The Long Line

The Long Line is an example of a topological 1-manifold that is not metrizable. The purpose
of this file is to define this space and prove it is not metrizable. This example appears in almost
every graduate level point set topology text (for example, see Munkres, pp. 158-159 However,
some of the basic ideas behind the example are not always covered completely in topology
courses; in particular, this applies to some points about well-ordered sets. We shall begin by
summarizing what we need and giving appropriate references to Munkres.

For our purposes, Section 10 of Munkres will be the basic source of background information
on well-ordered sets. We shall add one notational conventions: If S is a well-ordered set, then
0g (or sometimes simply 0) will denote the unique minimal element of S, and if « € S is not a
maximal element then « + 1 will denote the least element of S that is strictly greater than a.
Following standard practice we shall denote 0 + 1 by 1, 1 + 1 by 2, and so on.

MINIMAL UNCOUNTABLE WELL-ORDERINGS

By the Well-Ordering Principle, every set can be well-ordered. In particular, this holds for an
arbitrary uncountable set, and as shown in Munkres (see Lemma 10.2 on page 66) this implies
the existence of a well-ordered set Sq with the following two properties:

(i) The set Sq is uncountable.

(i1) For all a € Sq the set
IS(O[,SQ) = {ﬁESQ|,8 < Ol}

is countable. (The terminology IS is derived from the order-theoretic description of this
set as an initial segment.)

In particular, it follows that Sq cannot have a maximal element (otherwise it would be
countable, being the union of everything less than the maximal element and the element itself).

In fact, if one develops more of the theory of well-ordered sets than appears in Munkres, then
it is possible to show that such a set is unique up to an order-preserving 1-1 correspondence,
but we shall not need this fact (see the topology texts by Dugundji [D] and Kelley [K] for more
information in this direction — both contain more detailed treatments of ordinal numbers and
well-ordered sets than Munkres).

The space Sq and closely related objects occur repeatedly in point set topology. They yield
many counterexamples to show that certain questions about topological spaces have negative
answers (e.g., products and subspaces of T spaces are not necessarily Ty); we shall be using Sg
here for the same purpose. A crucial property of S for constructing counterexamples is given
by Theorem 10.3 on page 66 of Munkres: Every countable subset of Sq has an upper bound in
Sa.

Since Sq is well-ordered, it follows that every countable well-ordered subset has a least upper
bound in Sq.



LEXICOGRAPHIC ORDERINGS

If A and B are linearly ordered sets, then one can make their cartesian product A x B into
a linearly ordered set with the so-called lexicographic (or dictionary) ordering. Specifically,
if we are given two ordered pairs (a,b) and (a’,b’) in A x B, then (a,b) < (a/,b') if and only
if either a < o’ or else a = a’ and b < b'. It is a routine exercise to verify that this indeed
describes a linear ordering on A x B, and the proof is left to the reader as an exercise.

The Long Line L is the linearly ordered set defined by first taking the product Sq x [0, 1)
(where the second factor is the usual half open interval in the real line) and removing the minimal
element (0,0). We make LL into a topological space by taking the associated order topology as
defined in Section 14 of Munkres.

By construction there is a canonical strictly increasing map from Sqg — {0} to LL sending «
to («,0); we shall denote this map by j.

PROPERTIES OF THE LONG LINE

By Theorem 17.11 on page 100 of Munkres, every linearly ordered set is Hausdorff with
respect to the order topology, and therefore it follows that the Long Line is Hausdorff. We shall
do this by completing several steps of the argument sketched in Exercise 12 on pages 158-159
of Munkres (specifically, Steps (a) — (¢) from the Theorem at the top of page 159).

OBSERVATION 1. For each a € Sq — {0} there is a 1 — 1 order-preserving map from the
set
J(a) = {zell |z < j(a)}

to an open interval in the real numbers.

Given two partially ordered sets, we say that they have the same order type if there is a 1-1
order-preserving correspondence between them.

