
The Polish Circle and some of its unusual properties

We shall discuss some additional results on the space which is studied in Munkres, Section 61
(the closed topologist’s sine curve, also known as the Polish Circle), and described more explicitly
in polishcircleA.pdf.

None of this material will be used subsequently in topics to be covered on examinations, so it
can be skipped without loss of continuity. However, it does illustrate some approaches and methods
that appear frequently in more advanced topology courses, using only material within the setting
of this course and its prerequisite. At one point in the discussion we shall need a result that might
not received much attention in 205A; namely, the Tietze Extension Theorem, which states that
if A is a closed subset of a metric space X and f : A → R

n is continuous, then f extends to a
continuous function on X (see Theorem 35.1 on pp. 219–222 of Munkres).

We begin with a couple of basic observations.

PROPOSITION 1. Let P be the Polish circle as described as in the references cited above,

and let Vn ⊂ R
2 be the open rectangular region

(

0,
2

(4n + 3)π

)

×

(

−
3

2
,

3

2

)

.

Then P − Vn is homeomorphic to a closed interval and hence is contractible.

Proof. We shall use the following decomposition of the Polish circle in polishcircleA.pdf:

(A) The graph A of sin(1/x) for 0 < x < 1.

(B) The vertical line segment B joining (1, sin 1) to (1,−2).

(C) The horizontal line segment C joining (0,−2) to (1,−2)

(D) The vertical line segment D joining (0,−2) to (0, 1).

If we remove the points which lie in the rectangular region, we are left with the last three pieces
plus the graph of sin(1/x) for

2

(4n + 3)π
≤ x ≤ 1 .

If we let A′ denote the displayed set then A′ is homeomorphic to a closed interval and the comple-
ment is homeomorphic to the union A′ ∪ B ∪ C ∪ D. We also have the intersection identities

A′ ∩ B = {(1, sin 1)} , B ∩ C = {(1,−2)} , C ∩ D = {(0,−2)} .

It is now an elementary exercise to construct a homeomorphism from [0, 4] to P such that [0, 1]
corresponds to A′, [1, 2] to B, [2, 3] to C, and [3, 4] to D.
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Simple connectivity of the Polish Circle

PROPOSITION 2. In the setting of the previous result, if K is a compact, connected and

locally connected space, and f : K → P is continuous, then there is some n > 0 such that the

image of f is contained in P − Vn.

Sketch of proof. The main step involves the following standard observation: If (x, 0) ∈ P such
that x ≥ −1, then for every sufficiently small open neighborhood W of (x, 0) in P , the connected
component of (x, 0) in P ∩W is contained in the y-axis. — This is the basic reason why the Polish
circle is not locally connected.

Combining this with the local connectedness of K, we see that for every y ∈ K there is an open
neighborhood Wy and a positive integer n(y) such that f maps Wy into P −Vn(y). By compactness
there is some m > 0 such that f maps K into P − Vm.

COROLLARY 3. If x0 ∈ P , then π1(P, x0) is trivial.

Similar considerations show that if X is an arbitrary compact, arcwise connected and locally
arcwise connected space, then every continuous map from X to P is homotopic to a constant map.

Proof. If γ is a closed curve in P , then by the previous proposition we know that the image of γ
is contained in a set of the form P − Vm for some m. However, these sets are contractible by the
first proposition above, and therefore the class of γ in the fundamental group of P must be trivial.

Noncontractibility of the Polish Circle

In contrast, it turns out that P is not a contractible space. This will be an immediate conse-
quence of the following result, which reflects the geometric similarities between P and the standard
circle S1:

THEOREM 4. If P is the Polish Circle, then there is a continuous map from P to S1 which is

not homotopic to a constant.

COROLLARY 5. The space P is not contractible.

Proof. If P were contractible, then for every space Y , all continuous maps from P to Y would
be homotopic to constant mappings.

