Computing the length of the longest day

The purpose is to compute the length of the longest day of the year, when the earth's polar axis is tilted approximately $\alpha^{\circ}=23.5^{\circ}$ towards the sun. It turns out that the length of this day measured in hours at latitude β° North is equal to

$$
24 \cdot\left(1-\frac{1}{\pi} \cdot \operatorname{Arccos}(\tan \alpha \tan \beta)\right)
$$

provided $0 \leq \beta^{\circ} \leq 90^{\circ}-\alpha^{\circ}$. If $\beta \geq 90^{\circ}-\alpha^{\circ}$ then the length of the longest day is simply 24 hours. A table giving the length of the longest day as a function of latitude is in the document solstice-table.pdf. - These figures are not quite accurate, for they do not take atmospheric refraction into account; this phenomenon makes it appear that the sun rises earlier and sets later than it actually does.

