( w ) for some w and hence f is onto.  This completes the proof that 

linearly ordered subsets of UA have maximal elements.   
 

By Zorn’s Lemma there is a maximal element (M, h) of U A , and by construction we have 

|M| + |M|   =   |M| .  If  |M|  =  |A|  then the proof is complete, so assume the cardinalities 
are unequal.  Since M is a subset of A we must have |M| <  |A|, and in fact by Theorem 

VI I.1.2  it follows that |A – M| must be infinite (if it were finite then we would have |M|  =  

|A|).  Let  C  ⊂⊂⊂⊂        M  be a countably infinite set, let  h0 : C | |    C  →→→→  C  be a bijection, and 
consider the map  
 

k : (M ∪∪∪∪ C)  | |        (M ∪∪∪∪    C)    →→→→  M ∪∪∪∪    C 
 

defined as the composite 
 

(M ∪∪∪∪    C) | |    (M ∪∪∪∪ C)    =            (M | |    M)  ∪∪∪∪  (C | |    C)   →→→→  M ∪∪∪∪ C        
    

sending  x  ∈∈∈∈  M  | |     M to h (x) and y  ∈∈∈∈  C | |    C  to  h0 ( x ) .  It follows immediately that the 
element  (M  | |        C, k)  is strictly greater than (M, h), contradicting the maximilaity of the 
latter.  The problem arises from our assumption that |M| and |A| are unequal, and thus 

we have |M| = |A| and we have proved the statement about |A| + |A|. 
 

Proof that   |A| ⋅⋅⋅⋅ |A|  =  |A| .  —  Let VA be the set of all pairs (B, f) where B  ⊂⊂⊂⊂     A is a 

nonempty subset and f : B ××××    B   →→→→ B is a 1 – 1 correspondence (bijection).  If we now set  

(B, f)  ≤     (C, g)  if and only if  g (b1, b2)  =  f (b1, b2)  for  b1, b2  ∈∈∈∈     B, then once again 

routine calculations show that  ≤     defines a partial ordering on VA . 
 

The set VA is nonempty because A contains a countably infinite subset C, and by 

Theorem VI.4.8  there is a bijection from C ××××    C to C. 
 

Suppose now that we have a linearly ordered subset of VA whose elements have the 

form (B t, f t), where t lies in some indexing set.  The argument in the previous part of the 
proof extends to show that this linearly ordered set has an upper bound, whose graph is 

again the union of the graphs of the functions f t .  Therefore, once again Zorn’s Lemma 
implies the existence of a maximal element (M, h) and once again the conclusion is true 
if |M|  =  |A|, so suppose the latter is false.  It follows that |M|  <   |A|.   We can now use 

the first part of the theorem to conclude that |M| + |M|   =   |M| ,  and if we combine this 

with the equation |M| + |A – M|   =   |A| we conclude that |M|  <  |A – M|.  In fact, the first 

part of the theorem implies that |M|  =  3 |M| and consequently we have 3 |M|  <  |A – M|.   
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The inequality |M|   <   |A – M|  implies the existence of a subset N  ⊂⊂⊂⊂  A – M such that 
|N|  =  |M|, and in fact the last sentence of the previous paragraph implies that we may 
write N as a union of pairwise disjoint subsets N1, N2, N3 which have the same cardinality 

as M and N.  Define an extension of h : M ××××    M   →→→→  M to  
 

k : (M    ∪∪∪∪ N)  ××××    (M    ∪∪∪∪ N)    →→→→  M    ∪∪∪∪ N 
 

using the following breakdown by cases: 
 

(1) On M ××××    M , k is given by h. 
 

(2) On M ××××    N , k is given by M ××××    N  ↔↔↔↔        N ××××    N  ↔↔↔↔         M ××××    M  ↔↔↔↔        M  ↔↔↔↔        N1 , where 

the 1 – 1 correspondences are determined by the standard correspondences  

M  ↔↔↔↔        N,  N  ↔↔↔↔        N1 , and M  ××××     M  ↔↔↔↔        M. 
 

(3) On N ××××    M ,  k is given by N ××××    M  ↔↔↔↔        N ××××    N  ↔↔↔↔        M ××××    M  ↔↔↔↔        M  ↔↔↔↔        N2 , where 

the 1 – 1 correspondences are determined by the standard correspondences 

M  ↔↔↔↔        N, N  ↔↔↔↔        N2 , and M ××××    M  ↔↔↔↔        M. 
 

(4) On N ××××    N ,  k is given by N ××××    N  ↔↔↔↔         M ××××    M  ↔↔↔↔        M  ↔↔↔↔        N 3 , where the 1 – 1  

correspondences are determined by the standard correspondences M  ↔↔↔↔        N, 

N  ↔↔↔↔        N3 , and M ××××    M  ↔↔↔↔        M. 
 

By construction (M    ∪∪∪∪ N, k) is strictly greater than (M, h), contradicting the maximilaity of 
the latter.  The problem arises from our assumption that |M| and |A| are unequal, and 

thus we have |M|  =  |A|, verifying the statement of the theorem about |A| ⋅⋅⋅⋅ |A|.���� 
 

The following consequence of Theorem 2 and Corollary 3 is useful in many situations. 
 

Proposition 4.   Let { A n } be a countable sequence of infinite sets such that  | A n |  ≤  
αααα    for all n and there is some nonnegative integer  M  such that | A M |  =  αααα.  Then we 

have | ∪∪∪∪ n A n |  =  αααα.   
  

Proof.    Let B denote the union. Then we clearly have αααα   ≤   |B| since | A M |  =  | B M | for 

some B M  ⊂⊂⊂⊂  B.  On the other hand, by the cardinality assumption we also have 

injections f n :  A n →→→→ A M  for all n, and we can piece these together to obtain an injection  
 

ϕϕϕϕ         :  | || || || | n A n  →→→→  NNNN ×××× A M 
 

defined by the formula ϕϕϕϕ (n, x)  =  ( n, f n ( x ) ) .  There is also a surjection  
 

ψψψψ     : | || || || | n A n  →→→→  B 
 

sending  { n } ×××× A n bijectively to A n  ⊂⊂⊂⊂  B.  If we now apply Exercise VI I.1.2, it follows 

that |B|  ≤   ℵℵℵℵ0 ×××× αααα    ,,,, and by Corollary 3 the right hand side is equal to αααα.  We can now 

use the Schröder – Bernstein Theorem to conclude that |B|  =  αααα    .���� 
 

Corollary 5.   In the setting of the previous result, if | A n |  =  αααα    for all n, then |B|  =  αααα.���� 
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Zorn’s Lemma in algebra 

 
Several other applications of Zorn’s Lemma to basic questions in algebra are worked out 
on page 226 of Lipschutz (in particular, see Problems 9.6 and 9.7); for example, 
Problem 9.6 uses Zorn’s Lemma to prove that every infinite – dimensional vector 
space has a basis. 

 
A formal definition of cardinal numbers 

 
We can use the Well – Ordering Principle to give a simple and mathematically sound 
definition of cardinal numbers.  The key to doing so is contained in the following result: 
 

Proposition 6.  Let X be a set, and let CX be the collection of ordinal numbers αααα for 

which there is a 1 – 1 mapping from αααα into X.  Then CX is a nonempty set. 
 

Definition. The least element of CX is called the cardinal number of X.   From this 

perspective we may view ℵℵℵℵ0 as being equal to the first infinite ordinal, which is ωωωω.... 
 

Proof.   The class CX is nonempty by the well – ordering principle.  To show it is a set, it 

suffices to prove that there is some ordinal number ββββ for which there is  no  1 – 1 

mapping from ββββ into X.  It then follows that αααα  <  ββββ for all  αααα ∈∈∈∈    CX, which implies that  CX 

is a set.  There are two ways of doing this; either one can use Hartogs’ Theorem or else 

one can take the ordinal number associated to a well – ordered set Y such that |Y|  =  

|P(X)|; the latter is quicker and perhaps more convincing, but the former is logically more 
direct.� 
 

Corollary 7.  The class of cardinal numbers is well – ordered by the restriction of the 

ordering relation on the ordinal numbers.  In particular, given any cardinal number αααα 

there is a least cardinal number  ββββ  such that  ββββ  >  αααα  (i.e., there is a next largest 
cardinal number  —  this statement was first formulated by Cantor).� 
  

In fact, one can say more.  Using a suitably strong version of transfinite recursion one 

can define a strictly order – preserving 1 – 1 correspondence from the ordinal numbers 
to the infinite cardinal numbers.   We have already denoted the first infinite cardinal by 

ℵℵℵℵ0 .  .  .  .   Following Cantor’s notation, it is customary to denote the next infinite cardinal, 

which is the image of 1 under the recursively defined mapping, by ℵℵℵℵ1 .  .  .  .  More generally, 

the cardinal number which corresponds to the ordinal αααα    is denoted by ℵℵℵℵαααα .  .  .  .      

    

    
 

V I I . 5 :     Logical consistency and acceptance 
 

 

(Halmos, § 15;  Lipschutz, §§ 9.1, 9.7) 
 

 
Whenever it appears that one statement about a mathematical system cannot be 
derived as a mathematical consequence of the others, there are immediate questions 
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whether this statement can or should be taken as an additional assumption, and thus 
near the beginning of the 20th century there were immediate questions about whether 
the Axiom of Choice or an equivalent statement should be added to the basic 
assumptions of set theory.   Concern over the desirability of adding the Axiom of Choice 
or an equivalent statement to the axioms for set theory increased with the discovery of 
difficulties such as Russell’s Paradox.   Most of these difficulties were resolved within 
two decades by a careful foundation of the axioms for set theory, but it was still not 
known if adding the Axiom of Choice might still lead to a logical contradiction.  We shall 
discuss subsequent developments about logical consistency later in this section.    
 

As noted earlier, this section discusses some conceptual points about the following basic 
questions:  
 

1. Does the inclusion of the Axiom of Choice (or an equivalent statement) 
lead to any further problems?  

 

2. Should the Axiom of Choice (or an equivalent statement) be assumed as 
an axiom for set theory?  

 

The following additional question will be addressed in the next section. 
 

3. Are there other set – theoretic statements that also should be included as 
axioms? 

 

We have already noted that Cantor and his contemporaries recognized that something 
like the Axiom of Choice might have to be taken as an assumption if it could not be 
proved.    Concern over the desirability of adding the Axiom of Choice to the axioms for 
set theory increased with the discovery of difficulties such as Russell’s Paradox near the 
beginning of the 20th century.   Although most of these potential paradoxes in set theory 
were resolved by a careful foundation of the axioms for the subject, such work did not 
determine whether the Axiom of Choice and its equivalent statements led to logical 
consistency problems; in other words, it was still not known if adding the Axiom of 
Choice or an equivalent statement might eventually lead to a logical contradiction.  We 
shall discuss subsequent developments about logical consistency later in this section; 
historically, the next development raised further questions about assuming statements 
like the Axiom of Choice.     

 
The Banach – Tarski Paradox 

 
A new reason for concern about the Axiom of Choice was discovered in the 1920s.  The 
so-called Banach – Tarski paradox showed that the Axiom of Choice had some 
extremely strong consequences which seemed to contradict common sense.  These 
raised additional questions about whether the Axiom of Choice should be included in the 
axioms for set theory. In its original form, the relevant result of S. Banach (1892 – 1945) 
and A. Tarski (1902 – 1983) states that if the Axiom of Choice is assumed, then it is 
possible to take a solid ball in 3 – dimensional space, cut it up into finitely many 
pieces, and moving them — using only rotation and translation — reassemble the 
pieces into two balls having the same size as the original one    !! 
 

Such a bizarre result raises serious questions whether one could prove even more 
results and perhaps even use the Axiom of Choice to obtain a logical contradiction.  In 
particular, at first glance the Banach – Tarski result may seem to violate the basic laws 

of physics (e.g., Conservation of Matter).   Fortunately, this does not reflect a problem 
with the underlying mathematics, for it is important to note that the sets in question are 
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mathematical rather than physical objects.  In particular, there is no meaningful way to 
define the volumes of the individual pieces, and it is impossible to carry out the 
construction physically because if one does cut the solid ball into pieces physically (say 
with a knife or saw), then each piece will have a specific volume (physically, one can find 
the volumes by sticking the pieces into a large cylinder which contains enough water or 
other fluid that will not dissolve the pieces).  However, even though the Banach – Tarski 
paradox does not yield a logical contradiction to the axioms of set theory or the 
fundamental laws of experimental physics, it does raise two fundamental questions: 
 

1. If set theory with the Axiom of Choice yields bizarre conclusions like the 
existence of the sets described above, is it possible that further work will lead to 
a contradiction? 
 

2. Is it worthwhile to consider such objects, and if not is it appropriate to have an 
axiomatic system for set theory that will imply the existence of such physically 
unreal entities? 

 

One way of answering the second question is that the Axiom of Choice also implies the 
existence of many things that mathematicians do want for a variety of reasons, and it is 
definitely simpler to do mathematics with the Axiom of Choice rather than without it.  The 
preceding applications to transfinite cardinal numbers strongly illustrate this 
point. 
 

This leads directly to the issue of whether the Axiom of Choice should be included in 
our axioms for set theory.  As indicated above and in these notes, the assumption of 
the Axiom of Choice allows mathematicians to do many things that would otherwise be 
difficult or impossible.  Although some mathematicians think that the subject should only 
consider objects given by suitably “constructive” methods, the existence and other 
consequences the Axiom of Choice are so useful and powerful that most 
mathematicians would prefer to include it as part of the axioms if at all possible.  By the 
middle of the 20th century the Axiom of Choice was generally accepted (but in many 

cases grudgingly) by most “ordinary” mathematicians  —  i.e., most of those who are 
not logicians or set theorists.   
 

Here are some further online references for the Banach – Tarski paradox. 
 

http://mathworld.wolfram.com/Banach-TarskiParadox.html 
 

http://www.math.hmc.edu/~su/papers.dir/banachtarski.pdf 
 

http://www.kuro5hin.org/story/2003/5/23/134430/275 
 

http://en.wikipedia.org/wiki/Banach-Tarski_Paradox 

  
Relative consistency of the Axiom of Choice 

 
Of course, if the Axiom of Choice leads to a logical contradiction, then it should not be 
part of the axioms for set theory, so this brings us back to the first question.  Two 
extremely important and fundamental pieces of research by K. Gödel in the nineteen 
thirties clarified the role of the Axiom of Choice.  The first of these was his work on the 
incompleteness properties of axiomatic systems, and the essential conclusion is that 
mathematics can never be absolutely sure that any reasonable set of axioms for an 
infinite set theory is logically consistent.  His subsequent result showed that the Axiom of 
Choice was relatively consistent with the other axioms for set theory.   Specifically, if 
there is a logical contradiction in set theory with the inclusion of the Axiom of 
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Choice, then there is also a logical contradiction if one does not assume the 
Axiom of Choice.    This is entirely analogous to the situation for the Axiom of 

Foundation that was discussed in Section I I I.4 of these notes.   
 

Formally, the relatively consistency properties are often stated in terms of the system of 
axioms for set theory developed by E. Zermelo (1871 – 1953) and A. Fraenkel (1891 – 

1965) which is generally known as ZF.  In these terms, Gödel’s results state that if ZF 
plus either the Axiom of Foundation or the Axiom of Choice is logically inconsistent, then 

ZF is already logically inconsistent without either assumption. 
 

