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R. Schultz

SOLUTIONS TO EXERCISES FROM math153exercises04.pdf

As usual, “Burton” refers to the Seventh Edition of the course text by Burton (the page
numbers for the Sixth Edition may be off slightly).

Problems from Burton, p. 192

7. The file quadcirc.pdf contains a picture of a quadrilateral that is inscribed in a circle
and circumscribed about another circle. In this picture the vertices are A,B,C,D and the points
of tangency with the smaller circle are

E, which is between A and B,

F , which is between B and C,

G, which is between C and D, and

H, which is between D and A.

The lengths of the sides will be denoted by a = |AB|, b = |BC|, c = |CD| and d = |DA|. Since
the lengths of the two tangent segments from an external point are equal (see the online link
cited in the assignment) we have |AH| = |AE| = w, |BE| = |BF | = x, |CF | = |CG| = y, and
|DG| = |DH| = z. We then have a = w + x, b = x + y, c = y + z, and d = z + w.

If s = 1

2
(a + b + c + d), then the formulas of the previous paragraph imply s = x + y + z + w.

Therefore we have s − a = y + z = c, s − b = z + w = d, s− c = w + x = a, and s − d = x + y = b.

As noted in a previous exercise, the area bounded by the inscribed quadrilateral is

√

(s − a)(s − b)(s − c)(s − d)

and by the identities of the previous paragraph this is equal to
√

a b c d.

8. The solution depends upon the following consequence of a result stated in history03.pdf:
Suppose we are given a circle Γ and a major or minor minor arc /cmajAC or /cminAC where A and

C lie on Γ. If B and D lie on the same side of the line AC, then | 6 ABC| = 1

2
|/cAC| = | 6 ADC|.

We shall assume that B and D lie on the same side of the line AC if they appear to do so in the
drawing (this can be proved but it requires a little extra work). We shall give detailed justifications
of everything we need in math153solutions04a.pdf.

Following the hint, we know that | 6 DPX| = | 6 BPY | by the Vertical Angle Theorem. Using
the fact that the angle sum of a triangle is 180◦ and BC = BY ⊥ Y P = Y X, we have | 6 BCA =
6 Y CP | = 90◦ − | 6 CPY |. But AC ⊥ BD by hypothesis, so | 6 CPY | + | 6 BPY | = 90◦, and if we
compare this with the previous equation we conclude that | 6 BPY | = | 6 BCA|. Now apply the
result in the preceding paragraph to conclude that | 6 BCA| = | 6 BDA = | 6 XDP |. This implies
that 4XPD must be isosceles, so that |XP | = |XD|.
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Similar considerations show that 4XPA is isosceles and |XP | = |XA| (switch the roles of A
and D and of B and C in the preceding argument). Therefore X is the midpoint of A and D,
which is the conclusion we wanted to prove.

Problems from Burton, p. 208

1. (b) The formula says that the area of the pointed pieces of the cone’s surface is equal to
π K2, where K2 = r s with r equal to the radius of the cone’s base and s is the slant height, which
is the length of the segment joining the nappe of the cone to a point on the base.

For the sake of completeness we shall indicate how to compute the surface area for a surface
of revolution by integral calculus. The standard textbook formula for surface areas states that
the area of surface of revolution generated by a graph curve y = f(x) is given by the following
expression:

2π ·
∫ b

a

f(x) ·
√

1 + [f ′(x)]
2
dx

If we apply this to a cone, the function in question has the form y = mx for some m > 0 and the
limits of integration are from x = 0 to x = h, where h is the height of the cone. If we compute the
area of the portion of the cone using the formula, we see that it is equal to

2π ·
∫ h

0

m
√

1 + m2 x dx = π m
√

1 + m2 h2

where r = mh. By the Pythagorean Theorem we know that the slant height s is equal to
√

r2 + h2,
and therefore it follows that

1 + m2 =
r2 + h2

h2

and therefore we also have that the area of the piece of the cone is equal to

π m
√

1 + m2 h2 = π h
√

1 + m2 mh = π h

√

r2 + h2

h2
mh = π s r

which is exactly the statement in Archimedes’ result.

(d) A great circle is one whose center is the same as the center of the sphere. Therefore if r
is the common radius we know that the area bounded by the great circle is π r2 and the surface
area of the sphere is 4π r2. Therefore the surface area of the sphere is four times the surface area
bounded by a great circle on that sphere.

4. The Pythagorean Theorem implies (a):

|OT |2 = |OR|2 − |TR|2 = 1 − S2
n

4

The additivity formula 1 = |QT | + |OT | implies (b):

|QT |2 = (1 − |OT |)2 =

(

1 −
√

1 − S2
n

4

)
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The second equation follows by substituting the formula for |OT |2 in the first equation and simpli-
fying the resulting expression.

