
 

 

6. Mathematics of Islamic and Hindu civilizations 
 
 

(Burton,  5.5,  6.1) 
 
 
As noted in the previous unit, Diophantine equations were also studied extensively in 
other ancient civilizations and particularly in India and China.  In particular, for the 
following basic class of problems are given by a result known as the Chinese 
Remainder Theorem: 
 
Suppose that we are given two relatively prime positive integers p and q, and let n be a 
third positive integer.  Suppose further that long division of n by p and q yields 
remainders of a and b respectively.  What value(s) must n take? 
 
For example if p  =  3 and q  =  5, and the respective remainders are 2 and 3 
respectively, then n must have the form 8  + 15m for some integer m. 
 
Some of their results obtained by Chinese and Hindu mathematicians were similar to 
those of Diophantus, but others went much further.   We shall pay particular attention to 
the contributions of Hindu mathematicians in these notes because their work had the 
greatest impact on mathematics as we know it today.   
 

Mathematical activity in India 
 
Indian mathematics has a long and interesting history.  Although there may have been 
some mathematical interactions between Indian mathematics and Greek or Chinese 
mathematics, it is also clear that the Indian approach to the subject contained concepts 
and ideas that were not well developed by either of the other civilizations.  In keeping 
with the focus of this course, we shall begin our discussion of mathematics around the 
time it developed ideas which ultimately had a major impact on modern mathematics.   
 
Hindu or Indian mathematics is particularly known for developing the base ten 
numeration system we use today, with nine basic digits arranged in sequences and the 
roles of the digits determined by their placement.  It is not entirely clear when this was 
developed, but the concept appears in writings of Aryabhatta the Elder (476 – 550), so 
we shall begin with his work. 
 
The surviving mathematical work of Aryabhatta is contained in a manuscript called the 
Aryabhattiya, which is written entirely in verse and also covers other subjects besides 
mathematics.  There is a passing reference describing a numbering system like the one 
we use today, and the mathematical portion of the work also contains results on integral 
solutions to Diophantine equations of the first and second degree.  Trigonometry also 
played a significant role in Indian mathematics, and in fact modern mathematics follows 
the Indian approach – which is based upon the sine function – rather than the Greek 
approach, which was based upon the chord function crd discussed previously.  The 
tables in the Aryabhattiya define trigonometric functions for angles with a basic 
increment of 3.75 degrees.  
 
One of the most important figures in Indian mathematics was Brahmagupta (598 – 670), 



 

 

whose writings contain many important and far-reaching ideas.  We shall list a few of 
them: 
 

1. He explicitly recognized that Diophantine equations can have 
many solutions. 

2. He used nine or ten symbols to write numbers. 
3. He has no qualms about working with negative numbers and 

irrationals. 
4. His work recognizes the concept of zero, although the first 

explicit use of a symbol for zero does not occur until late in 
the ninth century. 

5. He devoted a great deal of effort to analyzing Diophantine 
equations like the so-called Pell equation   x2   =   1  +  a y2.  
Further results on this equation due to Bhaskara (1114 – 
1185) are mentioned later in this unit; Brahmagupta’s main 
contribution was to give a method for constructing new 
solutions out of previously known ones. 

 
Brahmagupta’s writings also treat geometrical topics, but some of his conclusions are 
extremely inaccurate and far below the quality of his algebraic results.  However, one 
particularly noteworthy geometric result due to him is an area formula for a quadrilateral 
that can be inscribed in a circle (see Exercise 6 on page 186 of Burton). 
 
This is probably the most convenient time to say more about Bhaskara, who was also 
one of the most important figures in Indian mathematics.  The concept of zero is far 
more explicit in his work, and he clearly understood that quadratic equations have two 
roots.  His results on Pell’s equation   px2  +  1   =   y2 include the following:  When p   =   
61 he found the solutions x   =   226153980, y   = 1776319049, and when p   =   67 he 
found the solutions x   =   5967, y   =   48842. 
 
A great deal more could be said about the development of mathematics in India during 
the period considered above.  In particular, Indian mathematicians were just as open to 
considering the concept of infinity as they were to working with zero.  Furthermore, 
Indian mathematicians also obtained extensive results on infinite series; for example, 
Madhara (1340 – 1425) discovered the standard infinite series for arctan x, and 
subsequently others found an infinite series for  ππ/4  that converges much more rapidly 
than the standard series for arctan 1.  However, since the most far-reaching 
consequences for modern mathematics were transmitted to the Western World 
indirectly through Arabic/Islamic civilization, we shall move on to the latter. 
 

Arabic/Islamic mathematics 
 
We have already mentioned that the term “Greek mathematics” refers to a fairly wide 
geographic area and contributions of mathematicians of many nationalities.   The same 
can be said about the mathematics associated to Arabic and Islamic cultures over the 
period from about 800 to 1500, but the geographic area, the diversity of nationalities, 
and even the diversity of religions was even greater than in Greek mathematics.  The 
geographic range included the entire Islamic world at the time, from Spain on the west 
to Uzbekistan on the east.   In using phrases like Arab mathematics or Islamic 
mathematics it is important to remember the geographic, ethnic and religious diversity 



 

 

of those who worked within this framework. 
 