Here are some further online references related to these topics: 
 

http://planetmath.org/encyclopedia/MultiplicativeAxiom.html 
 

http://mathworld.wolfram.com/AxiomofChoice.html 
 

http://www.miskatonic.org/godel.html 
 

http://www.time.com/time/time100/scientist/profile/godel.html 
 

http://en.wikipedia.org/wiki/Kurt_Gödel 
 

http://scienceworld.wolfram.com/biography/Goedel.html 
 

http://www.cs.uwaterloo.ca/~alopez-o/math-faq/node69.html  
 

Since most mathematicians would prefer to include as many objects as possible in set 
theory so long as these objects do not lead to a logical contradiction, the effective 
consequence of relative consistency is that inclusion of the Axiom of Choice in the 
axioms for set theory is viewed as appropriate by most “ordinary” mathematicians.   
From a purely formal viewpoint, there is nothing to lose and much to gain by adding this 
extra assumption.  The system obtained by including the Axioms of Foundations and 

Choice with ZF is frequently denoted by ZFC. 
  

Axiomatic systems for set theory.   Having mentioned ZF, we should note that our 
approach to set theory is slightly different because our setting includes collections called 

classes that are too large to be sets while ZF does not (in ZF such objects simply do 

not exist).  Our formulation is based on a variant of ZF that is due to von Neumann, P. 

Bernays (1888 – 1977) and Gödel, and is often denoted by NBG; this formulation is 

closely related to ZF and is very widely used (although this is generally not stated 
explicitly outside of mathematical writings on set theory and the foundations of 
mathematics).  As suggested by the first sentence in this paragraph, one major 
innovation in the latter is its use of classes for collections that are too large to be sets.  
Another important difference is that the Axiom of Specification is simplified very 
substantially (in particular, it is replaced by a finite list of assumptions).  Both 
formulations yield the same logical consequences, and each is logically consistent if and 

only if the other is.   This equiconsistency of ZF and NBG was established in the 1960s 
and is generally attributed to W. Easton (1939 – ) and R. Solovay (1938 – ).  The 

following online references contain additional information about both ZF and NBG:  
 

http://en.wikipedia.org/wiki/ZFC 
 

http://www.bookrags.com/Zermelo%E2%80%93Fraenkel_set_theory  
 

http://mathworld.wolfram.com/vonNeumann-Bernays-GoedelSetTheory.html 
 

http://en.wikipedia.org/wiki/Von_Neumann-Bernays-G%C3%B6del_axioms 
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Having noted the impossibility of proving that set theory is logically consistent, the next 
question is more or less unavoidable. 
 

What if set theory is logically inconsistent?    Although we can never be absolutely 
sure about this, there is a great deal of encouraging evidence.   The basic axiomatic 
structure for set theory has now been in place and in its current form for about three 
quarters of a century, and no new concerns have arisen over that time.   Of course, 
there are no guarantees that new difficulties will never emerge, but the absence of new 
problems over 75 years of intense critical study of foundational questions and enormous 
progress in all areas of mathematics lead to an important subjective conclusion: The 
current axiomatic system has proven to be highly reliable even if we cannot be 
sure it is absolutely perfect.   
 

Even if some new problems arise, most mathematicians strongly believe that they can 
be handled effectively, and the following annotated quote from the first page of the 
online document 
 

http://www.math.ku.dk/~kiming/courses/2004/matm/real_numbers.pdf 
 

seems worth including at this point: 
 

Do not worry too much about this [the possibility that there are some hidden 
contradictions]  …  No contradictions have turned up after a century of 
scrutiny, and if a contradiction should turn up you can be sure that bridges 
will not suddenly start to collapse [because of such a contradiction] or that 
space ships will miss their destinations because of that [of course, this might 
happen for other reasons].   If a contradiction turned up we would simply 
have to reconsider the situation and construct a new axiomatic system that 
does for us what we want of it [this would probably be far more difficult than 
the comments suggest, but in principle it would resemble the sort of work that 
is needed whenever one finds a nontrivial logical problem in some 
complicated piece of computer software that has proven to be pretty reliable 
over an extended period of time — everyone is confident that the program 
can be repaired, but a great deal of time and effort may be needed to 
complete the job]. 

 
Logical independence of the Axiom of Choice 

 
Fundamental results of P. M. Cohen (1934 – 2007) from the 1960s have completed our 
current understanding of the logical status of the Axiom of Choice.  Specifically, he 
showed that one can construct models for set theory such that the Axiom of Choice was 
true for some models and false for others; this conclusion is slightly more concrete than 
the one obtained by Gödel, which did not yield comparable information about 
constructing alternative models for set theory.   Here are some online references with 
further information: 
 

http://plato.stanford.edu/entries/set-theory/#7 
 

http://publish.uwo.ca/~jbell/CHOICE.pdf 
 

http://en.wikipedia.org/wiki/Axiom_of_choice#Independence 
 

http://www-math.mit.edu/~tchow/mathstuff/forcingdum 
 

http://en.wikipedia.org/wiki/Forcing_(mathematics) 
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The Axiom of Countable Choice 

 
There are also several weaker statements which are not equivalent to the axiom of 
choice, but which are closely related. One simple one is the Axiom of Countable 
Choice, which states that a choice function exists for any countable set X.  It states that 
a countable collection of sets must have a choice function.  The previously mentioned 
methods and results of P. Cohen also show that the Axiom of Countable Choice is not 

provable in ZF.   
 

The Axiom of Countable Choice is required for the rigorous development of calculus and 
the theory of functions of a real variable in its standard form; in particular, many results 
in these subjects depend on having a choice function for a countable set of real numbers 
(considered as sets of Cauchy sequences of rational numbers).   Some mathematicians 
who have reservations about the Axiom of Choice are willing to accept the Axiom of 
Countable Choice. 

 

V I I . 6 :  The Continuum Hypothesis 
 

 

(Halmos, § 25) 
 
 

The third issue raised above was whether there are other statements which might 
deserve to be taken as axioms for set theory.  One widely known statement of this type 
is the the Continuum Hypothesis, which emerged very early in the study of set theory. 
 

CONTINUUM HYPOTHESIS.  If A is an infinite subset of the real numbers RRRR, then either 

there is a 1 – 1  correspondence between A and the natural numbers NNNN, or else there is 

a 1 – 1 correspondence between A and RRRR. 

   
This question arose naturally in Cantor’s work establishing set theory, the motivation 
being that he did not find any examples of subsets whose cardinal numbers were strictly 

between those of NNNN and RRRR.   
 

Since there is a 1 – 1 correspondence between the real numbers RRRR and the set P(NNNN) of 

all subsets of NNNN, one can reformulate this as the first case of a more sweeping 

conjecture known as the Generalized Continuum Hypothesis: 
 
GENERALIZED CONTINUUM HYPOTHESIS   (GCH).  If S is an infinite set and T is a 
subset of P(S), then either 
 

(1)  there is a one-to-one correspondence between T and a subset of S, or else  
 

(2)  there is a one-to-one correspondence between T and P(S)    .    
 

In analogy with his results on the Axiom of Choice, the work of Gödel showed that if a 
contradiction to the axioms for set theory arose if one assumes the Continuum 
Hypothesis or the Generalized Continuum Hypothesis, then one can also obtain a 
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contradiction without such an extra assumption. On the other hand, the previously 
mentioned fundamental work of P. M. Cohen shows that one can construct models for 
set theory such that the Continuum Hypothesis was true for some models and false for 
others.  In fact, one can construct models for which the number of cardinalities between 

those of NNNN and RRRR can vary to some extent; some aspects of this are discussed below.  
 

Because of Cohen’s results, many mathematicians are not willing to assume the 
Continuum Hypothesis or the Generalized Continuum Hypothesis for the same reason 
that they are willing to assume the Axiom of Choice:  They would prefer to include as 
many objects as possible in set theory so long as these objects do not lead to a logical 
contradiction.   Cohen’s own viewpoint on this matter is summarized in the third online 
reference listed below. 
 

Here are some online references which discuss Cohen’s methods and results:  
 

http://mathworld.wolfram.com/ContinuumHypothesis.html 
 

http://en.wikipedia.org/wiki/Forcing_(mathematics) 
 

http://en.wikipedia.org/wiki/Paul_Cohen_(mathematician)   
 

Cohen’s methods show that several other natural questions in set theory are true in 
some models but false in others; the preceding references contain details on numerous 
results of this type.  We shall limit our discussion to a related question concerning 
cardinal numbers: 
 

Suppose that A and B are sets whose power sets satisfy the cardinality 
equation |P(A)|  =  |P(B)|.  Does it follow that |A|  =  |B|? 

 

For finite sets this is a trivial consequence of the fact that the function 2
x
 is strictly 

increasing over the real numbers.  For infinite sets, there is a curious relation between 
this question and the Generalized Continuum Hypothesis:  If the latter is true, then the 
answer to the question is YES.  This follows because for every infinite set A we know 
that |P(A)| is the unique first transfinite cardinal number that is strictly larger than |A|, 
and conversely |A| is the largest cardinal number that is strictly less than |P(A)|. 
 

On the other hand, the condition on cardinal numbers is not strong enough to imply the 
Generalized Continuum Hypothesis, and one can also construct models of set theory 

containing sets A and B such that |A|  <  |B| but 2 
|A|

  =  2 
|B|

.  More generally, very strong 

results on the possible sequences of cardinal numbers that can be written as 2 
|A|   for 

some |A| are given by results of W. B. Easton which build upon Cohen’s methods; 
Easton’s result essentially states that a few relatively straightforward necessary 
conditions on such sequences of cardinal numbers are also sufficient to realize it as the 
set of cardinalities for power sets.  These results first appeared in the following paper by 
Easton: Powers of regular cardinals, Ann. Math Logic 1 (1970), 139 – 178.  A more 
recent paper by T. Jech (pronounced yeKH, with KH as in the “ch” of “Bach”) covers 
subsequent work on this problem:  Singular cardinals and the PCF theory, Bull. 
Symbolic Logic 1 (1995), 408 – 424. 
 

Possibilities for the cardinality of the real numbers.  Since Cohen’s results imply that 

|RRRR|  may or may not be equal to ℵℵℵℵ1 depending upon which model for set theory is being 

considered, one can ask which cardinal numbers are possible values for |RRRR|.   Results 

on this and more general questions of the same type follow from Easton’s work.  In 

particular, it turns out that |RRRR| can be equal to ℵℵℵℵn for every positive integer n but it 
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cannot be equal to the cardinal number ℵℵℵℵωωωω (all these are defined as above).  A proof of 

the last assertion appears in the exercises on page 66 of the following book:  
 

I. Kaplansky, Set theory and metric spaces (2nd Ed.). Chelsea, New 
York, 1977.  ISBN: 0–8284–0298–1.  

 

Recently there has been some further thought about whether or not one should assume 
the Continuum Hypothesis, and much of it has been generated by the following articles:  

 

W. H. Woodin, The continuum hypothesis, Parts I – I I.  Notices of the 
American Mathematical Society 48 (2001), 567 – 576, 681 – 690. 
[Available online at  http://www.ams.org/notices/200106/fea-woodin.pdf and 
http://www.ams.org/notices/200107/fea-woodin.pdf.] 

 

The following online site includes a fairly extensive scholarly analysis of Woodin’s 
articles: 
 

http://www.math.helsinki.fi/logic/LC2003/presentations/foreman.pdf 
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V I I I : Set theory as a foundation for  
 

mathematics 
 

 
This material is basically supplementary, and it was not covered in the course.  In the 
first section we discuss the basic axioms of set theory and the desirability of making the 
axiom system as simple and irredundant as possible.  The main objective of the second 
section is to describe exactly how one can simplify our assumptions for set theory, with 
particular attention to our fairly lengthy set of axioms for number systems.  It turns out 
that one can replace these by a single assumption that is far more concise and is also 
central to the basic logical consistency issues raised in the previous unit.  In the third 

section we prove results stated in Unit V about the essential uniqueness of number 
systems satisfying our axioms for the integers and the real number system.  The fourth 
and final section covers a topic that fits in with both the naïve and formal approaches.  In 

Unit I of these notes we mentioned that the axioms for Euclidean geometry were viewed 
as a major portion of the logical foundations for mathematics up to the early 19th century, 
and that by the end of that century set theory was quickly evolving into a new logical 
basis for the subject.  One natural question is whether the axioms for classical Euclidean 
geometry can be integrated into the new framework for mathematics, and if so the next 
question is how this can be done.  In the final section we explain how one can view the 
classical axiomatic approach to geometry within the environment of set theory.  

 

 

 

V I  I  I. 1 :  Formal development of set theory 
 

 

(Halmos, §§ 1 – 10, 14;  Lipschutz, § 1.12) 

 
In Section I I.1 we began by describing set theory from a naïve viewpoint and then 
indicated how one could set things up more formally.  In most of the notes, our approach 
has been very much on the naïve side; usually we have introduced assumptions about 
set theory as they were needed to continue or expedite the discussion without worrying 
too much about how one should express everything in a completely rigorous manner.  
This allowed us to develop the subject fairly rapidly.  At some points we mentioned the 

need to be more specific about some issues (e.g., describing the “admissible” logical 
statements that can be used to describe sets) or the possibility of deriving some of our 

assumptions as logical consequences of the others.  For example, in Section I I I.2 of 
the notes we mentioned that the existence of objects with the properties of ordered pairs 
can be proved from the other assumptions; details appear on pages 23 – 25 of Halmos.  
Frequently the proofs of such implications are somewhat complicated and unmotivated 
and the approach may seem artificial, and therefore we have simply added assumptions 

in Section I    I    I.2 and elsewhere to save time and to focus attention on points that are 
directly related to the uses of set theory in the mathematical sciences. 
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However, once the basics of set theory have been covered and assimilated, there are 
some extremely compelling reasons to look back and examine the assumptions in order 
to see if they can be simplified and redundant assumptions can be eliminated. 
 

One major reason to look for simpler and more concise assumptions is a basic principle 
in the philosophy of science called Ockham’s razor, which was originally stated by 
William of Ockham (1285 – 1349).  In modern language, this principle states that 
 

complications should not be introduced unless they are necessary 
 

or in more imperative terms 
 

do not invent unnecessary entities to explain something. 
 

Since we shall appeal to Ockham’s razor at other points in this unit, we include an online 

reference to a biography for William of Ockham: 
 

http://plato.stanford.edu/entries/ockham/ 
 

In the mathematical sciences there are important practical justifications for using 
Ockham’s razor that go well beyond simplicity of exposition.   Since the mathematical 
sciences are so heavily dependent upon deductive logic, it is absolutely essential to 
have some assurance that the basic assumptions are logically sound.  If the 
assumptions for some theory lead to logical contradictions, serious questions arise about 
the validity and reliability of the theory’s conclusions and value.    Simplified lists of 
basic assumptions turn out to be extremely useful for testing the logical 
soundness of a mathematical system.  The reason is obvious; there are fewer things 
to verify, for much of the work is redirected into verifying the original assumptions are 
equivalent to the simplified ones. 
 