Finally, the third equations follow by applying the Pythagorean Theorem to right triangle
RTQ, substituting for |RT |2 using (b), and also using the given fact that |QR| = S2n.

SOLUTIONS TO ADDITIONAL EXERCISES

1. Let r be the radius of the sphere. Since the sphere is tangent to the top and bottom of the
cylinder, the height of the latter must be 2r. Furthermore, since the sphere and cylinder are also
tangent along the equator of the sphere and the lateral face (wall) of the cylinder, it follows that
the radius of the cylinder must also be r. Therefore the volume A the cylinder equals πr2h = 2πr3.
Since the volume B of the sphere is 4

3
πr3, it follows that B = 2

3
A.

2. Before we give the solution, here is an explanation of some notation we use. Given two
points X and Y , the closed segment [XY ] is all points W such that either W is one of X,Y or
else W is between X and Y , the ray [XY with endpoint X passing through Y is [XY ] together
with all points Z such that Y is between X and Z, and |XY | denotes the distance from X to Y ,
or equivalently the length of segment [XY ].

In the terminology of the problem, let D be the midpoint of [BC]. Then 4ADB ∼= 4ADC
by the SSS congruence theorem for triangles, so that | 6 DAB| = | 6 DAC| and hence the ray [AD
bisects 6 BAC. Therefore | 6 DAC| = 1

2
θ and |BD| = 1

2
|BC| = 1

2
crd θ. On the other hand, we

clearly have |BD| = sin | 6 DAB| = sin 1

2
θ, so that

crd θ = |BC| = 2|BD| = 2 sin 1

2
θ

which is the formula we wanted.

Using the formula for crd θ and the usual infinite series for sinx, we obtain the following:

crd θ = θ − θ3

22 3!
+

θ5

24 5!
· · · =

∑ (−1)kθ2k+1

22k(2k + 1)!
.

3A. The Leibniz test for alternating series implies that the absolute value of the difference
between displayed series and its kth partial summand is at most the absolute value of the next term
in the series. Thus if we truncate the series at term k, then the absolute value of the difference is
at most

θ2k+3

22k+2 (2k + 3)!

and for all θ such that 0 ≤ π ≤ 1

2
θ a uniform upper estimate is given by

π2k+3

24k+5 (2k + 3)!
.

We want to choose k so that this expression is less than 5 × 10−4. Using the very crude estimate
π < 4 we see that the uniform estimate is less than or equal to

42k+3

24k+5 (2k + 3)!
=

2

(2k + 3)!
.
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The latter will be less than 5 × 10−4 = 1

2
10−3 provided (2k + 3)! > 4000, and since 7! = 5040 the

desired inequality will hold if 2k + 3 ≥ 7. — This means that the first three terms of the infinite
series given a value for crd θ which is basically accurate to three decimal places.

3B. We need to write down the equation for the intersection curve using the rectangular
coordinates u and v for the plane z = mx + m. Since x2 + y2 = 1 holds for points on the cylinder,
if we take y = v and x = u/

√
m2 + 1 we can rewrite the equation of the intersection of the cylinder

and the plane in terms of u and v as

u2

m2 + 1
+ v2 = 1

and this is clearly the equation of an ellipse (which is not a circle when m 6= 0).

4. We use the polar coordinates formula

Area =
1

2

∫ β

α

(r2
1(θ) − r2

2(θ)) dθ

for the area of the region defined by the inequalities α ≤ θ ≤ β and r2(θ) ≤ r1(θ); we assume r1

and r2 are positive valued with r2 ≤ r1, and we also assume that 0 ≤ β − α ≤ 2π.

We begin with the first region, in which the area formula yields the expression

1

2

∫ 4π

2π

(

θ + 2π)2 − θ2
)

dθ =

1

2

1

3

[

(θ + 2π)3 − θ3
]
∣

∣

4π

2π
=

(6π)3 − (2π)3

6
.

One can proceed similarly for the second region, recognizing that the limits of integration are now
4π and 6π, and in this case we find that the area equals

(8π)3 − (4π)3

6
.

5. We shall only give the answers, which can be seen by examing the various parabolas.

If C > 1 then the two curves have no points in common.

If C = 1 then the two curves are tangent to each other (meet tangentially) at (0, 1).

If 1 > C > −1 then the two curves meet transversely (not tangentially) at two points, one
on each side of the y-axis.

