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Manifolds with Boundary 

 
In nearly any program to describe manifolds as built up from relatively simple 

building blocks, it is necessary to look more generally at manifolds with 

boundaries.   Perhaps the simplest example of something that should be a manifold 

with boundary is the standard unit n – disk  D
n
, whose boundary will then be the 

unit n – sphere  S 

n – 1. 

 

Preliminary definitions.    Suppose that  A is a subset of  RRRR
k
 for some  k  and  f  is 

a mapping from  A to  RRRR
m

 for some m.  We shall say that  f  is a smooth mapping if 

it extends to a smooth map on some open neighborhood of  A.  A partitions of 

unity argument shows that this is equivalent to a local extension hypothesis:  For 

each  a  in  A there is an open neighborhood  U of a  in  RRRR
k
  such that  f | U  ∩∩∩∩  A 

extends to a smooth function on U.  —  It is straightforward to check that this 

definition of smooth function does not depend upon the choice of k (in particular, 

if we view  A  as contained in  RRRR
k + 1

 via the usual inclusion of  RRRR
k
  in  RRRR

k + 1
, then if 

the statement is true for A contained in one of  these Euclidean spaces, it will be 

true for A contained in the other.   More generally, if  A  and  B  are subsets of  RRRR
k
 

for some sufficiently large  k,  and if we say that a map from A  to  B  is smooth if 

the composite map from A  to  RRRR
k
  is smooth, then it is straightforward to check 

that the collection of all smooth maps is a subcategory of the category of 

continuous maps on the spaces under consideration. 

 

A  topological n – manifold M with boundary  is defined to be a Hausdorff space 

(usually also second countable) such that every point in M has an open 

neighborhood which is homeomorphic to an open subset in RRRR
n
+, the set of all 

points whose last coordinate is nonnegative.   This includes the usual defininition 

of manifold (without boundary), for if a point has a neighborhood homeomorphic 

to an open subset in RRRR
n
, then it also has an open neighborhood homeomorphic to 

an open subset in the pont set theoretic INTERIOR (RRRRn
+ in RRRR

n) of all points in RRRR
n
 

whose last coordinates are positive (verify this!). 
 

More generally, given a topological n – manifold M with boundary, we define the 

interior of M, written INT(M), to be the set of all points which have open 

neighborhoods which are homeomorphic to open subsets of INTERIOR (RRRRn
+ in RRRR

n).  
This is a topological n – manifold without boundary, and it is an open subset 
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(Sketch of proof:   If U is an open neighborhood of a point x in the interior and U 

is homeomorphic to an open subset V of  RRRR
n
+,  let  F  be the portion of  U 

corresponding to the intersection of  V  and RRRR
n
+.  Then one checks that U – F is 

also an open neighborhood of x, and it lies completely in the interior.).    
 

Before proceeding, we need the following observation. 
 

Claim.   If M is a topological manifold with boundary and x is a point of M, then 

exactly one of the two statements below is true: 

 

1. The point  x  has an open neighborhood which is homeomorphic to an 

open subset in RRRR
n
. 

 

2. The point  x  has an open neighborhood base such that no set in the base 

is homeomorphic to an open subset in RRRR
n
. 

 

The complement of the interior is called the boundary; it is a closed subset of M 

and is denoted by ∂∂∂∂M.  Note that M is an n – manifold in the usual sense if and 

only if the boundary is empty. 

 

The proof of the claim is a consequence of Brouwer’s Invariance of Domain.  

Suppose we are given a point  x  such that  x  has an open neighborhood 

homeomorphic to an open subset of RRRR
n
+  and under such a homeomorphism  x 

corresponds to a point v  in  RRRR
n
 whose last coordinate is zero.  Then the second 

statement clearly holds (any open neighborhood of v must contain points whose 

last coordinates are negative).  We need to check that the first and second 

statements cannot be true simultaneously.  Suppose they are, and let U  be an open 

neighborhood of  x  which is homeomorphic to an open subset of RRRR
n
,  and let V  be 

a smaller open neighborhood given by the second assertion, so that V is not 

homeomorphic to an open subset of RRRR
n
.  But V is open in U, and hence if U is 

homeomorphic to an open subset U ′ in RRRR
n
 then it follows that the image V  of  V ′ 

is also open in RRRR
n
 by Invariance of Domain.  This is impossible since V is not open 

in RRRR
n
, and therefore the first statement is false if the second is true. 