The advantages of simplified lists of assumptions are also illustrated very clearly by 
examples within mathematics itself.   In mathematical proofs by contradiction, the 
underlying idea for proving P implies Q is to assume that P is true, to add an assumption 
that Q is false, and to use the new, longer set of hypotheses to obtain a contradiction.   
This method has a fundamental implication:  As lists of assumptions become longer 
and more complicated, one must be increasingly careful in checking whether the 
entire list of assumptions is logically consistent.   It is generally much easier to 
check shorter systems of axioms for consistency than it is to check longer ones, so if we 
want to understand the consistency properties of our axioms it is highly desirable to have 
an equivalent version which is as simple as possible.    

 
Summary of the basic axioms 

 
As noted in Unit VI I, one standard axiomatic approach to set theory in present day 
mathematics is based upon axioms introduced by E. Zermelo during the first decade of 
the 20th century, with a few subsequent modifications due to other mathematicians, most 

notably A. Fraenkel.  Versions of most Zermelo – Fraenkel (Z F) axioms have been 
introduced in previous units, and all the other assumptions we have introduced turn out 
to be consequences of these axioms, all of which are listed below: 
 

• The Axiom of Extensionality (see Section I I.1) 

• The Axiom of Pairs (see Section I I.2 and also below) 

• The Axiom of Specification (see Section I I.2) 

• The Axiom of the Power Set (see Section I I I.3) 
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• The Axiom of Unions (see Section I I I.3) 

• The Axiom of Replacement (see Section I V.4)  

• The Axiom of Foundation (see Section I I I.5) 

• The Axiom of Number Systems (see Sections V.1 and V.4 as well 
as the next paragraph)  

 

Note that the Axiom of Choice is missing from this list; if this is added, one obtains the 

system called ZFC in the previous unit.  Since a few of the ZF axioms have not yet 
been formulated explicitly, we shall explain the latter in more detail.  Given two objects a 

and b, the Axiom of Pairs formally states the existence of the set we have called {a, b}.  
A close inspection of the underlying logical principles reveals a need to make such an 
assumption in addition to the Axioms of Specification and Unions; in particular, 
something like this is needed to ensure that sets actually exist in our abstract logical 

system.   The Axiom of Number Systems is actually not in the usual version of ZF, but 
it represents our assumption that the integers and real number systems are sets; much 
of this unit will be devoted to discussing the drastically simplified version of this axiom 

which is part of the usual ZF axioms. 
 

As noted in Section VI I.5, our formulation of set theory in these notes is based on a 

variant of ZF that is due to von J. Neumann, P. Bernays and K. Gödel and called NBG; 

this formulation is closely related to ZF and is perhaps the most widely used (although 
this is generally not stated explicitly outside of mathematical writings on set theory and 
the foundations of mathematics).  One major feature in the latter is its use of classes for 

collections that are too large to be sets; in ZF these are not regarded as legitimate 
objects of any sort.  Another important difference is that the Axiom of Specification is 
simplified in a significant manner.  As noted earlier, both formulations yield the same 
logical consequences, and one is logically consistent if and only if the other is.  
 

We have already given a few online references for the usual axioms of set theory.   Here 
is one more: 
 

http://mathworld.wolfram.com/Zermelo-FraenkelAxioms.html 

 

 

 

V I  I  I. 2 :  Simplified axioms for the basic number systems 
 

 

(Halmos, §§ 11 – 13) 
 

Units I I through V I I covered the basic material in set theory that is needed to use the 
latter in the mathematical sciences, and this section discusses two basic issues.  One, 
which has already been discussed at some length, concerns the logical consistency 
problems that follow from Gödel’s Incompleteness Theorem.  The other is to replace our 
fairly lengthy set of axioms for the real number system by something that is more 
concise but logically equivalent.  We have already noted the important relationship 
between these two issues in the preceding section.   
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The logical consistency problem for set theory 

 
As we have already stated, the logical incompleteness results of Gödel imply that we 
can never be completely sure that any “reasonable” system of axioms for set theory like 

ZF (Zermelo – Fraenkel) is logically consistent.  However, by the relative consistency 
results of Gödel that we have also discussed, neither the Axiom of Choice nor the 
(Generalized) Continuum Hypothesis is a potential source of consistency problems. In 
view of all these results, it is natural to ask where such potential difficulties might lie.  
There are many similarities between the Axiom of Choice and the Axiom of Foundation; 
both seem reasonable and both make it easier to discuss some mathematical topics, but 
both are basically nonconstructive existence statements.  One further similarity is that 
there are Gödel relative consistency results for both the Axioms of Foundation and 

Choice:  If the standard ZFC axioms for set theory are logically inconsistent, then the 

system ZF without the Axiom of Choice is also logically inconsistent.  Furthermore, if 

ZF is logically inconsistent, then ZF without the Axiom of Foundation is also logically 
inconsistent.  
 

Among the remaining axioms, the next natural candidates are those dealing with 

something that is infinite.  There are two axioms of this type in ZF, one of which is the 
Axiom of Infinity  —   which assumes the existence of an infinite set  —   and the Axiom 

of Specification  —   which is really an infinite (in fact, countably infinite) list of axioms, 
one for each of the admissible statements that can be used to define a set.  In our 

setting, one can prove rigorously that if there is an internal contradiction in the ZF 
axioms for set theory, it must arise either from  
 

(1)  the assumptions about constructing sets with definitions given by fairly 
general types of valid mathematical statements, or from 

 

(2)  the assumptions about the existence of the real numbers and its 
standard hierarchy of subsystems including the natural numbers 
(nonnegative integers), the (signed) integers and the rational numbers.   

  

Problems concerning the first point arose at the end of the 19th century and the 
beginning of the 20th century, and two of these are the previously mentioned paradoxes 
of B. Russell and C. Burali – Forti.  We have already noted that mathematicians and 
logicians resolved these problems by suitably restricting the class of admissible 
grammatical statements for specifying sets and by adding an axiom which guarantees, 
among other things, that a set cannot be a member of itself.  All of this has now been in 
place and in its current form for over three quarters of a century.  During the intervening 
time, no additional problems involving the first point have arisen; of course, there are no 
guarantees that new difficulties will never emerge.   However, the absence of new 
problems over 80 years of intense critical study of foundational questions and enormous 
progress in all areas of the mathematical sciences lead to an important subjective 
conclusion: The current Axiom of Specification is highly reliable even if we cannot be 

sure it is absolutely perfect.  Confidence in this respect is reinforced by the NBG 
formulation of set theory due to von Neumann, Bernays and Gödel that we discussed in 

Section V I I.5.   The crucial feature of NBG is that the latter reduces the Axiom of 
Specification to a FINITE list of assumptions at the expense of assuming the 
existence of “proper classes” that are not sets. 
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As noted in Section VI I.5, even if some new problems eventually arise, most if not all 
mathematicians strongly believe that they can be handled effectively, although this could 
very well take a considerable amount of time and effort.   It does not seem likely that 
such repairs would have much effect on most of the mathematics that is currently 
known, and it is even less likely that there would be any real effect on the applications of 
the subject (but there might be exceptions for subjects like modern theoretical physics 
which rely particularly heavily on mathematical ideas).  However, we can never be 
absolutely certain of this. 
 

We now turn to the second point regarding our axioms for number systems.  Given the 
numerous assumptions we have made about the real number system, one MUST 
NOT simply ignore the possibility that they could be manipulated to derive a 
logical contradiction.   Of course, many of the assumptions about algebraic equations 
and inequalities are quite standard, and many are just refinements of the simple 
assumptions (the “common notions”) at the beginning of Euclid’s Elements.  However, 
there are two aspects of the axioms for the real numbers that are especially problematic: 
 

A. The existence of infinite sets (for example, the real numbers) is 
assumed. 
 

B. There is a strong assumption about the existence of least upper 
bounds that is far less elementary than the other assumptions on 
equations and inequalities and goes beyond the standard 
properties of arithmetic operations and inequalities.  Formally, this 
is another example of a nonconstructive existence statement. 

 
 

The standard axioms for set theory 
 
Since the existence of infinite number systems is absolutely central to mathematics, it 
should be clear that we cannot avoid making some assumption about the existence of 
an infinite set.  A major goal of this section is to indicate how one can use such an axiom 
to prove the existence of a system which satisfies all the properties we assumed for the 
real number system.  Once this is done, we can use the principle of Ockham’s razor to 
simplify out axioms for set theory to the following: 
 

1. The axioms listed in the preceding section, except for the Axiom of 
Number Systems, which is related to the Standard Axiom of Infinity.  
 

2. A simply stated Standard Axiom of Infinity, which is given below. 
 

3. The Axiom of Choice or an equivalent statement (e.g., the Well – 
Ordering Property or Zorn’s Lemma). 

 

Here is the formal statement of the axiom mentioned in the second point on the list: 
 

STANDARD AXIOM OF INFINITY.   There is a set ωωωω  such that the following hold: 
 

 (1) The empty set Ø belongs to ωωωω. 

 (2) For each x  ∈∈∈∈  ωωωω, we also have x ∪∪∪∪ { x }  ∈∈∈∈  ωωωω. 

(3) If A is an arbitrary subset of ωωωω satisfying the preceding two conditions 

when ωωωω is replaced by A, then A  =  ωωωω. 
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This axiom corresponds to a model for the nonnegative integers in which Ø corresponds 

to 0 and x ∪∪∪∪ { x }  corresponds to x + 1, and the axiom merely says that this specific 
infinite class is a set.   
 

We can check directly that this set ωωωω satisfies Peano Axioms, with σσσσ(x)  =  x ∪∪∪∪ { x } , as 

follows:   If y  =  σσσσ( x )  for some x, then x  ∈∈∈∈  y and hence y is nonempty.  Therefore the 

empty set cannot be equal to σσσσ( x )  for any x.   Next, we need to show that σσσσ is 1 – 1.  

Suppose however that σσσσ( x )  =  σσσσ( y ) .  Then we have  x ∪∪∪∪ { x }  =  y ∪∪∪∪ { y } . If x and y are 

unequal this can only happen if x  ∈∈∈∈  y and y  ∈∈∈∈  x ; but the Axiom of Foundation implies 

that these cannot both be true, which means that  x  =  y, so that σσσσ  is  1 – 1.  Finally, if 

M is a subset of ωωωω which contains Ø and such that x ∈∈∈∈ M implies σσσσ( x )  ∈∈∈∈  M ,  then the 

third condition in the Standard Axiom of Infinity implies  M  =  ωωωω.���� 
 

In claiming that the simplified axiom list given above is adequate to yield everything we 
have done in these notes, we are asserting in particular that  
 

the existence of an object with all the properties of the real 
number system exists under these assumptions.   

 

The remainder of this section will explain why this is true.  The basic idea is to construct 
a system satisfying all the properties of the real numbers using the simplified axiom 

list in which the assumption on  ωωωω replaces the Axiom of Number Systems.  We shall not 
attempt to include all the details; most turn out to be fairly routine arguments, but the 
work is often tedious.  Instead, our main emphasis will be to explain the ideas in the 
construction.  Here are some online references which cover the details in an extremely 
thorough manner. 
 

http://www.math.nus.edu.sg/~urops/Projects/RealNumbers.pdf 
 

http://www.math.ku.dk/~kiming/courses/2004/matm/real_numbers.pdf 
 

The first reference covers everything, and the second concentrates on Cantor’s 
construction of the real numbers which is described below.  
 

Showing the existence of a object with all the properties of the real number system 
requires the following preliminary steps:  
 

1. It is necessary to construct the arithmetic operations and linear 
ordering on the standard model for the Peano axioms. 
 

2. It is necessary to construction of the (signed) integers from the 
standard model for the Peano axioms. 
 

3. It is necessary to construct the rational numbers from the integers. 
 

4. It is necessary to construct the real numbers from the rationals. 
 

We shall consider each of these in the order listed. 

 
Arithmetic operations, linear ordering and the Peano axioms 

 
Before we can think of constructing the integers or anything else that is larger than the 

natural numbers NNNN, we need to define addition and multiplication on an abstract system 

satisfying the Peano axioms and verify that they have the usual properties.  The 
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following recursive definitions of addition, multiplication, and exponentiation are 
standard, and in particular they appear on page 51 of Goldrei. 
 

(1) ADDITION  n + k :  n + 0  =  n    and    n  +  σσσσ(k)  =  σσσσ(n + k). 

(2) MULTIPLICATION  n ×××× k  =        n ⋅⋅⋅⋅ k :  n ⋅⋅⋅⋅ 0  =  0    and    n ⋅⋅⋅⋅ σσσσ(k)  =  (n ⋅⋅⋅⋅ k) + n. 

(3) EXPONENTIATION  n 
k
  =        n^k  (provided n  ≠≠≠≠  0) :  n^0  =  1  and  

n^σσσσ(k)  =  (n^k) ⋅⋅⋅⋅ n.  ( If n  =  0, then we define  0^k  =  0 for all k  ≠≠≠≠  0). 
 

The familiar basic arithmetic rules for these operations are stated in Theorem 3.12 on 
page 53 of Goldrei.  These include the commutative and associative laws of addition and 
multiplication, the distributive law, and the three standard laws of (integral) exponents: 
 

(m⋅⋅⋅⋅n)^k  =  (m^k)    ⋅⋅⋅⋅(n^k),     (n^a)^b  =  n^(a⋅⋅⋅⋅b),    (n^a) ⋅⋅⋅⋅(n^b)  =  n^(a + b) 
 

Further arithmetic rules appear on pages 53 – 56; most of these are identities for special 

cases when n or k is equal to 0 or 1. 
 

The definition of inequality is very easy in this standard model for the Peano axioms; 

namely, n  <  m if and only if n  ∈∈∈∈  m .  The basic properties of inequalities (e.g., for 
unequals added to or multiplied by equals) are stated in Theorem 3.13 on page 56, with 
some further properties listed on the next page. 

 
Construction of the (signed) integers and rational numbers 

 
If one thinks as the (signed) integers as an extension of the natural numbers to allow 
arbitrary subtraction and the rational numbers as an extension of the integers to allow 
division by a nonzero integer, it is not surprising that the construction of the integers from 
the natural numbers and the construction of the rational numbers from the integers 
should be similar. 
 
Construction of the integers.    It is useful to begin by stating exactly what we need to 

do.  Using the existence of a Peano system we are supposed to construct a set ZZZZ 

together with binary operations A : ZZZZ ×××× ZZZZ  →→→→  ZZZZ and M : ZZZZ ×××× ZZZZ  →→→→  ZZZZ  that correspond to 

addition and multiplication respectively, we are also supposed to construct a linear 

ordering on  ZZZZ, and finally we are supposed to show that these three operations satisfy 

the properties that were listed in Section V.2.    
 