Since the center of the Islamic world was, and still is, between Europe and the Indian 
subcontinent, it is not surprising that Arab/Islamic mathematics was heavily influenced 
by both Greek and Indian mathematics.  For our purposes, two absolutely crucial 
legacies of Arab/Islamic mathematics are that it preserved a substantial amount of 
classical Greek mathematics that would otherwise have been lost or ignored, and it also 
passed along the important new insights that Indian mathematicians had discovered.  
However, Arab and Islamic mathematicians also made a number of important and 
highly original contributions, many of which were independently rediscovered by 
European mathematicians centuries later.     
 

One of the best-known names in Arab mathematics was also one of the earliest:  Abu 
Ja' far Muhammad ibn Musa Al-Khwarizmi (790 – 850).  He is known for two major 
pieces of work.  The first was an extremely influential account of the Hindu numeration 
system based upon an earlier Hindu work.  Although the original Arabic versions of this 
work are lost, significantly altered Latin translations have survived, and typical Latin 
transliterations of his name as Algoritmi or Algorism have evolved into our modern word 
algorithm.  A second piece of his work has given us another basic word in 
mathematics.  The word algebra comes directly from his book Hisab al-jabr w'al-
muqabala (often translated with a phrase like “The Science of Restoration and 
Reduction”).  An extended discussion of this work’s contents appears on pages 227 – 
232 of Burton, so we shall concentrate here on the nature of Al-Khwarizimi’s 
contributions.   There are significant differences of opinion about this.  The problem 
solving methods in the work can be found in earlier writings of others, and the notation 
does not contain any significant advances.  For example, everything is done using 
words, and there is no shorthand notation analogous to that of Diophantus.  Irrational 
numbers are used freely as in Indian mathematics, but in contrast to the earlier work of 
Brahmagupta negative numbers are not considered.   On the other hand, unlike the 
work of Diophantus, al-jabr takes a highly systematic approach to solving various sorts 
of equations (especially quadratic equations), with an emphasis on problem solving for 
its own sake rather than the theory of numbers.  Even though there is no symbolism or 
shorthand along the lines of Diophantus, equations are frequently discussed using 
general terminology and words like root that have become standard mathematical 
vocabulary.  Such discussions resemble modern verbal descriptions of problems, and 
from this perspective mathematical language appears to follow the pattern of most 
languages, with verbal formulations of concepts coming before an efficient symbolism is 
created for writing them down (another example mentioned earlier is the verbal 
discussion of zero in Brahmagupta’s writings centuries before the first known 
symbolism for it).   Al-jabr  makes important progress towards removing extraneous 
geometrical ideas from solving equations (e.g, as found in Book II of Euclid’s Elements), 
and as such plays an important role in separating these subjects from each other.  
However, the subjects are not completely uncoupled from each other, and in many 
instances Al-Khwarizimi uses geometrical ideas to prove that his algebraic solution 
techniques yield correct answers.   

We have already mentioned Thabit ibn Qurra in our discussion of amicable pairs.  His 
criterion for finding such pairs was completely original and has not been superseded by 
later results of others.  He also translated many important Greek manuscripts into 
Arabic and made numerous other contributions to mathematics and other subjects; 
some further discussion of his mathematical work appears on page 233 of Burton. 



 

 

 

Al-Khwarizimi’s separation of algebra from geometry was completed by Abu Bekr ibn 
Muhammad ibn al-Husayn Al-Karaji (953 – 1029), who also took important steps in 
defining nonzero integral powers (including negative ones!) algebraically and came very 
close to discovering the law of exponents  xn xm  =  xm+n where m and n are integers; 
the only missing element was that he did not set x0 equal to 1.  Al-Karaji also used a 
partially developed form of mathematical induction in some of his proofs, and in 
particular in an argument essentially showing that  

13  +  … +  n3      =     (1  + … +  n)2. 

Many Arabic/Islamic mathematicians worked extensively on computing values of 
trigonometric functions because of their importance in astronomy.  We shall only 
mention one name specifically here:  Mohammad Abu'l-Wafa Al-Buzjani (940 – 998).  
Among other things, he worked extensively with all six of the basic trigonometric 
functions in use to day and invented the secant and cosecant functions.  He also 
devised new methods for computing sines of angles, and compiled tables of values with 
incremental intervals of 0.25 degrees; in modern decimal notation his results were 
accurate to 8 decimal places.  By contrast, the tables of Claudius Ptolemy were 
accurate to three decimal places in modern notation (at the time values were expressed 
in Babylonian sexagesimal form, a practice which continued for a few centuries longer).  
Abu’l-Wafa is also known for his writings on geometry, which discuss at length the 
repeating, abstract geometric patterns that play an important role in Islamic art and 
architecture.  The following online reference summarizes these geometrical writings: 

 
http://www.mi.sanu.ac.yu/vismath/sarhangi/ 

 

Normally we associate the name Omar Khayyam (1048-1122) with the poetic work 
Rubaiyat, and its nineteenth century English translation by E. Fitzgerald, but Khayyam 
also made a few significant contributions to mathematics.  We shall only mention one of 
them here.  Recall that the Greek mathematician Manaechmus solved the problem of 
duplicating a cube by using two intersecting parabolas to construct a segment whose 
length was cbrt(2).  Khayyam gave methods for geometrically finding roots of more 
general cubic equations by constructing various conic sections and taking their 
intersection points.  For example, in one type of problem the root is given by 
intersecting a circle and a parabola.  This case is discussed in detail on pages 234 – 
235 of Burton, and two others are presented in Exercise 7 on page 243 of that text.   