If C = −1 then the two curves meet at three points, tangentially at (0,−1) and transversely
at two other points, one on each side of the y-axis.

If −1 > C > −4 then the two curves meet transversely at four points, two on each side of
the y-axis.

If C = −4 then the two curves meet tangentially at the two points (± 1, 0).

If −4 > C then the two curves have no points in common.
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6. We need the following fact: If the normal direction to a line is given by n = (a, b) 6= (0, 0),
then one can write a defining equation of the line in the form ax + by = c (more precisely, if p is
on the line the equation is n · (x − p) = 0).

(i) For the parabola with parametric equations (t, t2), the tangential direction at (c, c2) is
given by (1, 2c), and this is the normal direction is to the normal line at (c, c2). Therefore the
equation of the normal line to the parabola at this point is given by

(1, 2c) · (u, v) = (1, 2c) · (c, c2) .

If we want to find where this line meets the y-axis, we can do so by setting u = 0 and solving for
v; carrying this out, we find that 2cv = c + 2c3, so that v = 1

2
+ c2. Hence the normal at (c, c2)

meets the y-axis at (0, c2 + 1

2
).

(ii) Let d = 1

2
. If c > 0 then by the preceding discussion the normal at (c, c2) meets the y-axis

at a point (0, v) where v > d. Since the curve is symmetric about the y-axis, the normal at (−c, c2)
also goes through this point. Conversely, if v > d then the preceding discussion implies that there
are two normals to the parabola at (0, v) which meet the curve at two points not on the y-axis.
Also, since the y-axis is the normal to the parabola at its vertex (0, 0), it follows that there are
three normals to the parabola through (0, v) if v > d. On the other hand, if v ≤ d then the same
computations show that there is no normal to the parabola through (0, v) and a non-vertex point,
so that the y-axis is the only normal to the parabola at (0, v) for v ≤ d.

7. As indicated in history04Y.pdf, we are given v = (2b, 4a), p = (b2/4a, b) and f = (a, 0),
and we need to show that the cosines of the angles determined by the pairs {v, e1 = (1, 0)} and
{−v, f − p} are equal. Note that the cosine of the second pair is equal to the cosine of the
corresponding negative pair {v,p − f}, and it will be more convenient to work with this pair
instead.

Using the standard formula

cos 6 (a,b) =
a · b
|a| |b|

we can compute directly that

cos 6 (v, e1) =
2b√

4b2 + 16a2
.

To compute the other cosine, it is convenient to multiply the vector p − f by a positive constant
in order to eliminate potentially messy denominators. Specifically, if we let w = 4a(p − f) =
(b2 − 4a2, 4ab), then the angles determined by {v,p− f} and {v,w} are the same, so we only need
to show that the cosine of the associated angle is equal to the right hand side of the displayed
equation.

Direct computation shows that the cosine of the angle determined by {v,w} is equal to

2b(b2 − 4a2) + 16a2b√
4b2 + 16a2

√

(b2 − 4a2)2 + 16a2b2
=

2b(b2 + 4a2)√
4b2 + 16a2

√

(b2 + 4a2)2

and if we simplify this we obtain the previously derived formula for the cosine of the angle deter-
mined by v and e1.

8. We shall only give the sequences of integers n1, n2, ... which determine the continued
fraction expansions.
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(a) 1,2,1,2

(b) 5,1,4,2

(c) 2,1,2

(d) 3,2,3

(e) 1,1,7,1,5

(f) 2,7,1,5

(g) 2,2,1,2,5

(h) 1,1,1,3

(i) 14,3,2

(j) 2, n

9. We shall use the recursive process described at the end of history04c.pdf, and we shall
only give the computations for the numbers xi.

(a) x5 = 0, x4 = 1/5, x3 = 5/21, x2 = 21/68, x1 = 68/157, x0 = 157/225

(b) x4 = 0, x3 = 1/3, x2 = 3/16, x1 = 16/115, x0 = 115/1051

10. The negativity condition on d is not really necessary; it only serves to ensure that the
desired answer is positive.

An arithmetic progression satisfies the recursive identity ak+1 = ak + d, and more generally
we have ak+m = ak + md for all ≥ 0. Therefore we have

n
∑

p=1

ap =

n
∑

p=1

a1 + (p − 1)d .

On the other hand, we have

n
∑

p=1

an+p =

n
∑

p=1

a1 + (n + p − 1)d =

n
∑

p=1

a1 + (p − 1)d +

n
∑

p=1

nd =

n
∑

p=1

ap + n2d .

Therefore it follows that
n
∑

p=1

ap −
n
∑

p=1

an+p = −n2d

which is what we wanted to prove.
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