We have already stated that we want the integers to be a system in which subtraction is 
always possible, and the key idea in the construction is to start with ordered pairs of 
natural numbers that we shall think of as formal difference expressions.  Of course, two 
difference expressions a – b and c – d may yield the same number, so we need to 
identify two difference expressions that yield the same value.   It is a very easy exercise 

in algebra to see that  a – b  =  c – d  is true if and only if  a + d  =  b + c; the second 
equation is meaningful within the natural numbers, so we can state our condition for 

formal differences to be the same using a binary relation given by a subset of NNNN ×××× NNNN: 

 

Definition.  Two elements (a, b) and (c, d) of  NNNN ×××× NNNN  are formal difference equivalent 

if  a + d  =  b + c. 
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The name of the relation suggests that formal difference equivalence should be an 
equivalence relation, and in fact this is true.  The proof is a fairly straightforward 

exercise.  As on page 32 of Goldrei, we may now define the integers ZZZZ to be the set of 

all equivalence classes of this equivalence relation.  There is a natural embedding of 

NNNN into ZZZZ given by sending n to the equivalence class of (n, 0). 
 

The next step is to define addition, multiplication and ordering on  ZZZZ  so that it extends 

the given definitions on NNNN.  It is easy to guess what sorts of properties the correct 

definitions should have. 
 

Provisional definitions.   Suppose we are given integers x and y with representatives 

(a, b) and (c, d) respectively.   Then the sum x + y should be represented by the 

ordered pair (a + c, b + d) , the product x ⋅⋅⋅⋅ y should be represented by the more 

complicated ordered pair (a c + b d, b c + a d) , and the strict linear ordering x  <  y 

should be equivalent to  a + d  <  b + c. 
 

One fundamental issue with this provisional definition is that the output is given by 
choosing representatives for the equivalence classes x and y.   Since we want 
functions that are single valued, we need to show that any other choices of 

representatives for the equivalence classes will yield the same element of ZZZZ.  In 

standard mathematical terms, we must show that our constructions of addition, 
multiplication and ordering are well – defined.  This required verifying the three items 
in the following statement. 
 

Well – definition of operations.   In the notation above, suppose that (p, q) and (a, b) 

represent the same element of ZZZZ, and likewise that (r, s) and (c, d) represent the same 

element of ZZZZ.  Then each of the following pairs also represent the same element of ZZZZ: 
 

� The pairs (a + c, b + d) and  (p + r, q + s). 

� The pairs (a c + b d, b c + a d) and  (p r + q s, q r + p s). 

� The inequality a + d  <  b + c is true if and only if p + s  <  q + r is true. 
 

Verifying the preceding statements requires a series of elementary but fairly tedious 
calculations; these are all carried out in the first online document cited above. 
 

The preceding defines addition, multiplication and ordering for the integers, and the next 

steps are to show that the definitions extend the ones for NNNN and have all the required 

properties listed in Section V.1.   Once again, the details may be found in the first online 
document in our list.  The verifications are elementary but somewhat tedious; the 
standard advice is that “every mathematician should go through the details once and 
understand them, but not worry about committing them to memory.”  
 

Construction of the rational numbers.    We are now ready to discuss the construction 
of the rational numbers from the integers.  This is done on pages 29 – 31 of Goldrei with 
some motivation on page 28. 
 

As we have already noted, the construction of the rational numbers from the integers is 
supposed to allow division by nonzero  quantities, and following the previous 
construction we begin by considering ordered pairs of integers (with the second one 
nonzero) to be formal quotients.  This is slightly different from the approach in Goldrei, 
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where the denominator is assumed to be positive, but one ultimately obtains the same 
system regardless of whether the denominators are assumed to be positive or merely to 
be nonzero. 
 

One standard condition for two ratios of integers a/b and c/d to be equal is a d  =  b c.  
One may use this to define rational numbers using ordered pairs of integers (x, y) such 
that the second term is nonzero, and saying that two elements (a, b) and (c, d) of the set 

ZZZZ ×××× ( ZZZZ – { 0 } )  are formal quotient equivalent if a · d  =  b · c . 
 

The name of the relation suggests that formal quotient equivalence should be an 
equivalence relation, and in fact this is true.  The proof is a fairly straightforward 

exercise.  As on page 29 of Goldrei, we may now define the rational numbers QQQQ to be 

the set of all equivalence classes of this equivalence relation.  There is a natural 

embedding of ZZZZ into QQQQ     given by sending the integer a to the equivalence class of (a, 1) . 
 

We can now formulate provisional definitions for addition, multiplication and ordering.  
The underlying idea is the same as for the construction of the integers, but the formulas 
will be much different.  Suppose we are given rational numbers x and y with 

representatives (a, b) and (c, d) respectively.   Then the sum x + y should be 

represented by the ordered pair (a d + b c, b d), the product x · y should be represented 
by the more complicated ordered pair (a c, b d), and the strict linear ordering x  <  y 

should be equivalent to  a b d 
2
  <  b 

2
 c d .   —  Since the latter differs from Goldrei and is 

clearly more complicated than anything else in sight, we should explain it.  A ratio u/v 
will be positive if and only if the product of the numerator and the denominator is 

positive, and a/b  <  c/d should hold if and only if the difference (c/d) – (a/b) is 

positive.  The latter fraction is equivalent to (b c – a d)/b d, and the product of this 

fraction’s numerator and denominator is simply b 

2
 c d  –  a b d 

2
.    

 

In analogy with the construction of integers, the next step is to verify that these 
constructions do not depend upon the choices of representatives for x and y.  This is 
covered fairly explicitly on pages 29 – 30 of Goldrei, and because of this and the 
similarity to the integral case we shall not state all the details here.  These are also 
verified in the first online document cited above, and the advice at the end of the 
discussion of the integers applies here equally well.  One additional point to be checked 
is that the new definitions of addition, multiplication and ordering coincide with the 

previous ones on the integers; i.e., those formal quotients whose denominators are 

equal to 1.  This is a tedious but extremely simple exercise, and the argument contains 
no surprises. 
 

To complete the discussion of the rational numbers, we need to show that they have the 

standard fundamental properties along the lines of Unit V.  Specifically, these include all 
the properties of the real numbers except the Dedekind Completeness Property. 

  
The Dedekind construction of the real numbers 

 
At certain points when it was necessary for ancient Greek mathematicians to compare 
irrational numbers, this was done using an idea essentially due to Eudoxus of Cnidus 
(408 – 355 B. C. E.), which we state in modern language: 
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Condition of Eudoxus.  Two real numbers x and y are equal if and only if the following 
two statements hold: 
 

(1) Every rational number less than x is also less than y. 
(2) Every rational number greater than x is also greater than y. 

 

One proves this result as follows:  If x and y are unequal, say x  <  y, then there is a 
rational number b between them, and this rational number b is greater than x but less 

than y.  Similar considerations apply if x  >  y.���� 
 

In particular, the Condition of Eudoxus plays an important role in the theory of irrational 
geometric proportions as developed in Euclid’s Elements. 
 

During the late 1850s, R. Dedekind took these ideas one important step further.  For 
each real number a, the set of all rational numbers that are less than a has some easily 
stated properties, and Dedekind’s idea was that a converse was true; namely, a set of 
rational numbers which looks like it could be a set defined by a number actually arises 
from a real number.  The treatment on pages 8 – 17 of Goldrei is slightly different from 
Dedekind’s in some respects, but it is closely related and yields an equivalent object.  
For the sake of completeness, here is a reference to a readily available book which 
contains Dedekind’s fundamental (and still very readable) paper, Continuity and 
irrational numbers.  
 

R. Dedekind, Essays on the Theory of Numbers (Authorized 
Translation by W. Beman).  Dover, New York, 1963.  ISBN: 0–
486–21010–3. 

 

Later in this unit we shall indicate how Dedekind’s approach to the real numbers 
depends very substantially on being able to work effectively with infinite sets. 
 

In order to proceed, we need to formalize the notion of “a set of rational numbers which 
looks like it could be a set defined by a number” in the preceding paragraph. The 
following definition appears on page 9 of Goldrei. 
 

Definition.  A nonempty set S of rational numbers is a left Dedekind set (or the left 
half of a Dedekind cut) if it has the following properties: 
 

1. The set S has an upper bound. 
 

2. The set S has no largest element. 
 

3. If  x <  y  and y ∈∈∈∈ S, then x ∈∈∈∈ S. 
 

Strictly speaking, a left Dedekind cut consists of two sets, one of which is given above 
and the other, the right half, is the relative complement.  Every rational number q 
determines a left Dedekind set, which is merely the set of all rational numbers that are 
less than q.  Verifying the three conditions for such a set is a straightforward exercise. 
  

In Dedekind’s approach, one defines the real numbers to be the collection of all left 
Dedekind sets; the axioms of set theory will then imply that this collection is a set. 
 

The next step is to define addition, multiplication and ordering for left Dedekind sets.  It is 
particularly easy to define ordering, for it corresponds to set – theoretic inclusion.  With 
this definition, the important Dedekind Completeness Property follows very quickly; in 
fact, the least upper bound of a bounded collection of left Dedekind sets turns out to be 
the union of these sets (see Goldrei, Theorem 2.2, pages 13 – 14). 
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Defining addition is a little less trivial but still not difficult.  Given two left Dedekind sets C 

and D, the sum C + D is taken to be the set of all rational numbers expressible as x + y 

where x ∈∈∈∈ C and y ∈∈∈∈ D.  One needs to check that this is again a left Dedekind set, but 
this can be done.  It is also useful to describe the negative of a left Dedekind set C at 

this point.  Let B0  denote the complement of C in the rational numbers, and take B 

equal to B0 if the latter has no least element m and B  =  B0 – { m } otherwise; finally 

define the negative – C to be the set of all numbers x such that – x  ∈∈∈∈  B.   
 

CLAIM:  The set  – C is a left Dedekind set. 
 

Proof.   The first thing to note is that this set is nonempty, or equivalently that B is 

nonempty.  The first two conditions on C imply that B0 is nonempty, so all that remains is 

to verify that B0 contains more than its least element.  In fact, if m is the least element 

and z  >  m, then we claim that x ∈∈∈∈ B0 , for otherwise we would have z ∈∈∈∈ C, and 

therefore the third property would imply m ∈∈∈∈ C, which we know is false. 
 
We shall now verify the three characterizing properties in order.  (1) Observe that if y is 

any element of C then y is a lower bound for the sets B0 and B; to see this, suppose that 

x ∈∈∈∈ B0  and that y is not strictly less than x.  Then we have x  ≤  y, and by the defining 

properties of C it will follow that x ∈∈∈∈ C, which contradicts the construction of B0 as a set 

that is disjoint from C.  It therefore follows that – y is an upper bound for – C.  (2)  For 

each x ∈∈∈∈ – C we need to find some y such that y ∈∈∈∈ – C and y  >  x.  By definition, if we 

have x ∈∈∈∈ – C then – x ∈∈∈∈ B0 but – x is not the least element of the latter.  If B0 has no 

least element then clearly there is some w ∈∈∈∈ B such that w  <  – x.  If B0 has a least 
element we have to look more carefully.  Suppose that w lies between the least element 

m and – x; we claim that w ∈∈∈∈ B. If not, then w ∈∈∈∈ C, and by the third condition in the 

definition of a left Dedekind set it will follow that m ∈∈∈∈ C, which is false.  Therefore in both 

cases we have an element of B such that w  <  – x , and hence we also have x  <  – w 

where both of the latter belong to – C.  Therefore the latter set has no largest element.  

(3) If x  <  y  and y  ∈∈∈∈        – C, then we need to prove that x        ∈∈∈∈        – C.  By construction we 

know that – y ∈∈∈∈ B, and of course we also have – y  <  – x, so the proof reduces to 

showing that – x ∈∈∈∈ B.   What are the other possibilities?  One option is that – x could be 

the least element of B0 , but this is not true because it is greater than – y and the latter 

lies in B.  Thus the only remaining alternative to – x ∈∈∈∈ B is that we have – x        ∈∈∈∈        C.   

Since – x  >  – y it would follow that – y would lie in C and we know this is false because 

– y actually lies in the disjoint subset B.  Therefore the only possibility is that – x ∈∈∈∈ B, 

which is equivalent to x ∈∈∈∈ – C.  This completes the proof that the set – C is a left 
Dedekind set.� 
 

The general definition of multiplication is more complicated.  However, if we are given 
two sets C and D that are positive in the sense that both contain 0 (hence also contain 
some positive rational numbers), the definition is again simple:   The product of the sets 

C · D is then taken to be the set of all rational numbers expressible as x · y where x ∈∈∈∈ C 

and y ∈∈∈∈ D.  In the remaining cases one must adjust the definition; this is explained 

thoroughly on page 15 of Goldrei, and it simply corresponds to the usual rules for 
determining whether the product of two numbers is positive, negative or zero if at least 
one of the factors is nonpositive.  We specifically took the trouble to define the negative 
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of a left Dedekind set explicitly so that the notion could be used in the definition of 
multiplication. 
 

Having defined the algebraic structure on left Dedekind sets, it remains to verify that the 
ordering and algebraic operations satisfy all the properties that are supposed to hold for 
the real numbers.  These are listed in Theorem 2.3 on page 16 of Goldrei.   Once again, 
the first online document cited above has all the details.  

  
The Cantor construction of the real numbers 

 
Given the fundamental importance of the real numbers in mathematics, it certainly would 
not hurt to confirm the existence of such a system by describing another construction.  
The standard alternative to Dedekind’s construction is the so – called Cauchy 
sequence construction due to Cantor.   Both yield systems satisfying the axioms for 
the real numbers, and by the uniqueness results in Section 3, the systems obtained by 
the different methods are the same for all mathematical purposes.   Each approach to 
constructing the real number system has its own advantages and disadvantages.  Some 
constructions or proofs that are simple and natural in one are difficult or awkward in the 
other.  In particular, the definition of multiplication is much easier in Cantor’s 
construction, but one does not need to worry about equivalence classes in Dedekind’s 
construction, which defines real numbers directly as subsets of the rationals. 
 

The starting point for Cantor’s construction is slightly different to the basic idea exploited 
by Dedekind; namely, every real number is the limit of a sequence of rational numbers.  
There are several ways one can see this, and the standard representations by (usually) 
unending decimal expansions provide a particularly direct means of doing so (see 

Section V.5 of these notes).    
 

Cantor’s construction of the real numbers is described on pages 17 – 24 of Goldrei.  In 
order to begin, one needs to define a type of sequence that looks like it should have a 
limit; the precise concept is called a Cauchy sequence, and it is defined on page 18 

(Note:   On page 17, Goldrei notes that every Cauchy sequence of real numbers 
converges to a limit and describes this as “a dull observation” — not everyone would 
agree with this opinion, and regardless of whether or not one agrees with it, the result 

itself and its numerous generalizations are extremely important for many purposes).  
Sequences whose values are constant and equal to some fixed rational number are 
Cauchy sequences, and they yield an embedding of the rationals into the set of 
equivalence classes of Cauchy sequences.  One then defines a notion of equivalence if 
the sequences approach each other asymptotically, after which one defines addition, 
multiplication and ordering as on pages 22 – 23 of Goldrei.  It follows immediately that 
these operations correspond to the ones we already have for rational numbers.  Finally, 
as indicated on page 23 of Goldrei, one proves that the sets of equivalence classes of 
Cauchy sequences have all the required properties of the real number system, and this 
completes the proof that Cantor’s construction also yields a model for the real numbers. 
 