 

Proposition.   If M is a topological n – manifold with boundary, then ∂∂∂∂M is a 

topological (n – 1) – manifold without boundary. 
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This is true because if  x is in the boundary and U is an open neighborhood 

homeomorphic to an open subset of RRRR
n
+, then the intersection of U and the 

boundary is homeomorphic to an open subset of RRRR
n  – 1. 

 

Example.  Clearly RRRR
n
+  is a topological n – manifold with boundary, and its 

boundary is RRRR
n  – 1.  More generally, if V is a topological (n – 1) – manifold without 

boundary, then V × RRRR
n
+  is a topological manifold with boundary, and the latter is 

given by V × RRRR
n  – 1.  Note that if  n  =  1  then the boundary is  V × {0}, which is 

homeomorphic to V itself.  To see that D
n
 is a manifold with boundary, consider 

the radial homeomorphism  from S 

n – 1 × RRRR
n
+   to  D

n
 ���� {0} sending (x, t) to e

 – t 
x.  

Since the center point 0 ∈∈∈∈ D
n
 has an open neighborhood in the latter which is 

homeomorphic to an open subset of RRRR
n
  (the open unit disk!) and the complement 

of {0} is an open set which we know is a topological n – manifold with boundary 

by the preceding sentence, it follows that  D
n
  itself is also a topological n – 

manifold with boundary. 

 

Exercises.  1.  Generalize the preceding argument as follows:  If  M  =  A ∪∪∪∪ B 

where A is a topological n – manifold without boundary which is open in  M, and 

B is a topological n – manifold with boundary which is also open in M, then M is a 

topological n – manifold with boundary. 
 

2.   For every connected Hausdorff topological space X, there is at most one 

nonnegative integer n such that X is a topological n – manifold.  As usual, we call 

this the dimension of M. 
  

3.    If  M  is a compact  n – manifold with boundary,  prove that  ∂∂∂∂M  is also 

compact.  Is the converse true?  Prove this or give a counterexample for which the 

boundary is nonempty. 

 

SMOOTH STRUCTURES.   Clearly we would like the unit disk to be an example of a 

smooth manifold with boundary.  The first step is to define the proper analog of a 

smooth atlas.  The coordinate charts for the smooth atlas will be continuous 

mappings  hαααα: Uαααα  →→→→  M, where Uαααα is open in RRRR
n
+ as before, and we want the 

transition maps to be smooth in an appropriate sense.  Specifically, the transition 

maps are given by 
 

ψψψψβ,α β,α β,α β,α : hαααα
 – 1(hββββ(Uββββ))   —→→→→   hββββ

 – 1(hαααα(Uαααα)) 
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where ψψψψβ,αβ,αβ,αβ,α (x)  =  hββββ
 – 1(hαααα(x)),  and we want the composites of these maps to be 

smooth in the sense described at the beginning of this document; in other words, 

the composite of  with the inclusion of the codomain in  RRRR
n
  should be smooth.  We 

then have the following statement, which has a straightforward but somewhat 

messy proof. 
 

Claim. (“Exercise”)   The maps  ψψψψβ,α  β,α  β,α  β,α  can be extended to diffeomorphisms from a 

neighborhood of the domain to a neighborhood of the codomain. 
 

[Note that the maps in question are homeomorphisms because, as in the unbounded 

case, one knows that  ψψψψβ,α   β,α   β,α   β,α   and         ψψψψβ,α   β,α   β,α   β,α   are inverse to each other.  Furthermore, they 

are clearly diffeomorphisms on the intersections of their domains and codomains 

with the complement of  RRRR
n
+ , and we know that  ψψψψβ,α   β,α   β,α   β,α   (followed by inclusion) can 

be extended to an open neighborhood of its domain.]  