Proof of Theorem. We shall use the setting and terminology of polishcircleA.pdf freely in
the discussion below. Define a mapping r1 from B1 to the boundary G of the square with vertices
(1,−1), (0,−1), (0,−2), and (1,−2) such that G sends (x, y) to

(

x,m(y)
)

, where m(y) is the lesser
of y and −1. By construction, for every positive integer n the restriction of r1 to the simple closed
curve Cn is onto, it is 1–1 off the set {1}× [−1, sin 1), and it is constant on that exceptional interval.
If we compose G with standard homeomorphisms S1 ∼= Cn and G ∼= S1, we obtain a mapping gn

from S1 to itself. Furthermore, if ϕ : [0, 1] → S1 is the usual map ϕ(t) = exp(2πit), then gn
oϕ is a

map such that gn is onto and there are points an < bn in the open interval (0, 1) such that gn
oϕ
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is 1–1 on both [0, an] and [bn, 1], while it is constant on [an, bn]. Furthermore, this function is 1–1
on the complement of [an, bn).

CLAIM. The mapping gn is homotopic to a homotopy equivalence. — Let tn ∈ R be such
that gn(1) = p(tn), where p denotes the standard covering map from R to S1, and let γn denote
the unique lifting of gn

oϕ such that γn(0) = tn. Since γn is 1–1 on [0, an] it follows that it is either
strictly increasing or decreasing there. We shall only consider the case where γn is increasing. In
the other case, the curve −γn is an increasing lifting of the complex conjugate curve gn, and by
the increasing case we know that this conjugate curve is homotopic to a homeomorphism; taking
conjugates, we see that gn will also be homotopic to a homeomorphism.

So we assume that γn is strictly increasing on [0, an]. Since gn
oϕ is constant on [an, bn], it

follows that the same is true for γn. Next, we claim that γn must be strictly increasing on [bn, 1].
Since gn

oϕ is 1–1 on this interval, the same must be true for γn, which means that the latter is
either strictly increasing or decreasing on the interval. If it were decreasing, this would contradict
the previously stated injectivity properties of gn. Therefore γn is nondecreasing and nonconstant,
so there is a positive integer d such that γn(1) = tn + d. If d = 1 then it will follow that gn is
homotopic to the identity, so it is only necessary to show that d cannot be greater than 1. But if
this were the case, then there would be some s ∈ (0, 1) such that γn(s) = 1 and hence if zs = p(s),
then zs 6= 1 and gn(zs) = gn(1). However, by construction the function gn is 1–1 off the image of
the subinterval [an, bn] under ϕ, and this image does not contain gn(1). Hence we see that d must
be equal to 1, and as noted before this proves the claim.

Returning to the proof of the theorem, let rn denote the restriction of r1 to Bn ⊂ B1, so that
the previous discussion implies that rn|Cn is a homotopy equivalence. It follows immediately that
for each n the map rn cannot be homotopic to a constant mapping; if this were so then r|Cn would
be homotopic to a constant and the same would be true of the associated homotopy equivalence gn

from S1 to itself. Since no such map is homotopic to a constant, the assertion regarding rn follows.

We shall now prove that r|P also is not homotopic to a constant mapping. Assume the
contrary, and let H be a homotopy from r|P to a constant map. Extend H to a continuous map
H ′ on P ×B1× [0, 1] by letting H ′ be given by r on B1 ×{0} and by the appropriate constant map
on B1 × {1}. Now apply the Tietze Extension Theorem to construct a continuous extension of H ′

to a continuous map K0 from R
2 × [0, 1] to R

2. Let W0 denote the inverse image of R
2 − {0} with

respect to K0. Then W0 is an open neighborhood of {0}× [−1, 1]× [0, 1], and by the Tube Lemma
it contains a subset of the form

[

0,
1

(2k + 1)π

]

× [−1, 1] × [0, 1]

for some positive integer k. If U is the usual retraction from R
2 − {0} to S1 which sends v to

|v|−1 v, then on the set Bk × [0, 1] the map K(x, t) = U
(

K0(x, t)
)

defines a homotopy from rk

to a constant map from Bk to S1.

The preceding sentence contradicts our earlier conclusion that rk is not homotopic to a con-
stant; the source of the contradiction is our assumption that r|P is homotopic to a constant, and
therefore this must be false and the assertion in the theorem must be true.

Covering spaces of the Polish Circle

If a topological space X is Hausdorff, simply connected, and locally arcwise connected, then
the results of this course imply that every connected covering space over X is 1-sheeted (and hence
a homeomorphism). In contrast, we have the following result:
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PROPOSITION 6. If P is the Polish Circle and n is either a positive integer or ∞, then there

is an n-sheeted covering space projection pn : Xn → P where X is connected.