The preceding discussions of the Dedekind and Cantor constructions of the real 
numbers are only meant to summarize the latter and to indicate the crucial role of infinite 
set theory in both approaches.  A reader interested in seeing more of the details is urged 
to consult the listed references. 
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The roles of the real number constructions 

 
Most books on the theory of functions of a real variable written during the past few 
decades begin with the axioms for the real number system and proceed to develop the 
foundations of calculus from that basis.  The actual means of construction of the real 
numbers is unimportant from this viewpoint, and the following quote from page 16 of 
Goldrei summarizes the situation quite well: 
 

The methods found in standard real analysis texts … never “look inside” any real 
number, so the fact that a real number has been defined as a set of rationals 
ceases to be relevant. 

 

Although the method of construction for the real numbers is relatively unimportant once 
the process is finished, both the Dedekind and Cantor methods are useful for studying 
certain other types of questions about embedding one mathematical system in another, 
where the latter has some desired properties; usually these involve adjoining additional 
points so that certain “good” sequences will have limits.   Such constructions occur 
frequently in mathematics and its applications (particularly to physics), and they are 
characterized by names such as envelopes, extensions, compactifications, limiting 
objects, or (the default term) completions.    
 

We conclude this discussion of the real numbers with another quotation taken from 
pages 16 – 17 of Goldrei, which summarizes the preceding discussion and relates it to 

the material at the end of Section V.2: 
 

It is relevant to note at what cost we have defined the real numbers.  First, we 
have defined reals in terms of rational numbers.  …  Secondly, the definition of 
an individual real number is as an infinite set of rationals.  Use of the infinite in 
mathematics has been a matter of controversy for a good 2000 [ actually, more 
like 2500 ] years [ in Western civilization at least – many classical Indian 
mathematicians were not at all reluctant to discuss such matters].  Arguably 
mathematicians of the 19

th
 century were confident with what is called a 

potentially infinite set, one for which, however (finitely) many elements you 
have, there is always another available.  But in treating an actually infinite set, 
like a Dedekind left set of rationals, as a legitimate mathematical object suitable 
for all sorts of manipulation, seemed somewhat dubious. 

 

Complex numbers and other standard constructions.   Once the real numbers are 
defined, there is no problem defining systems like the complex numbers, the usual 

coordinate spaces of  n – dimensional vectors with real or complex coefficients, or any of 
the other objects one sees in basic undergraduate mathematics; in fact, all the usual 
construction go through unchanged.   
 
 
 

V I  I  I. 3 :  Uniqueness of number systems 
 
 

In the preceding section we outlined the construction of number systems which satisfy 
the basic properties of the integers, rational numbers and real numbers using the 
Standard Axiom of Infinity.  The purpose of this section is to provide detailed proof of the 

following uniqueness results for number systems from Unit V:  
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Theorem V.1.6.  Suppose that X and Y are sets with notions of addition, multiplication 
and ordering which satisfy all the conditions for the integers.  Then there exists a unique 

1 – 1 correspondence from h from X to Y that is an isomorphism in the appropriate 

sense:  For all u , v ∈∈∈∈ X we have h(u + v)   =   h(u) + h(v),  h(u · v)   =   h(u) · h(v), and 
h(u)  <   h(v)  if and only if  u  <  v.  The map h sends the zero and unit of  X  to the zero 
and unit of Y respectively.  
 

Theorem  V. 4.4.  Suppose that X and Y are sets with notions of addition, multiplication 
and ordering which satisfy all the conditions for the real number system.  Then there 

exists a unique 1 – 1 correspondence from h from X to Y that is an isomorphism in the 

same sense as above:  For all u , v ∈∈∈∈ X we have h(u + v)   =   h(u) + h(v),  h(u · v)   =   
h(u) · h(v), and  h(u)  <   h(v)  if and only if  u  <  v.  The map h sends the zero and unit 
of  X  to the zero and unit of Y, and accordingly it also sends the “integers” in X  to the 
“integers” in Y (and similarly for the “rationals” in the appropriate systems). 
 

As indicated in Unit V, these results imply that  
 

any mathematical statement about the addition, multiplication and 
ordering of X is true about the addition, multiplication and ordering 
of Y and conversely.   

 

Informally, this means that X and Y are “the same for all practical purposes.”  The 

significance of this is also noted in Sections V.1 and V.4; if there are two systems that 
satisfy these axioms such that the properties of addition, multiplication and ordering 
differed in some nontrivial fashion, then one can and should question whether there are 
different versions of mathematics depending upon which system of is chosen to 
be the “integers” or the “real numbers.”   The uniqueness theorem implies that no 
such difficulties of this sort exist. 

  
Existence of an isomorphism 

 
As usual with statements about the existence of a unique object, the proof splits into two 
parts, one to establish existence and the other to establish uniqueness.  Therefore our 
first objective will be to construct an isomorphism from X to Y.  We shall start very 

formally and write our systems as (X, AX, MX, OX) and (Y, AY, MY, OY), where A and M 
denote the respective additions and multiplications and O denotes the respective linear 

orderings.   In this terminology, an isomorphism from X to Y will denote a 1 – 1 

correspondence f : X →→→→ Y such that for all  u, v ∈∈∈∈ X we have the following relations: 
 

(1)  f (AX(u, v) )   =   AY(f(u), f(v) ).   [The mapping f is additive.] 
 

(2)  f (MX(u, v) )    =   MY( f(u), f(v) ).    [The mapping f is multiplicative.] 
   

(3)  If (u, v) ∈∈∈∈ OX, then (f(u), f(v) ) ∈∈∈∈ OY.   [The mapping f is order preserving.] 
 

Formally, we want to prove the following. 
 

Theorem 1.  If  X  and  Y  are systems satisfying the axioms for either the integers or the 
real numbers (the same number system in both cases), then there exists an 

isomorphism f : X →→→→ Y in the sense described above. 
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It is an elementary exercise to verify that if f defines an isomorphism from X to Y, then 

the inverse function f 
–

 

1 defines an isomorphism from Y to X.  In particular, if X is 
isomorphic to Y, then Y is isomorphic to X and one can simply say that X and Y are 
isomorphic (to each other).   
 

The constructions of the isomorphisms start with the definition for natural numbers ( = 
nonnegative integers) and the proceeds to its definition for the (signed) integers; in the 
case of the real numbers, the definition is extended still further, first to the rational 
numbers and ultimately to the real numbers.  The first step in both arguments is the 
same. 
 

First step.   We have already noted that there are (unique) embeddings of the natural 

numbers —  say eX and eY   —   into X and Y sending zero element 0 of NNNN  to the zero 

elements 0X and 0Y of  X and Y  respectively and satisfying the basic conditions 
 

eX( σσσσ(n) )   =   eX(n)  +  1X ,     eY( σσσσ(n) )   =   eY(n)  +  1Y 
 

where 1X and 1Y are the unit elements of X and Y respectively.  For each  x ∈∈∈∈ X  there is 

at most one n ∈∈∈∈ NNNN such that  x  =  eX( n ), and therefore we can construct a well – 

defined function  
 

f1 : eX[NNNN] →→→→ eY[NNNN] 
 

by setting  f1(eX( n ) )   =   eY(n)  for  n ∈∈∈∈ NNNN.  By construction this defines a one-to-one 

correspondence between  eX[NNNN]   and  eY[NNNN]. 
  

CLAIM:  The map f1 satisfies the conditions 
 

f1( AX(u, v) )   =   AY( f1(u), f1(v) ) ,   
 

f1( MX(u, v) )   =   MY( f1(u), f1(v) ), 
 

if (u, v) ∈∈∈∈ OX,  then ( f1(u), f1(v) ) ∈∈∈∈ OY 
 

for all u, v  ∈∈∈∈  NNNN.  Using the maps eX and eY  we may rewrite these conditions as  
 

f1(AX( eX(m), eX(n) ) )   =   AY(f1(eX(m) ), f1( eX (n) ) ),   
 

f1(MX ( eX(m), eX(n) ) )   =   MY(f1(eX(m) ), f1( eX(n) ) ),   
 

if (eX(m), eX(n) ) ∈∈∈∈ OX, then ( f1(eX(m) ),  f1( eX(n) ) ) ∈∈∈∈ OY 
 

for all m, n ∈∈∈∈ NNNN.  We shall verify the first two of these by induction on n; in order to 

simplify the notation and stress the underlying ideas we shall use the standard algebraic 
terminology to denote the addition, multiplication and linear orderings on X and Y. 
 

Addition.   Suppose that  n  =  0.   Then  
 

f1( eX(m) + eX(0) )   =   f1( eX(m) + 0X )  =  f1( eX(m) )   = 

eY (m) + 0Y    =    eY (m) +  eY (0)   =   f1( eX(m) )  + f1( eX(0) ). 
 

Thus the equation is true for n  =  0 and all  m.  Suppose now that it is true for n = k  and 
all m;  we need to show it is true for n = σ(k) and all m.  But  
 

f1( eX(m) + eX( σσσσ (k) ) )   =   f1( eX(m) + eX(k) + 1X )   =   f1( eX(m) + eX(k) + 1X )   = 

 f1( eX(m) + 1X + eX(k) )   =   f1( eX( σσσσ (m) ) + eX(k) ) 
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and by the induction hypothesis the last expression is equal to  
 

f1( eX( σσσσ(m) ) ) + f1( eX(k) ). 
 

The latter in turn is equal to  
 

eY( σσσσ(m) ) + eY(k)    =   eY(m) + 1Y + eY(k)   =   eY(m) + eY( σσσσ(k) )   = 

  f1( eX(m) ) + f1( eX(σσσσ(k)) ). 
 

This completes the verification of the inductive step. 
 

Multiplication.   Suppose that n =  0.   Then  
 

f1( eX(m) ⋅⋅⋅⋅ eX(0) )   =   f1(eX(m) ⋅⋅⋅⋅ 0X)   =  f1(0X)   =   0Y    =   eY(m) ⋅⋅⋅⋅ 0Y   =    

eY(m) ⋅⋅⋅⋅ eY(0)   =   f1( eX(m) ) ⋅⋅⋅⋅ f1( eX(0)  ). 
 

Thus the equation is true for n  =  0 and all  m.  Suppose that we know the equation is 
true for  n  =  k  and all  m;  we need to show it is true for n  =  σ(k) and all m.  But  
 

f1( eX(m) ⋅⋅⋅⋅ eX( σσσσ(k)  ) )   =   f1( eX(m) ⋅⋅⋅⋅ eX(k) + eX(m)  )   = 

f1( eX(m) ⋅⋅⋅⋅ eX(k)  )  +  f1( eX(m)  ) 
 

because we have already verified that  f1 is additive, and by the induction hypothesis the 

last expression is equal to  f1(eX(m) ) ⋅⋅⋅⋅ f1(eX(k) ) + f1(eX(m) ).  The latter in turn is equal to  
 

eY(m)  ⋅⋅⋅⋅ eY(k) + eY(m)   =   eY(m) ⋅⋅⋅⋅ eY(σσσσ(k) )   =    f1(eX(m) )  ⋅⋅⋅⋅ f1(eX( σσσσ(k) ) ). 
 

As before, this completes the verification of the inductive step. 
 

Ordering.   If eX(m)  <   eX(n) then there is a nonzero natural number c ∈∈∈∈ NNNN such that 

eX(m) + eX(c)   =   eX(n). Since f1 is one-to-one, it follows that eY(c)  =  f1(eX(c))  ≠≠≠≠  0Y, so 

that eY(c)  >  0Y .  By the additivity of f1 it follows that  
 

f1(eX(m) )   =   eY(m)   =   eY(m) + 0Y    <   eY(m) + eY(c)   = 

 f1(eX(m) + eX(c) )   =   f1(eX(n) ) 
 

as required. 
 
Notational conventions.    Let F be a system satisfying the axioms for the integers or 

the real number system, and let e F : NNNN  →→→→ F be the embedding of the natural numbers 

that has been used extensively in the preceding step of the proof.  We define the 

integers in F to be the set of all objects of the form e F(a) – e F(b) for some a, b ∈∈∈∈ NNNN, and 

we shall denote this set by ZZZZ (F).  Similarly, if F satisfies the axioms for the reals, we 

define the rational numbers or rationals in F to be the set of m/n where m and n are 

integers in F  and n is nonzero, and we shall denote this set by QQQQ(F).  If we are dealing 

with one fixed system in a given context we shall omit the “(F)” to simplify and 
standardize the notation.  
 

Second step.  We need to extend f1 to negative integers.  Clearly we want a definition 

sending a negative number of the form – eX(n)  ∈∈∈∈  X  to – eY(n)  =  – f1(eY(n) ), but we 
shall take a slightly less direct approach that will be helpful in verifying the crucial 
properties of the extended map without a succession of case by case arguments.   
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By the preceding definition, every integer n  ∈∈∈∈  X can be represented as a difference 

eX(a) – eX(b) for some a, b ∈∈∈∈ NNNN; this representation is not unique, but it is elementary to 

check that eX(a) – eX(b)   =   eX(c) – eX(d) if and only if  
 

eX(a) + eX(d)   =   eX(b) + eX(c). 
 

We shall extend  f1 to a map  f2 on integers by setting   
 

f2 (eX(a) – eX(b) )   =   eY(a) – eY(b)   =    f1(eX(a) ) – f1(eX(b) ). 
 
Before proceeding any further we need to show that  f2  is well-defined; in other words, 
we need to verify that  
 

if eX(a) – eX(b)   =   eX(c) – eX(d),  then  eY(a) – eY(b)   =   eY(c) – eY(d).    
 

Equivalently, we need to show that  
 

if eX(a) + eX(d)   =   eX(b) + eX(c),  then eY(a) + eY(d)   =   eY(b) + eY(c).    
 

To see the latter, apply f1 to both sides of the first equation and note that the additivity of 

f1 on NNNN implies that  
 

eY(a) + eY(d)   =   f1(eX(a) ) +  f1(eX(d) ) =  f1(eX(a) + eX(d) )   =  
 

 f1(eX(b) + eX(c) )   =   f1(eX(b) ) + f1(eX(c) )   =   eY(b) + eY(c) 
 

so that  f2  is well-defined.   
 

Throughout the remainder of this step in the proof we shall consider two integers in X of 
the form m  =  eX(a) – eX(b) and n  =  eX(c) – eX(d).   
 

We must now show that   f2 is 1 – 1.  To see this, suppose that  f2 (m)  =  f2 (n).  By 

construction it follows that eY(a) – eY(b)   =   eY(c) – eY(d) so that we have  eY(a) + eY(d)   

=   eY(b) + eY(c).   The identities of the previous paragraph now imply that 
 

f1(eX(a) + eX(d) )   =   f1(eX(b) + eX(c) ) 
 

and since  f1 is 1 – 1 it follows that eX(a) + eX(d)  =  eX(b) + eX(c).  But the latter implies 
eX(a) – eX(b)  =  eX(c) – eX(d) which in turn implies that m   =   n.  By construction it 
follows that the image of f2 is the set of all differences of elements in the image of eY ; in 
other words, f2 maps the integers in X onto the integers in Y.     
 

We next verify that f2 is additive:  
 

f2 (m + n)   =   f2 (eX(a) – eX(b) + eX(c) – eX(d) )   =  

f2 (eX(a) + eX(c) – eX(b) – eX(d) )   =    f2 ( ( eX(a) + eX(c) ) – ( eX(b) + eX(d) ) )   =  

f1(eX(a) + eX(c) ) – f1(eX(b) + eX(d) )   =  (eY(a) + eY(c) ) – (eY(b) + eY(d) )   =  

eY(a) – eY(b) + eY(c) – eY(d)  =   f2 (m) + f2 (n). 
 