Proof: We go through the steps on page 159 of Munkres:

STEP (a): If X is a linearly ordered set with a < b < ¢ € X, then the half-open interval
[a,c) has the order type of [0,1) if and only if the same is true for [a,b) and [b,c).

To prove the (=) implication, it suffices to show that if s € (0,1) then there are 1-1 order-
preserving correspondences between [0, 1) and each of [0, s), [s,1). Such maps are given by linear
functions sending 0 and 1 to 0 and s in the case of [0, s) and sending 0 and 1 to s and 1 in the
case of [s,1). To prove the (<) implication, suppose that f and g are 1-1 order-preserving
correspondences between [0, 1) and the respective intervals [a, b) and [b,c). Then one can define
a 1-1 correspondence between [0,2) and [a,c) whose value is f(¢) if ¢ € [0,1) and g(¢t — 1) if
t € [1,2). Since multiplication by 2 defines a 1-1 order-preserving correspondence from [0, 1) to
[0,2), it follows that [a,c) has the order type of [0,1).m

STEP (b): Let X be a linearly ordered set, let { z,, } be a strictly increasing sequence in
X, and suppose that this sequence has a least upper bound that we shall denote by b. Then
[zo,b) has the order type of [0,1) if and only if this is true for each interval [z;, T;+1)-

As in the previous step, the (=) implication reduces to considering the following special
case: Given a strictly increasing sequence { z, } in [0,1] whose limit is 1, then each interval



[z;, ;1) has the order type of [0,1). The desired 1-1 correspondences are given by linear
functions whose values at 0 and 1 are z; and z;41 respectively. To prove the (<=) implication,
begin with order-preserving 1-1 correspondences f; : [0,1) — [z;,2;+1), and define a similar
map

f:[0,00) — U; [zi,Ti41)

such that f(z) = f;(z—1) if x € [i,3+1); this yields a well-defined map because each nonnegative
real number lies in a unique half-open interval of the form [z,7 + 1).

Since there is a 1-1 order preserving correspondence between [0,00) and [0,1) sending ¢ to
t/(1 + t), the desired conclusion will follow if we can show that [z(,b) is equal to ince each z;
is contained in [zg,b) it follows that the latter contains the union described above. To prove
the reverse inclusion, suppose that y € [z, b). Since b is the least upper bound of the sequence
{zn } it follows that y is not an upper bound for the set and therefore there is some zj such
that y < zx. By finite induction and Step (a), it follows that [0, z) has the order type of [0, 1),
and the latter in turn implies that y € [z;,2;41) for some i < k.u

STEP (c¢):  For each o € Sq — {0} the set J(«) has the order type of (0,1).

It will suffice to show that J(«)U{j(0)} has the order type of [0,1). Suppose that the result
is false for some «a; by well-ordering there is a least a* with this property. Furthermore, we
clearly must have o* > 1. There are now two possibilities: Either the initial segment IS(a*, Sq)
has a maximal element or it does not. CLAIM: In the first case, o* = 8 + 1 for some 8, and
in the second case it is the least upper bound of some strictly increasing sequence { a;, }.

In the first case, let 8 be the maximal element of the initial segment. Since both S+ 1 and
o are strictly greater than 3, it follows that o* > S+ 1. However, if strict inequality held, then
B+ 1 would also belong to the initial segment, contradicting the maximality of 5. Therefore we
must have o* = 5 + 1.

In the second case, we begin by recalling that the intial segment is countable. In fact, it must
also be infinite since it has no maximal element. Let ¢ be a 1-1 onto mapping from the positive
integers to the initial segment (note that we say nothing about ¢ being order-preserving, and
in fact order-preserving maps cannot exist unless a* is the first element with an infinite initial
segment!). Consider the sequence of elements «,, < a* defined recursively as follows: Take a; to
be the first element of the initial segment that is greater than ¢(1), and assuming «j, has been
constructed for k£ < n take «,, to be the first element of the initial segment that is greater than
both a,—1 and ¢(n). The existence of these first elements is guaranteed by well-ordering and
the hypothesis that the initial segment has no maximal element. We claim that «* is the least
upper bound * of the sequence { v, }. Since the sequence lies in the initial segment, clearly
o* > [*. If these elements were strictly unequal, then we would have 8* = ¢(m) for some m
and hence 8* < a,,, contradicting the definition of 5* as the least upper bound of the sequence.
Therefore o must be the least upper bound as claimed.