 

We can now lay down the foundations for a theory of smooth functions on smooth 

manifolds with boundary exactly as in the unbounded case, and we can also define 

a tangent space  T(M)  associated to a smooth manifold with boundary; over each 

point of M, including the boundary, one has an n – dimensional space of tangent 

vectors.  At a point  x  on the boundary  ∂∂∂∂M, the vector space  Tx (M)  contains a 

naturally embedded copy of the  (n – 1) – dimensional vector space  Tx(∂∂∂∂M)  with 

a copy of the real numbers.   The set – theoretic difference  Tx (M) ���� Tx(∂∂∂∂M) splits 

into a disjoint union of two open half – spaces, and because of the next result one 

of these half – spaces is called the set of  inward pointing tangent vectors  at x.   
 

Proposition.    Let  x  be a point in ∂∂∂∂M.  Then there is an open half – space H in 

the difference  Tx (M) ���� Tx(∂∂∂∂M) with the following property:   For each  v  in  H 

there is a smooth curve  γγγγ: [0, h)  →→→→  M such that  γγγγ(0)  =  x,  γγγγ′(0)  =  v, and  γγγγ(t)  

lies in the interior of  M  for  t  >  0. 
 

It is straightforward to check this locally (in which case the distinguished half – 

space corresponds to all vectors whose last coordinates are positive), and then one 

must check that the derivatives transition maps for a manifold with boundary 

preserve the half – spaces of tangent vectors with positive last coordinates. 

 
COLLAR NEIGHBORHOODS.   We already noted that if  V  is a smooth manifold 

without boundary, then  V × [0, 1) is a manifold with boundary equal to  V × {0}.  

A basic result called the Collar Neighborhood Theorem states that if  M  is a 

smooth manifold with boundary, then  ∂∂∂∂M  has an open neighborhood of this type.    
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Collar Neighborhood Theorem.   Let  M  be a smooth manifold with boundary.  

Then  the boundary  ∂∂∂∂M  has an open neighborhood which is diffeomorphic to the 

product  ∂∂∂∂M × [0, 1). 

 
There is an analog of this result for topological manifolds which is basically due to 

M. H. Brown.  Here are some references for the compact case: 
 

M. H. Brown, Locally flat embeddings of topological manifolds. Topology of 3 – 

manifolds  and related topics (Proceedings of the University of Georgia Institute, 

1961), pp. 83 – 91. Prentice – Hall, Englewood Cliffs, N.J., 1962. 
 

R. Connelly, A new proof of Brown's collaring theorem. Proceedings of the 

American Mathematical Society 27 (1971), 180 – 182. 
 

Proof of the Collar Neighborhood Theorem.   One major step is the construction 

of an inward pointing vector field over  ∂∂∂∂M.   Before beginning, we note that the 

tangent space  T(M)  is a smooth manifold with boundary, and the boundary 

consists of all tangent vectors to points of ∂∂∂∂M (verify this!) .   The vector field will 

then be a smooth map  X  from  ∂∂∂∂M  to  ∂∂∂∂T(M)  which sends each point to an 

tangent vector over that point.  Locally this is fairly straightforward to do, and we 

can construct a global vector field from the local ones using a smooth partition of 

unity.  Furthermore, we can construct an extension of this vector field to all of  M.  

This vector field has a local  1 – parameter group of integral curves (the integral 

flow), and the integral curves with initial conditions on the boundary define a 

smooth map from an open neighborhood  W of  ∂∂∂∂M × {0}  in  ∂∂∂∂M × RRRR+  such that  

∂∂∂∂M × {0}  corresponds to ∂∂∂∂M and points of  W ���� ∂∂∂∂M × {0} are mapped into the 

interior of  M.  Furthermore, by construction the derivative map over each point of 

∂∂∂∂M × {0} is an isomorphism, so that the integral flow is locally a diffeomorphism 

at boundary points.  One can then argue as in the proof of the Tubular 

Neighborhood Theorem that there is a neighborhood  W0 of  ∂∂∂∂M × {0} in  W  such 

that the restriction of the integral flow to W0 is injective and hence must be a 

diffeomorphism.  Finally,  also as in the proof of the Tubular Neighborhood 

Theorem one can trim the neighborhood down further to obtain a subneighborhood 

which is diffeomorphic to  ∂∂∂∂M × [0, 1).   