The verification that f2 is multiplicative proceeds similarly: 
 

f2 (m ⋅⋅⋅⋅ n)   =   f2 ( (eX(a) – eX(b) ) ⋅⋅⋅⋅ (eX(c) – eX(d) ) )   = 

 f2 ( (eX(a) ⋅⋅⋅⋅ eX(c) + eX(b) ⋅⋅⋅⋅ eX(d) ) – (eX(a) ⋅⋅⋅⋅ eX(d) + eX(b) ⋅⋅⋅⋅ eX(c) ) )    =  

f1(eX(a) ⋅⋅⋅⋅ eX(c) + eX(b) ⋅⋅⋅⋅ eX(d) ) – f1(eX(a) ⋅⋅⋅⋅ eX(d) + eX(b) ⋅⋅⋅⋅ eX(c)  )    =  

( f1(eX(a) ) ⋅⋅⋅⋅ f1(eX(c) ) +  f1(eX(b) ) ⋅⋅⋅⋅ f1(eX(d) ) ) –  

( f1(eX(a) ) ⋅⋅⋅⋅ f1(eX(d) ) + f1(eX(b) ) ⋅⋅⋅⋅ f1(eX(c) ) )   = 
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(eY(a) ⋅⋅⋅⋅ eY(c) + eY(b) ⋅⋅⋅⋅ eY(d) )  –  (eY(a) ⋅⋅⋅⋅ eY(d) + eY(b) ⋅⋅⋅⋅ eY(c) )  = 
 

(eY(a) – eY(b) ) ⋅⋅⋅⋅ (eY(c) – eY(d) )   =   f2 (m) ⋅⋅⋅⋅ f2 (n).  
 

To prove that  f2  is order preserving, suppose that m  <  n, so that we have  
 

eX(a) – eX(b)   <    eX(c) – eX(d). 
 

Adding eX(b) – eX(d) to both sides of this inequality yields 
 

eX(a) + eX(d)   <   eX(b) + eX(c) 
 

and since  f1 is order preserving the latter in turn implies 
 

eY(a) + eY(d)   =   f1(eX(a) ) +  f1(eX(d) )   =   f1(eX(a) + eX(d) )   < 
 

f1(eX(b) + eX(c) )    =    f1(eX(b) ) + f1(eX(c) )   =   eY(a) + eY(c).   
 

If we now subtract eY(b) + eY(d) from both sides of the outside inequality we obtain the 
desired conclusion: 
 

f2
 (m)   =   eY(a) – eY(b)   <   eY(c) – eY(d)   =   f2

 (n) 
 

This completes the second step of the proof. 
 

Note that the preceding two steps complete the proof of Theorem V.1.6.�  

 
Third step.  We may now assume that X and Y satisfy the axioms for the real numbers, 

so that we need an extension of f2 to rational numbers of the form a/b where a and b 

are integers and b is nonzero.  Recall from elementary algebra that two fractions a/b 

and c/d (with b and d nonzero) are equal if and only if a d   =   b c.   
 

The idea is to consider a number q ∈∈∈∈ X of the form a/b, where a and b are integers in X 

and b is nonzero, and to define f3(q)  =  f2(a)/f2(b).  In order to show that this is a valid 

definition we need to check two things.  First of all, since f2 is 1 – 1 it follows that f2(b) is 
nonzero if b is nonzero, so the quotient is actually defined.  Second, we need to show 
that the value obtained by the formula is the same if we write q as a quotient of integers 

in two different ways.  In other words, we need to show that if a/b  =  c/d (with b and d 

nonzero) then we also have f2(a)/f2(b)  =  f2(c)/f2(d).  To do this, begin with the previous 

observation that ad  =  bc and apply f2 to both sides of the equation to obtain f2(a) ⋅⋅⋅⋅ f2(d)   

=   f2(b) ⋅⋅⋅⋅ f2(c). If we then divide both sides of this equation by f2(b) ⋅⋅⋅⋅ f2(d) we obtain the 

desired equation  f2(a)/f2(b)   =   f2(c)/f2(d).  
 

By construction the image of f3 consists of all expressions of the form u/v where u and 
v are in the image of  f2 and v is nonzero; in other words, f3 maps the rationals in X 

onto the rationals in Y.  We claim that f3 is also 1 – 1.  
 

Throughout the remainder of this step in the proof we shall consider two rational 

numbers in X of the form p  =  a/b and q  =  c/d where a, b, c, d are integers in X and b 
and d are nonzero.   
 

To prove that f3 is 1 – 1, suppose that f3 (p)  =  f3 (q).  By construction it follows that  

f2(a)/f2(b)  =  f2(c)/f2(d), which is equivalent to  f2(a) ⋅⋅⋅⋅ f2(d)   =  f2(b)  ⋅⋅⋅⋅ f2(c) .   Since f2 is 

multiplicative we have f2(a d)   =    f2(a) ⋅⋅⋅⋅ f2(d)   =    f2(b) ⋅⋅⋅⋅ f2(c)   =    f2(b c), and since  f2 is 

one-to-one this implies a d  =  b c, which in turn implies a/b  =  c/d and hence that the 

mapping f3 is also 1 – 1. 
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The verification that  f 3 is additive is a consequence of the following string of 
equations: 
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Similarly, the verification that  f 3 is multiplicative follows from a somewhat different 
string of equations: 
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Finally we need to show that  f 3 is order preserving .   We shall do this using the fact 

that a fraction a/b is positive if and only if the product of the number and denominator ab 

is positive (the second number is the product of the first with the positive number b
2

 ).  
Therefore suppose that p  <  q ; then  p – q is positive, and by the observation on the 

signs of fractions in the previous sentence it follows that the integer (bc – ad) ⋅⋅⋅⋅ bd is also 
positive.  Since  f2  is order preserving it follows that  
 

f2 ( (bc – ad) ⋅⋅⋅⋅ bd)   =   ( f2 (b) ⋅⋅⋅⋅ f2 (c)  –  f2 (a) ⋅⋅⋅⋅ f2 (d) ) ⋅⋅⋅⋅ (f2 (b) ⋅⋅⋅⋅ f2 (d) ) 
   

is also positive.  But the right hand side of this equation is equal to  f3(q) –  f3(p) , so the 
preceding observations imply that f3 (q)   >   f3 (p) as required. 
 

Fourth step.   We need to extend  f3  to all elements of X .   Given a number r ∈∈∈∈ X ,  

consider the set  D(r) of all rational numbers q ∈∈∈∈ X such that q  <  r.  Let k be a positive 

integer that is greater than r, and consider the set f3 [ D(r) ] ⊂⊂⊂⊂ Y.  Since  f3  is order 

preserving it follows that  f3(k) is an upper bound for  f3 [ D(r) ] and therefore by 

completeness the set  f3 [ D(r) ] has a (unique) least upper bound; we take f(r) to be this 
least upper bound.  This definition may be rewritten as follows: 
 

f(r)   =   L.U.B.  q < r   f3(q)  
 

The first order of business is to show that f3(r)  =  f(r) when r is rational.  If r is rational 

and q  ∈∈∈∈  D(r), then by the previous work we know that f3(q)  <   f3(r), so that f3(r) is an 

upper bound for  f3 [D(r) ] and consequently is greater than or equal to the least upper 

bound, which is  f(r).  Suppose now that f(r)  <   f3(r).  It follows that there is a rational 

number t ∈∈∈∈ X such that f(r)  <   f3(t)  <   f3(r).  Since f3 is order preserving, the second 

inequality implies that t   <   r.  The latter in turn implies t  ∈∈∈∈  D(r) and hence f3 (t)  ≤  f(r), 

which when combined with the previously displayed inequality f(r)  <   f3 (t) yields a 

contradiction.  It follows that f(r)  =  f3 (r).   
 

To show that  f  is 1 – 1 , assume that r and s are real numbers in X such that r  <  s.  
Choose rational numbers p and q such that r   <  p  <   q   <   s.  As before, it follows 

that f3(p) is an upper bound for f3[ D(r) ] and therefore we have f(r)  ≤   f3(p)  =  f(p).  

Furthermore, since f3  =  f  for rational numbers it follows that f(p)  <  f(q), and also since 
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q  ∈∈∈∈  D(s) it follows that f(q)  =  f3(q)  ≤  f(s).  If we put these inequalities together we 

find that  f(r)  <  f(s) and consequently that  f  is also  1 – 1.  Note that this argument 
also shows that  f is order preserving.  
 

We shall next verify that the function f  maps X onto all of  Y.  Let  y  ∈∈∈∈  Y be 

arbitrary, and let D
∗

 (y) be the set of all rational numbers q ∈∈∈∈ Y such that q  <  y; by 

construction  y  is an upper bound for D
∗

 (y), and in fact the least upper bound of D
∗

 (y) is 
equal to  y  because if  z  <  y then there is a rational number p such that  z  <  p  <  y.  

As before there is a positive integer k  ∈∈∈∈  Y such that y  <  k, and since the function  f3  is 

order preserving it follows that  k0  =  f3
–

 

1
(k) is an upper bound for the set  f3

–
 

1[ D
∗

 (y) ].  
Therefore the latter set has an upper bound that we shall denote by x.  We claim that 
f(x)  =  y, and we shall do this by showing that  y  ≤   f(x) and strict inequality does not 
hold.   To show the inequality, suppose that we have q  <  y, and choose a rational 

number p  ∈∈∈∈  Y such that q  <  p  <  y. If we write  q0  =  f3
–

 

1
(q)  and  p0  =  f3

–
 

1
(p), then 

q0  <  p0, and since both belong to the set  f3
–

 

1[ D
∗

 (y) ] it follows that q 0  <  p 0  <  x.  

Since the function  f is order preserving the identities p  =  f3(p 0)  =  f(p0) and q  =  f3(q 0)  

=  f(q 0)  imply  the chain of inequalities  q  <  p  <  f(x).  Thus f(x) is an upper bound for 

D
∗

 (y); since y is the least upper bound for D
∗

 (y), we must have y  ≤  f(x).  The proof that 
y  =  f(x)  thus reduces to showing that f(x) is not strictly greater than  y.   
 

Assume the contrary.  Then there is a rational number q satisfying  y  <  q  <  f(x), and 

write  q  =   f3(q 0)  =   f(q 0) as before.  Since the function f is order preserving, it follows 

that q 0  <  x.  But the definition of  x  as a least upper bound implies the existence of a 

rational number p0 such that   q 0  <  p 0 and p  =  f 3
–1

(p 0) lies in D
∗
(y); i.e.,  we must 

have p  <  y.  Once again we have q  =  f3(q 0)   <   f3(p 0)  =  p,  and if we combine this 
with the other inequalities, we get the longer string of inequalities  y  <  q  <  p  <  y,  
which is a contradiction.  This completes the proof that y  =  f(x). 
 

The next step is to show that  f  is additive.  Let u and v be arbitrary real numbers in X.    
 

Consider first the special case where one of these numbers (say v) is rational.  In this 

case the set D(u + v) is the set of all numbers expressible as sums  
 

f3 (q)  +  f3 (v)   =    f3 (q)  +  f(v) 
 

where q  ∈∈∈∈  D(u), and therefore we have  
 

f(u + v)   =   L.U.B.  q < u + v   f3 (q)  =   [ L.U.B.  p < u   f3 (p) ]  +  f(v)  =  f(u) + f(v)  
 

and hence f is additive if v is rational and u is arbitrary.   
 

We now consider the general case.  If q is a rational number such that  q  <  v, then we 

have f(u) + f(q)   =   f(u + q)   <   f(u + v) because f is order preserving and it is also 
additive if one of the summands is rational.  Therefore q  <  v implies that  

 

f3 (q)   =   f(q)   <   f(u + v)  –  f(u)  
 

and consequently we have 
 

f(v)   =   L.U.B.  q < v   f3 (q)    ≤   f(u + v)  –  f(u).  
 

Additivity will follow if we can show that  f(v)  <  f(u + v) –  f(u) is impossible, so assume 

that it does hold.  In this case there is a rational number r ∈∈∈∈ Y such that  
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f(v)   <   r   <   f(u + v)  –  f(u)  
 

and because  f  is onto we may write r   =   f(q)  for some rational number q ∈∈∈∈ X .  Since 
f is order preserving we know that  v   <   q, and consequently the order preserving and 
partial additivity properties of  f  imply that  
 

f(q)   =   r   <   f(u + v) –  f(u)   <   f(u + q) –  f(u)   =   f(u) + f(q) –  f(u)   =   f(q) 
 

which is a contradiction. Therefore the assumption  f(v)  <  f(u + v) –  f(u)  must be 
incorrect, and by the preceding discussion it follows that  f  must be additive. 
 
At this point, the only statement that remains to be shown is that f is multiplicative.  

We first observe that f is multiplicative if at least one of the factors is 0 or  ±±±± 1.   If one of 

the factors is + 1, this is immediate because f(1X)  =  1Y .  If one of the factors is zero, this 

follows quickly because the product of anything with zero is zero and f (0X)  =  0Y .  If one 

of the factors is – 1, this will follow provided we can demonstrate that f(–a)  =  – f(a) for 

all  a ∈∈∈∈ X , for then we have f(–1X)   =   – f(1X)   =   – 1Y and furthermore  
 

f ((– 1X) ⋅⋅⋅⋅ a)   =    f(– a)   =   – f(a)   =   (–1Y) ⋅⋅⋅⋅ f(a)   =   f(–1X) ⋅⋅⋅⋅ f(a). 
 

To see that f(– a)  =  – f(a), let b  =  – a.  Since f  is additive we have that  
 

0Y   =   f(0X )   =   f(a + b)   =   f(a) + f(b) 
 

and the latter implies that  f(b)  =  – f(a) as required.  We are going to need the basic 

identity f(– a)  =  – f(a) in order to complete the final step in the verification that f is 
multiplicative.  
 

The next step in verifying that  f  is multiplicative is to show this is true if both of 
the factors are positive.  The proof of this fact is very similar to the proof of additivity 
(since the exponential map defines an order preserving isomorphism from the additive 
group of real numbers to the multiplicative group of positive real numbers, this should 
not be surprising).  Let u and v be arbitrary positive real numbers in X.   Since f is order 
and zero preserving it follows that both f(u) and f(v) are positive.  
 

Consider first the special case where one of these numbers (say v) is rational (and 

positive!).  In this case, the set D(u ⋅⋅⋅⋅ v) is the set of all real numbers expressible as sums 

f3 (q) ⋅⋅⋅⋅ f3 (v)  =   f3 (q) ⋅⋅⋅⋅ f(v)  where q  ∈∈∈∈  D(u), and therefore we have  
 

f(u ⋅⋅⋅⋅ v)   =   L.U.B.  q < u ⋅⋅⋅⋅ v  f3 (q)   =   [ L.U.B. p < u   f3 (p) ] ⋅⋅⋅⋅ f(v)   =   f(u) ⋅⋅⋅⋅ f(v)  
 

and hence  f  is multiplicative if  v  is rational and  u  is arbitrary.   
 