Sketch of proof. We shall give an explicit construction; in some cases, the verification of a
particular property of this construction will be left to the reader as an exercise.

Assume first that n = ∞. The first step is to decompose P as a union of two closed subsets
K ∪L, where L is the intersection of the line { y = −2 } and K is the closure of the complement
of L (in terms of the description of P in polishcircleA.pdf, L is the bottom segment and K is
the union of the vertical segments and the portion of the graph of y = sin(1/x) which lies between
x = 0 and x = 1). Both K and L are connected, and their intersection consists of the two points
u = (0,−2) and v = (1,−2). Then Y∞ can be constructed by taking the disjoint union of K × Z

and L×Z modulo identifying (u, k) in K ×Z with its counterpart (u, k) in L×Z for all k ∈ Z, and
identifying (v, k) in L × Z with (v, k + 1) in K × Z; the candidate for a covering space projection
p∞ : Y∞ → P is then obtained by projecting onto the first coordinates of K × Z and L × Z, and
the inverse image of a point w in P is given by the (equivalence classes of the) points (w, k) where
k runs through all the integers, and there are infinitely many such points.

To prove that p∞ is a covering space projection, we need to show that every point has an
evenly covered neighborhood. For all points except u and v, this follows immediately from the
construction, in which both P −K and P −L are evenly covered. To dispose of the remaining two
points, let M and N denote the vertical line segments in P such that u and v are endpoints of M
and N respectively, and let M0 and N0 be the half open intervals {0}× [−2,−1] and {1}× [−2,−1].
Then the construction of Y∞ implies that M0 ∪ L ∪ N0 is an evenly covered open neighborhood of
both u and v. image of

If n is finite, then a similar construction yields an n-sheeted covering if we replace K ×Z and
L × Z with K × Zn and L × Zn respectively.

Note that the covering space constructed in Proposition 6 are not arcwise connected; in fact,
there is a 1–1 correspondence between the arc components of the covering space and the number
of sheets in the covering.

Addendum: The Bruschlinsky group

The proof that P is not contractible involved the construction of a continuous map P → S 1

that is not homotopic to a constant map. In this course sequence one basic topic is the fundamental
group, which is given by basepoint preserving homotopy classes of continuous maps from S 1 to a
space X; dually, one can develop an introductory topology course using a group of homotopy classes
of continuous maps from a space X to S1. We shall explain briefly how this can be done; a more
complete development of this theme appears in the book, A Geometric Introduction to Topology ,
by C. T. C. Wall (Dover Books, NYC, 2011; ISBN 0486678504).

The dual group described in the preceding paragraph is called the Bruschlinsky group. For-
mally, if we are given a nonempty topological space X, define π1(X) to be the set of all homotopy
classes [X,S1]. Previous results and exercises show that the canonical map from π1(S

1, 1) to π1(S1)
is an isomorphism. By one of the exercises, the group structure on π1(S

1, 1) can be defined by tak-
ing the pointwise product of two closed curves in S1, and more generally pointwise multiplication
defines an abelian group structure on π1(X); specifically, if u and v are represented by f : X → S1

and g : X → S1, then u · v is represented by their pointwise product f · g (a little work is needed to
show that the product is continuous and its homotopy class depends only on the homotopy classes
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of f and g). This construction has several properties that are analogous to those of the fundamental
group.

(1) If h : Y → X is a continuous map, then there is a homomorphism h∗ : π1(X) → π1(Y )
such that h∗ takes the homotopy class of f : X → S1 to the homotopy class of f oh.

(2) In the preceding construction, if h0 and h1 are homotopic maps, then h∗

0 = h∗

1.

(3) If h is the identity map on X, then h∗ is the identity homomorphism. If k : W → Y is

another continuous map, then (h ok)∗ = k∗ oh∗.

(4) If h is a constant map, then h∗ is the trivial homomorphism.

(5) If “q” denotes the disjoint union, then there is a canonical isomorphism from the group

π1
(

X q Y
)

to π1(X)×π1(Y ) such that the algebraic coordinate projections correspond

to the homomorphisms induced by the standard inclusions of X and Y in X q Y .

A more detailed discussion of this group appears in Section II.7 (= pp. 47–52) of Hu, Homotopy

Theory (Academic Press, New York, 1959).
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