 
The Collar Neighborhood Theorem is an extremely useful result for analyzing 

manifolds with boundary.  For example, it leads to the following fundamental 

embedding theorem: 
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Theorem.   Let  M  be a smooth n – manifold with boundary.  Then there is a 

smooth embedding of  M  into some higher – dimensional Euclidean half – space  

RRRR
q
+   as a closed subset  such that  ∂∂∂∂M  is smoothly embedded in RRRR

q 
 and the 

interior of  M  is mapped into the interior of  RRRR
q
+. 

 
The idea is simple:  One first constructs an embedding of the boundary using the 

methods which apply in the unbounded case, then one extends it to an open 

neighborhood using a collar neighborhood, and finally one extends it over the rest 

of the interior again using the methods from the unbounded case. 

 

Here is another noteworthy consequence of the Collar Neighborhood Theorem. 

 

Theorem.   If  M  is a smooth n – manifold with boundary,  then the inclusion of 

the interior  INT(M)  in  M  is a homotopy equivalence. 

 
Proof.   By standard formal properties of homotopy equivalences, it suffices to find 

a closed subset  F  of  INT(M) and  M  such that  F  is a deformation retract of both  

INT(M) and  M. 
 

To construct  F, let  h  be a diffeomorphissm mapping   ∂∂∂∂M × [0, 1)  onto an open 

neighborhood  V  of  ∂∂∂∂M  in  M,  and let  F  be the complement of the image of  the 

open subset   ∂∂∂∂M × [0, ½).   Define a mapping  ρρρρ  from  M  to  F  by  ρρρρ (h(x, t))  =  

h(x, ½)  if  t  ≤  ½ , and set  ρρρρ  equal to the identity on  F.  Since the intersection of 

these sets is equal to the image of  ∂∂∂∂M × { ½ }  under  h  and the two definitions 

agree on this subset, it follows that  ρρρρ  yields a well – defined continuous retraction 

from  M  to  F, and likewise it defines a continuous retraction on the interior of  M. 

To visualize this construction, one can take  M  to be  ∂∂∂∂M × [0, 1)  and  h  to be the 

identity; in this case  F  will be equal to  ∂∂∂∂M × [ ½ , 1) .  
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If we let  j  denote the inclusion of  F  in either  M  or its interior, then there is an 

obvious vertical homotopy  Ks  from  j ρρρρ  to the identity of  M  or  INT(M)  defined 

by  Ks(h(x, t))  =   h( x, ½ s + (1 – s) t )  if  t  ≤  ½ , and  Ks  is the identity on  F ; 

note that if  t  is positive, then so is  ½ s + (1 – s)  t   and therefore  Ks  maps the 

interior of  M  into itself  (in the drawing, the retraction collapses the blue segment 

onto its endpoint on the purple line, and the homotopy is indicated by the red 

arrows).  Thus in both cases the inclusion of  F  is a strong deformation retract, 

which is what we needed to prove. 

 

FINAL REMARK.   If  M  and  N  are topological manifolds with boundary, then 

their product  M × N  is also a manifold with boundary, and the latter is equal to 

∂∂∂∂M × N  ∪∪∪∪   M × ∂∂∂∂N.  However, if both manifolds with boundary have smooth 

structures and both boundaries are nonempty, then there is no “natural” smooth 

structure on the product; instead, one obtains objects known as manifolds with 

corners.   For example, if we take M and N to be the closed interval [0, 1], then the 

corner structure at points of ∂∂∂∂M × ∂∂∂∂N  is evident when we think of the intervals as 

embedded in the real line and their product as embedded in the Cartesian plane.  

However, it  IS  possible to make the topological product into a smooth manifold 

with boundary by one of several equivalent  ad hoc  processes called rounding 

corners or straightening angles;  for example, if we take the product of two copies 

of a closed interval, then the idea is to approximate the boundary curve by a 

smooth curve which is the same as the square’s boundary off small neighborhoods 

of the four corner points. We shall try to avoid getting into such constructions 

explicitly, but there are many situations in which they are very important.  A 

standard reference for this topic is the Appendix to the following classic paper: 
 

A. Borel and J. – P. Serre, Corners and arithmetic groups (with an appendix, 

Arrondissement des variétés à coins, by A. Douady and L. Hérault), Comment. 

Math. Helv. 48 (1973), 436 – 491. 
 