We now consider the general case.  If q is a rational number such that  q  <  v, then we 

have f(u) ⋅⋅⋅⋅ f(q)   =   f(u ⋅⋅⋅⋅ q)  <   f(u ⋅⋅⋅⋅ v) because f  is order preserving and it is also additive 
if one of the summands is rational.  Therefore q  <  v implies that  
 

f3 (q)   =   f(q)   <   f(u ⋅⋅⋅⋅ v)/f(u) 
 

and consequently we have 
 

f(v)   =   L.U.B.  q < v   f3 (q)   ≤   f(u ⋅⋅⋅⋅ v)/f(u).  
 

Multiplicativity will follow if we can show that f(v)  <  f(u ⋅⋅⋅⋅ v)/f(u) is impossible, so assume 

that it does hold.  In this case there is a rational number r ∈∈∈∈ Y such that  
 

f(v)   <   r   <   f(u ⋅⋅⋅⋅ v)/f(u) 
 



 

 201

and because f  is onto we may write r  =   f(q)  for some rational number q ∈∈∈∈ X.  Since  f 
is order preserving we know that v  <  q, and consequently the order preserving and 
partial multiplicativity properties of  f  imply that  
 

f(q)   =   r   <   f(u ⋅⋅⋅⋅ v)/f(u)  <   f(u ⋅⋅⋅⋅ q)/f(u)   =   f(u) ⋅⋅⋅⋅ f(q)/f(u)   =   f(q)   
 

which is a contradiction. Therefore the assumption f(v)  <  f(u ⋅⋅⋅⋅ v)/f(u) must be incorrect, 
and by the preceding discussion it follows that  f  must be multiplicative. 
 

Finally, we need to verify that f is multiplicative in all cases.   Given a nonzero real 

number a, set εεεε(a) equal to + 1 if a is positive and – 1 if a is negative.  Then we may 

express a   =   εεεε (a) ⋅⋅⋅⋅ |a| where the absolute value |a| is positive.  Using the multiplicativity 

of  f for the product |u|⋅⋅⋅⋅|v| and the identity  f(εεεε ⋅⋅⋅⋅ a)  =  εεεε ⋅⋅⋅⋅ f(a)  for  εεεε  =  ±±±± 1 we have  
 

f(u ⋅⋅⋅⋅ v)   =   f ( (εεεε (u) ⋅⋅⋅⋅ |u|) ⋅⋅⋅⋅ (εεεε (v) ⋅⋅⋅⋅ |v|) )   =   f (εεεε (u) ⋅⋅⋅⋅ εεεε (v) ⋅⋅⋅⋅ |u| ⋅⋅⋅⋅ |v|)   = 
 

(εεεε (u) ⋅⋅⋅⋅ εεεε (v) ) ⋅⋅⋅⋅ f(|u| ⋅⋅⋅⋅ |v|)   =   (εεεε (u) ⋅⋅⋅⋅ εεεε (v) ) ⋅⋅⋅⋅ f(|u|) ⋅⋅⋅⋅ f(|v |)   =   
 

(εεεε (u) ⋅⋅⋅⋅ f(|u|)) ⋅⋅⋅⋅ (εεεε (v) ⋅⋅⋅⋅ f(|v|))   =   (f(εεεε (u) ⋅⋅⋅⋅ |u|) ) ⋅⋅⋅⋅ (f(εεεε (v) ⋅⋅⋅⋅ |v|))   =   f(u) ⋅⋅⋅⋅ f(v)  
 

and this completes the proof that f is multiplicative.  As noted before, this completes the 

proof of Theorem 1 as well as Theorem V.4.4.� 

  
Uniqueness of the isomorphisms 

 
It turns out that the isomorphisms constructed above are unique.  This is equivalent to 
saying that if A satisfies the axioms for the integers or the real numbers, then the only 
isomorphism of A with itself that preserves addition, multiplication and ordering is 
the identity.   In fact, a slightly stronger result is true. 
 

Theorem 2.   If A satisfies the axioms for the real numbers or the integers and the 

mapping f :  A →→→→ A  is a 1 – 1 correspondence that is additive and multiplicative (but is 
not  assumed  to preserve the ordering), then f is the identity. 
 

It is possible to define meaningful notions of isomorphism for many different classes of 
mathematical objects.   If the domain and codomain of an isomorphism are the same, it 
is often called an automorphism.  Given an object satisfying the axioms for the real 
number system, the identity map on that object is always an automorphism, and the 
main result above can be reformulated to state that for a system satisfying the axioms 
for the real number system there are no other automorphisms. 
 

Example of a nontrivial automorphism.  In contrast, there are some systems closely 
related to the real number systems that have nontrivial automorphisms.  Perhaps the 

most important example is the field of complex numbers CCCC.   Of course, this is the 

system one obtains from the real numbers by adding an element i that is supposed to be 

the square root of – 1.  A detailed account of the complex numbers is really beyond the 
scope of these notes, but the book by Birkhoff and MacLane covers the basics in a clear, 
concise and thorough manner.  Here our interest lies with the complex conjugation 

mapping on complex numbers sending a complex number z  =  a + b i  to its conjugate 

χχχχ(z)  =  z
∗
  =  a – b i.  This is a 1 – 1 correspondence because the identity z  =  (z

∗
)
∗
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implies χχχχ χχχχ  =  1CCCC , so that χχχχ is its own inverse, and χχχχ is an automorphism because 

complex conjugation satisfies the following two elementary identities: 
 

(z + w) ∗    =    z
∗
  +  w

∗
                (z ⋅⋅⋅⋅ w) ∗    =     z

∗
 ⋅⋅⋅⋅ w

∗
 

 

For the sake of completeness we note that the set of all automorphisms of the 

complex numbers is HUGE (in fact, its cardinality is  2
|CCCC|

  >  |CCCC|), but conjugation is 

the only nontrivial automorphism that sends real numbers to themselves and it is also 

the only nontrivial one which defines a continuous mapping from CCCC to itself. 
   

Proof of Theorem 2.   The proof begins with a couple of simple observations: 
 

(a) The only element u  ∈∈∈∈  A such that x ⋅⋅⋅⋅ u   =   x  for all x  ∈∈∈∈  A is the unit 

element. 

(b) The only element z  ∈∈∈∈  A such that x ⋅⋅⋅⋅ z  =  z  for all x  ∈∈∈∈  A is the zero 

element. 
 

These follow because  u  =  1 ⋅⋅⋅⋅ u   =  1 and  0  =  0 ⋅⋅⋅⋅ z   =  z .  Since  f  sends elements 

with properties (a) and (b) into elements with the corresponding properties, it follows that 

we must have  f (1)  =  1  and  f (0)  =  0. 
  

We shall also need two other standard elementary properties of automorphisms (and 
isomorphisms):   
 

(c)  For all x ∈∈∈∈ A  we have  f(– x)  =  – f(x) . 

(d)  If  A  =  RRRR, then for all nonzero x ∈∈∈∈ A we have  f(x
–1

)  =   f(x) 

–1
. 

 

The proof of (c) is the same argument that was used in the uniqueness proof, and the 
proof of (d) is based upon similar considerations: 

 

1   =   f (1)   =   f(x x 

–1
)  =  f(x) f(x 

–1
)  ⇒⇒⇒⇒  f (x 

–1
)  =  f (x) –1

 
 

The main idea behind the proof is to show successively that  f  must be the identity on 
each of the following: 
 

1. The natural numbers. 
 

2. The integers.   
 

3. The rational numbers. 
 

4. All real numbers. 
 

If A is the integers, then only the first two steps are needed.  Predictably, we take these 
steps in the order listed. 
 

The natural numbers.   Let e : NNNN  →→→→ A be the embedding described in the section on 

axioms for the real numbers.  We shall show that f( e(n) ) =  e(n)  by induction on n; we 

have already verified this if n  =  0 or n  =  1.  Suppose that this is known for n  =  k.  
Then by the additivity of f and the inductive hypothesis we have  
 

f ( e(σσσσ(k) ) )   =   f ( e(k) + 1)   =   f (e(k) ) + 1   =   e(k) + 1   =   e(σσσσ(k) ), 
 

and hence f is the identity on the natural numbers (more correctly, on the image of the 
natural numbers in the reals). 
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The integers.   Given an integer n ∈∈∈∈ ZZZZ , write n  =  e(a) – e(b) where a, b ∈∈∈∈ NNNN.  Then by 

the preceding step in the proof, the additivity condition and property (c) above we have  
 

f(n)  =   f (e(a) – e(b) )   =   f ( e(a) ) –  f (e(b) )   =   e(a) –  e(b)   =   n 
 

as required.  Note that this completes the proof if A  =  ZZZZ. 
 

The rational numbers.   We may now assume that A  =  RRRR.  Given an arbitrary rational 

number q  ∈∈∈∈ QQQQ express q as a quotient a b 
– 1

 where a, b  ∈∈∈∈ ZZZZ and  b is nonzero.  As 

before, by the immediately preceding step in the proof, the multiplicativity of  f  and 
property (d) above we have  
 

f(q)  =  f(a b–1)  =   f(a) f(b
–1

)  =   f(a) f(b)
–1

  =  a b
–1  =  q 

 

as required. 
 

The set of all real numbers.   The crucial step in the proof is to show that  f is order 

preserving.   Suppose that a, b  ∈∈∈∈  RRRR  satisfy a  >  b .  If   c  =  a – b  then  c  >  0 and 

therefore c has a unique positive square root that we shall call  d.   If we apply f to both 

sides of the equation d 

2
  =  a – b  we obtain the equation 

 

f(d) 2  =   f(d 

2
)   =   f(a – b)   =   f(a)  –  f(b); 

 

this quantity is nonzero because f is 1 – 1 (look at the right hand side), and it is 
nonnegative because it is a square (look at the left hand side).  Therefore the quantity in 
question is positive as claimed. 
 

To conclude the proof, let a ∈∈∈∈ R R R R  be arbitrary.  We need to show that neither of the strict 

inequalities a  >  f(a)  or  a  <  f(a)  can hold.  The proofs in both cases are similar so we 
shall do them simultaneously.  Suppose that a  >  f(a)   or  a  <  f(a)  is true,  and in the 
respective cases choose a rational number q such that   
 

a  >  q  >  f(a)  or    a  <  q  <  f(a) . 
 

Since f is order preserving and is the identity on rational numbers, these inequalities 
respectively imply 
 

f(a)  >  f(q)  =  q  >  f(a)  and    f(a) <   f(q)  =  q  <  f(a) . 
 

In either case we obtain a contradiction, and therefore we must have f(a)  =  a .�  
 

 
 

V I  I  I. 4 :  Set theory and classical geometry 
 
 

In Section I.2 we noted that classical Euclidean geometry had served as a working 
foundation for much of mathematics before the development of set theory and the 
Dedekind – Cantor constructions for the real number system out of the rational numbers.  
Further discussion of this point appears on pages 212 and 258 – 259 of the following 
online documents: 
 

http://math.ucr.edu/~res/math133/geomnotes5a.pdf 
 

http://math.ucr.edu/~res/math133/geomnotes5b.pdf 
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We also noted in Section I.2 that logical difficulties were noticed in the classical setting 

for geometry (i.e., as presented in the Elements) around the same time, but subsequent 
work near the end of the 19th century put classical geometry into a more logically 
rigorous form that meets current standards.  The purpose of this appendix is to indicate 
in more detail how classical Euclidean geometry fits into the framework of set theory in 
modern mathematics.  Our purpose is not really to go through the basics of classical 
Euclidean geometry but rather to explain how one integrates it into modern mathematics.  
References for further details will be given at appropriate points. 
 

In the Elements, geometry is developed by starting with some basic assumptions on the 
properties of space and deriving an extensive list of logical consequences.  If we are 
going to work within set theory, we must formulate the key mathematical aspects of 
geometry in set – theoretic terms rather than “physical reality.”  The first step in this 
process is very simple.  A set should be a formal mathematical model for a geometrical 

plane or 3 – dimensional space EEEE , and the points of the space should be the elements 

of EEEE.  The lines, and also the planes in the 3 – dimensional case, will then be sets of 

points and hence subsets of EEEE; the geometric concept of a point x lying on a line L or 

plane P will mean that x is an element of LLLL or PPPP respectively.   In the Elements, both 
lines and planes are defined intuitively, but from the viewpoint of logic it is necessary to 
start with some things that are simply given without formal definitions, and therefore the 

formal set – theoretic approach to geometry takes lines and planes simply as 
distinguished classes of subsets, nothing more and nothing less.   When we study 
geometry we usually think that these mathematical lines and planes should be 
idealizations of physical lines and planes, but this intuition serves only as a guide and 
motivation for our work.  To summarize this discussion, the first steps in placing 

deductive geometry within the framework of set theory is to assume that plane or 3 – 

space of classical geometry should be a set EEEE, and the additional structure should one 

or two classes of proper subsets depending upon the dimension.  In both cases there is 

a family of nonempty proper subsets LLLL called lines, and in the 3 – dimensional case 
there is also a second family of nonempty proper subsets PPPP called planes such that LLLL 
and PPPP are disjoint.   
 

Clearly we need to make some assumptions about our undefined concdepts; for 
example, we obviously need to know that two points determining a unique line.  
Properties of this sort are called incidence axioms, and here are lists of the respective 

axioms for the plane and 3 – space. 
 

Planar axioms. 
 

[I – 1]  Given two distinct points x and y in EEEE, there is a unique line L in  LLLL  such that 

both x  ∈∈∈∈  L and y  ∈∈∈∈  L. 
 

[I – 2]  Every line L contains at least two points. 
 

Spatial axioms.  Add the following axioms to the previous ones: 
 

[I – 3]  Given three distinct points x, y and z in  E E E E  such that no line L contains them all 

(i.e., they are noncollinear), there is a unique plane P in  PPPP  such that x, y, z  ∈∈∈∈  L. 
 

[I – 4]  Every plane P contains at least three noncollinear points. 
 

[I – 5]  If two points of a line L belong to a plane P, then the entire line is contained in P. 
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[I – 6]  If two planes have one point in common, then they also have a line in common. 
 

The last two axioms correspond to everyday experience about the relation between 
planes and lines.   One can derive various consequences from these assumptions (for 
example, that two distinct lines have at most one point in common), but we shall not 
work these out.   
 

We now proceed to the basic measurement concepts in classical geometry; namely, 
linear and angular measurement.  Once again, it is advisable to set things up formally so 
that at least linear measurement is an undefined concept and at this point it is also better 
to take both types of measurements as undefined concepts.   We have mentioned that 
the classical Greek approach to real numbers was to view them as lengths of segments; 
we shall effectively reverse this approach by defining lengths of segments in terms of 
the real number system, which we now have at our disposal.   Now the length of a 
segment can also be viewed as the distance between the endpoints, and the principle of 
Ockham’s razor indicates the latter is preferable way of viewing an undefined concept 
because it will not require us to digress and explain exactly what a line segment should 
be.  Therefore the “undefined” linear measurement structure will be a function 
 

d : EEEE ×××× EEEE       →→→→   RRRR 
 

that will have several properties, of which these are the most basic: 
 

1. The quantity d(x, y) is always nonnegative, and it is zero if and only if 
x  =  y. 

2. For all x and y we have d(x, y)  =  d(y, x). 
 

Likewise, at this point we would like to define angle measure in a manner that does not 
require us to explain exactly what is meant by an angle.  Intuitively it is clear that a 
nontrivial angle (two distinct branch pieces and not a straight angle) is completely 
determined by 3 noncollinear points such that the middle one is the vertex of the angle.  