The remainer of the proof of Step (c¢) splits into the two cases analyzed thus far.

CasE I. If a* = 8+ 1 then it follows that J(5) U {0} has the order type of [0,1) and hence
by (a) the same is true for J(a*) U {0}. But this contradicts our hypothesis, and therefore we
see that o cannot have the form g + 1.

CAsE II. If o is the least upper bound of some strictly increasing sequence { a, }, then the
minimality of o* and (a) implies that each of the sets J(w,) U {j(0)} and J(a,+1) — J(ay,) has
the order type of [0,1). Therefore by (b) we know that J(«*) also has the order type of [0, 1).
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Once again this contradicts our hypothesis, | and therefore we see that o cannot be the least
upper bound of some strictly increasing sequence { v, }.

The preceding proofs by contradiction show that one cannot find an a € LL such that
J(a) U {0} does not have the order type of [0,1), and therefore we have shown the conclusion
of (¢).m

COROLLARY. The space LL 1is a topological 1-manifold.

Proof. We begin with the following elementary observation: Let B be an open interval in the
linearly ordered set A, and let Tg T 4 denote the respective order topologies. Then U is open
with respect to Ty if and only if it is open with respect to T . The verification is elementary
and left to the reader as an exercise.

Suppose now that («,t) € LL Then by construction («,t) € J(a+ 1). By Step (¢) above
and the observation of the preceding paragraph, it follows that J(«) with the order topology is
homeomorphic to (0,1). Therefore the Long Line satisfies the locally euclidean portion of the
definition for a topological 1-manifold. Since we also know this space is Hausdorff, it follows
that the Long Line is indeed a topological 1-manifold.a

THEOREM. The Long Line LIl has the following properties: (1) It is connected.
(2) It is not Lindeldf.
(3) It is not second countable.
(4) It is not metrizable.

(5) It is not paracompact.

(6)

It is not normal.

Proof of (1): The Long Line is the union of the open connected subsets J(«) for a > 1; since
1 belongs to each of this set, it follows that their union, which is LIL, must also be connected.n

Proof of (2): As in the previous paragraph, the Long Line is the union of the open subsets
J(a) for @« > 1. We claim that no countable subcollection covers LIL. To see this, let { J(ag) }
be a countable family. We then now that there is some § € Sq such that 8 > «; for all k.
It then follows that that the union of the sets J(ax) is contained in J(fB). Since the latter is
a proper subset of LL, it follows that the given countable subcollection cannot cover the Long
Line. Therefore the latter cannot be Lindel6f.m

Proof of (3): This follows from (2) because second countable spaces are always Lindel6f.m

Proof of (4): Since connected metrizable topological manifolds are second countable and
ILLL is a connected topological manifold that is not second countable, it follows that LL is not
metrizable.m

Proof of (5): Since paracompact topological manifolds are metrizable and L is a topological
manifold that is not metrizable, it follows that LL is not paracompact.m

Proof of (6): Since paracompact Hausdorff spaces are normal and LL is Hausdorff but not
paracompact, it follows that LI is not normal.m



EXAMPLES IN HIGHER DIMENSIONS

One can also construct examples of nonmetrizable topological n-manifolds with arbitrary
dimension n > 2.

PROPOSITION. For each n > 2 the cartesian product of n copies of LI with itself is a
nonmetrizable topological n-manifold.

Sketch of Proof: The product is a topological manifold because the product of n copies of a
topological k-manifold with itself is always a topological nk-manifold (the product is Hausdorff
and every point has an open neighborhood that is homeomorphic to an open subset of R*).

This product is not metrizable because an n-fold product of a topological space X with itself
will be metrizable if and only if X itself is metrizable.n
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