One way of doing this is to start by taking the subset  Indep.(EEEE    ××××    EEEE    ××××    EEEE)  of all ordered 

triples (x, y, z) in  EEEE    ××××    EEEE    ××××    EEEE  such that x, y and z are three noncollinear points of EEEE (i.e., 

the three points are geometrically independent), and to define angle measurement to be 
a function  
 

αααα    :  Indep. (EEEE    ××××    EEEE    ××××    EEEE)   →→→→   (0, 180) 
 

which will have some desired properties that we shall not attempt to describe for the time 
being. 
 

Restriction to the planar case.  Henceforth, unless there is an explicit statement to the 
contrary, we shall focus our attention on classical plane geometry.  We have already 

seen that formulating incidence axioms is a somewhat more complicated in the 3 – 
dimensional case.  In fact, working everything out in three dimensions is a fairly routine 

extension of the 2 – dimensional case; aside from the additional incidence axioms, it is 
only necessary to make some relatively straightforward adjustments in wording to a few 
of the axioms.  This is not difficult, but the relatively minor differences make it awkward 
to discuss both cases simultaneously, and concentrating on the simpler case illustrates 
the basic ideas that arise in both situations.   
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By the preceding discussion, the data we need to discuss Euclidean plane geometry are 

the set EEEE of points, the family LLLL of lines, the linear measurement function d, and the 

angular measurement function αααα....  Such an approach to axiomatic geometry is called a 

synthetic metric approach.  The idea is basically due to G. D. Birkhoff (1884 – 1944), 
and it is described in the two references listed below.  These two references differ 
significantly in content and objectives; the first item is a research paper in which an 
extremely short list of axioms is stated, and the second is a book which was written to 
relate Birkhoff’s ideas to the content and exposition of standard high school courses in 
geometry at the time (the book was first published in 1940). 
 

G. D. Birkhoff, A set of postulates for plane geometry (based on scale 
and protractors), Annals of Mathematics (2) 33 (1932), pp. 329 – 345. 

 

G.   D. Birkhoff and R. Beatley, Basic Geometry (3rd Ed.).  A. M. S.  

Chelsea Publishing, Providence, RI, 1999.  ISBN: 0–821–82101–6.   
 

More elaborate (and higher level) accounts of classical geometry based upon Birkhoff’s 
approach appear in the textbook and online site listed below: 
 

E. E. Moïse, Elementary Geometry from an Advanced Standpoint (3
rd

  
Ed.).   Addison – Wesley, Reading, MA, 1990.  ISBN: 0–201–50867–2.   

 

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/hyprgeom.html 
 

We shall call the latter Royster’s online site. 

  
A brief description of the axioms 

 
We have seen that the axioms for the real number system split naturally into three 
groups.  One set of axioms concerns the basic properties of addition and multiplication, 
a second set concerns the basic properties of the linear ordering and its relationship to 
the arithmetic operations, and the third is the Dedekind Completeness Axiom.  There is 
also a division of the axioms for Euclidean plane geometry into several groups.   To save 
time and space, we shall not quote all the axioms precisely.  Full statements and further 
information can be found in the four references cited above as well as the following 
sources: 
 

E. C. Wallace and S. F. West, Roads to Geometry (3
rd

 Ed.). Prentice – 
Hall, Upper Saddle River, NJ, 2003.  ISBN: 0–130–41396–8. 

  

http://math.ucr.edu/~res/math153/history03.pdf 
 

1. Incidence  axioms. 
 

We have already discussed these. 
 

2. Distance axioms. 
 

We have discussed some simple properties that distance is supposed to satisfy, but the 
most important properties are summarized in the following strong assumption. 
 

RULER POSTULATE.  If L is a line, then there is a 1 – 1 correspondence f : L →→→→    RRRR 

such that for all x, y ∈∈∈∈    L we have d(x, y)  =  | f(x) – f(y) | .   In other words, with respect to 
the given notion of distance on the plane, every line looks like the standard real number 
line. 
 

3.  Separation axiom. 
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In order to state this axiom correctly we must make several definitions based upon the 
structure developed thus far.  All this is done explicitly at the online site: 
 

http://math.ucr.edu/~res/math153/history03c.pdf 
 

and therefore we  shall only explain the key ideas.  Using the Ruler Postulate one can 
formulate a concept of betweenness for an ordered triple of distinct collinear points.  The 
Plane Separation Postulate is an assumption which states that for each line L, the points 

of the relative complement EEEE – L split into a pair of disjoint subsets, called the sides or 

(open) half – planes in EEEE with respect to L and these have the expected properties 

involving betweenness; namely, if two points lie on the same side then every point 
between them also lies on that side, and if two points lie on opposite sides, then there is 
some point of L that lies between them.  
 

4. Angular measurement axioms. 
 

It is not possible to write these down formally without introducing numerous definitions 
based upon all the previous data and assumptions, so we shall simply try to summarize 
what happens.  One needs  (1) a simple, general criterion  for constructing angles with a 
given measurement in a fairly arbitrary position,  (2) an assumption that supplementary 

angles have measurements adding up to 180,  (3) the usual sort of principle for 
concluding that  the measurement of one angle is the sum of the measures of two other 
angles, and finally  (4) something relating  linear measures to angular measures; a 

standard way of doing the latter is to assume the familiar Side – Angle – Side 
congruence test from elementary geometry, but it is also possible to formulate 
everything with a simpler underlying assumption.   
 

5.  Euclidean Parallel Postuate. 
 

This corresponds to Euclid’s Fifth Postulate.  For reasons related to Ockham’s razor, 
many mathematicians starting (at least) with Proclus Diadochus (410 – 485) have 
preferred to take the following statement named after J. Playfair (1748 – 1819), which is 
logically equivalent to the original Euclid’s Fifth Postulate but does not involve linear or 
angular measurement: 
 

PLAYFAIR’S POSTULATE.  Given a line L and a point x not on L, then there is a 

unique line M in the plane determined by L and x such that x  ∈∈∈∈     M but L and M do not 
have any points in common (since we are working in a plane, such lines are parallel). 
 

Abbreviated versions of the axioms.  Partly because of Ockham’s razor, and partly for 
reasons involving logical consistency like those stated in Section 1, it is useful to find 
axiomatic systems that are as economical as possible.  In his 1932 paper, Birkhoff 
showed that one could get by with four assumptions that are simple to state but have 
very strong implications.  There is a much different approach to making everything more 
concise in  
 

http://math.ucr.edu/~res/math153/history03c.pdf 
 

which gives a set of six relatively straightforward axioms that only involve the two 
“undefined concepts”  of lines and  distance; in this system it is possible to construct a 
notion of angular measurement which has all the desired properties.    Of course, it is 
necessary to prove that such a construction is possible under the given assumptions and 
that the construction satisfies the required conditions.   Completing these tasks takes a 
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significant amount of time and effort, and it relies very heavily upon numerous ideas in 

the following book by H. G. Forder (1889 – 1981): 
 

H. G. Forder, The foundations of Euclidean geometry (Reprint of the 
original 1927 edition). Dover Books, New York, NY, 1958.  

 

One additional advantage of the axiom system described in the online reference is that it 
adapts very easily to give a set of axioms for the non – Euclidean geometry that was 
developed in the early 19th century by J. Bolyai (1802 – 1860) and N. Lobachevsky 
(1792 – 1856), and was also known to C. F. Gauss.  All one needs to do is replace the 
final axiom. 
 

5*.  Hyperbolic Parallel Postuate. 
 

There are two versions, but one can prove that they are logically equivalent. 
 

STRONG VERSION.  Given a line L and a point x not on L, then there are at least two 

lines M and N such that x  ∈∈∈∈     M  ∩∩∩∩  N but  L  ∩∩∩∩  M  and L  ∩∩∩∩  N are both empty. 
 

WEAK VERSION.  There is at least one pair (L, x), consisting of a line L and a point x 

not on the line L,  for which there are at least two lines M and N such that x  ∈∈∈∈     M  ∩∩∩∩  N 

but  L  ∩∩∩∩  M  and L  ∩∩∩∩  N are both empty. 
 

The weak version of the Hyperbolic Parallel Postulate is the formal negation of Playfair’s 
Postulate; namely, the existence of unique parallels fails somewhere.  The strong 
version says it fails everywhere, and the point of logical equivalence is that if Playfair’s 
Postulate fails somewhere then it fails everywhere.  Of course, this is something that 
must be proved, and the material in Royster’s online site gives the details. 
 

Birkhoff’s abbreviated axioms and non – Euclidean geometry.  The four Birkhoff 
axioms in the 1932 paper cannot be simply modified to describe non – Euclidean 
hyperbolic geometry.  The reason for this is related to the final axiom, which is the Side – 
Angle – Side Similarity Theorem from classical Euclidean geometry.   There is no 
corresponding similarity theory in non – Euclidean geometry, so it is clear that one 
cannot get a short system of axioms for the latter by some simple changes to the 
Birkhoff axioms. 

  
Relative consistency models for the axioms 

 
The book by Moïse and the online reference by Royster show that one can obtain a 
complete description of the Euclidean plane or the non – Euclidean hyperbolic plane 
using the axioms described above.  However, this does not quite imply that classical 
Euclidean geometry can be integrated into set theory.  In order to complete the process, 
we need to show the following:  
 

It is possible to construct a system within set theory which 
satisfies all the conditions for a Euclidean plane that we have 
described above. 

 

The existence of such an example (or model for the axioms) will also show that the 
axioms satisfy an important relative consistency test; namely, the axioms for Euclidean 
geometry are logically consistent if the axioms for set theory are logically consistent.  
The online document  
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http://www.math.uiuc.edu/~gfrancis/M302/handouts/postulates.pdf 
 

constructs a system of the desired type, showing that the abbreviated Birkhoff axioms 
are satisfied, and the document  

 

http://math.ucr.edu/~res/math133/verifications.pdf 
 

indicates how one can show the axioms in http://math.ucr.edu/~res/math153/history03c.pdf 

are also satisfied.  In fact, the constructions are based upon the standard coordinate 
model for Euclidean geometry in which points are interpreted as ordered pairs of real 
numbers, lines are defined to be the sets of ordered pairs (x, y) satisfying the equation  

A x  +  B y  +  C  =  0, where at least one of A, B is nonzero, distance is defined by the 
usual formula in coordinate geometry, and angle measurement is defined by the 
standard vector formula for the cosine of an angle between to two vectors (note that the 
standard Cauchy – Schwarz – Bunyakovsky  inequality in linear algebra implies this 

algebraically defined number lies between – 1 and + 1).   Details appear on pages 5 – 7 
of the online reference.  Algebraic verification of the Birkhoff axioms for these definitions 
of lines, distance and angle measurement are summarized on pages 5 – 8 of the 
document cited directly above.����  
 

There is one point in the preceding reference that deserves some thought.  The inverse 
cosine function is of course given in terms of the cosine function, but the usual definition 
of the latter in trigonometry books is given geometrically.  This may raise questions 
about whether the reasoning described in the preceding paragraph is circular.  One way 
to answer such an objection is to define trigonometric functions, and derive the basic 
trigonometric identities, by some formal method that does not use Euclidean geometry 

explicitly (although the reasoning may/will be geometrically motivated at various points).   
This can be done by defining the sine and cosine to be equal to the usual power series 
expansions that are given in calculus and somehow proving that the functions defined by 

these power series have the expected properties (e.g.,  the standard trigonometric 

equation  sin
2
 θθθθ     +  cos

2
 θθθθ   =   1, or the formulas for the sine and cosine of a sum of 

two numbers) without using geometrical arguments.  One reference for such a 
development of the basic trigonometric functions is pages 182 – 184 of the previously 
cited book by Rudin (Principles of Mathematical Analysis).   A more elementary 

discussion along the same lines appears in Appendix E of the following book:  
 

P. Ryan, Euclidean and non-Euclidean geometry: An analytical approach. 
Cambridge University Press, Cambridge, U. K., and New York, NY, 1986.  ISBN: 
0–521–27635–7. 

 

Relative consistency models for non – Euclidean geometry.  One can also prove a 
relative consistency result for non – Euclidean geometry by constructing set – theoretic 
models of the corresponding axioms, but both the construction of the model and the 
verification of its key properties are considerably more difficult than in the Euclidean 
case.  The models, and the verification that they satisfy the axioms, are given by results 
of E. Beltrami (1835 – 1900), F. Klein (1849 – 1925) and H. Poincaré (1854 – 1912) from 
the second half of the 19th century. 
 

The existence of such relative consistency models is the basis for assertions that the 
parallel postulate in classical geometry cannot be proven from the other 
assumptions.  If this were possible, it would contradict the existence of the models 
discussed in the preceding paragraph.  Further discussion about the relative consistency 
of non – Euclidean geometry can be found on pages 255 – 258 of the following online 
document: 
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http://math.ucr.edu/~res/math133/geomnotes5b.pdf 
 

The logical independence of the Euclidean and hyperbolic parallel postulates from the 
preceding assumptions is analogous to the formal status of the Axiom of Foundation, the 
Axiom of Choice and the Generalized Continuum Hypothesis that was discussed in the 
previous unit.  However, there is one significant difference, for mathematicians find it 
convenient to view both axiom systems for geometry as equally valid, but in contexts 
that do not touch upon the foundations of mathematics it is generally more convenient to 

stick with a fixed list of axioms for set theory.  Generally this is given by ZFC or NBG 
plus the Axiom of Choice with no assumption either way about the Generalized 
Continuum Hypothesis, but as we have noted there are some important exceptions, 
most notably the viewpoints of intuitionism and constructivism.   A full discussion of 
such matters is beyond the scope of these notes, but we shall include a list of online 
references for both the mainstream view of the foundations of mathematics as well as 
some of the alternatives: 

 

http://sakharov.net/foundation.html 
 

http://en.wikipedia.org/wiki/Philosophy_of_mathematics 
 

http://en.wikipedia.org/wiki/Foundations_of_mathematics 
 

http://www.rbjones.com/rbjpub/logic/   
 

http://www.math.psu.edu/simpson/hierarchy.html 
 

http://plato.stanford.edu/entries/hilbert-program/ 
 

http://en.wikipedia.org/wiki/David_Hilbert#Formalism 
 

http://plato.stanford.edu/entries/logic-intuitionistic/ 
 

http://www.math.fau.edu/Richman/HTML/CONSTRUC.HTM 
 

http://en.wikipedia.org/wiki/Constructivism_(mathematics) 
 

http://plato.stanford.edu/entries/mathematics-constructive/ 
 

http://www.rbjones.com/rbjpub/philos/maths/faq025.htm 
 

http://www.rbjones.com/rbjpub/philos/maths/faq027.htm 
 

http://www.rbjones.com/rbjpub/philos/maths/faq004.htm 
 

Additional remarks on alternate formulations for the foundations of mathematics (using 
functions rather than sets as the main building blocks) were made at the beginning of 

Section IV.3. 
   


