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Summary of Morse Theory 

 
One central theme in geometric topology is the classification of selected classes of 

smooth manifolds up to diffeomorphism.   Complete information on this problem 

is known for compact  1 – dimensional and  2 – dimensional smooth manifolds, 

and an extremely good understanding of the  3 – dimensional case now exists after 

more than a century of work.   A closely related theme is to describe certain 

families of smooth manifolds in terms of relatively simple decompositions into 

smaller pieces.   The following quote from  http://en.wikipedia.org/wiki/Morse_theory 

states things very briefly but clearly: 
 

In differential topology, the techniques of Morse theory give a very direct way of 

analyzing the topology of a manifold by studying differentiable functions on that 

manifold.  According to the basic insights of Marston Morse, a differentiable 

function on a manifold will, in a typical case, reflect the topology quite directly. 

Morse theory allows one to find CW [cell complex] structures and handle 

decompositions on manifolds and to obtain substantial information about their 

homology. 
 

Morse’s approach to studying the structure of manifolds was a crucial idea behind 

the following breakthrough result which S. Smale obtained about 50 years ago:  If 

a compact smooth manifold  M 
n
 (without boundary) is homotopy equivalent to the 

sphere  S 
n
, where  n  ≥  5, then  M 

n
 is homeomorphic to  S 

n
.   —  Earlier results 

of J. Milnor constructed a smooth  7 – manifold which is homeomorphic but not 

diffeomorphic to S 
n
, so one cannot strengthen the conclusion to say that  M 

n
 is 

diffeomorphic to  S 
n
. 

 

We shall use Morse’s approach to retrieve some low – dimensional classification 

and decomposition results which were obtained before his theory was developed.  

The two classic references are books by Milnor: 
 

J. Milnor. Morse theory  (Based on lecture notes by M. Spivak and R. 

Wells). Annals of Mathematics Studies, No. 51. Princeton University 

Press, Princeton, 1963. 
 

J. Milnor. Lectures on the h – cobordism theorem  (Notes by L. 

Siebenmann and J. Sondow, Princeton Mathematical Notes No. 1). 

Princeton University Press, Princeton, 1965. 
 

The latter is out of print but available online: 
 

http://www.maths.ed.ac.uk/~aar/surgery/hcobord.pdf 
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There is also a brief but informative set of slides (with accompanying) notes that 

gives a nice overview of Morse Theory: 
 

http://maths.dept.shef.ac.uk/magic/course_files/52/notes.pdf 
 

http://maths.dept.shef.ac.uk/magic/course_files/52/lecture07_handout.pdf 
 

http://maths.dept.shef.ac.uk/magic/course_files/52/lecture08_handout.pdf 
 

http://maths.dept.shef.ac.uk/magic/course_files/52/lecture09_handout.pdf 
 

http://maths.dept.shef.ac.uk/magic/course_files/52/lecture10_handout.pdf 
 

http://maths.dept.shef.ac.uk/magic/course_files/52/lecture11_handout.pdf 
 

http://maths.dept.shef.ac.uk/magic/course_files/52/lecture12_handout.pdf 
 

 
Underlying concepts of Morse Theory 

 
The usual approach is to start with the 2 – dimensional torus presented as a surface  

F  of revolution of the circle  �� � �� � ���  	   
  about the  x – axis.  The 

drawings in Milnor’s book on Morse Theory are excellent and hard to improve 

upon, but we shall also use some similar illustrations in color from the Wikipedia 

article on Morse Theory; unless stated otherwise, the illustrations below come 

from one of these sources.    
 

Let  h  be the height function on  F  defined by taking the z – coordinate.   Then  h  

has exactly three critical points (where the derivative vanishes);  specifically, an 

absolute minimum value of  – 3  at the point  (0, 0,– 3), a relative maximum value 

of  3  at the point  (0, 0, 3), and two saddle points at (0, 0,– 1)  and  (0, 0, 1). 
 

 



 

We note that the critical points of this function are 

matrices of second partial derivatives at these points (in some coordinate system) 

are invertible symmetric matrices
 

The basic idea of Morse Theory is to see how the sublevel sets  

that  h(x)  ≤  a) change as  a

In the picture below, the level curve  

for several values of  a, and of course the sets  

curves  L 
a
.  Observe that if  

smooth submanifold; in fact

without boundary. 
 

A close inspection of this picture suggests that if the function  

values between  a  and  b, the set 

is diffeomorphic to a product of either  

In fact, the following generalization of this observation is a cornersto

Theory: 
 

Product Theorem.  Let  M 

such that  ∂∂∂∂M  is the disjoint union of two submanifolds  

be a smooth real valued function on 

[0, 1], mapping  ∂∂∂∂0 M,  ∂∂∂∂1 M 

respectively.  Suppose we are given real numbers  

has no critical values on the interval  
 

(1)   The level sets  L 
a
  or  L

are bicollared smooth submanifolds, and for 

smooth submanifolds whose boundaries are the disjoint unions of  
 

3 

We note that the critical points of this function are non – degenerate;

matrices of second partial derivatives at these points (in some coordinate system) 

are invertible symmetric matrices. 

The basic idea of Morse Theory is to see how the sublevel sets  F 
a
  ( =  all 

a  increases from the minimum to the maximum value

In the picture below, the level curve  L 
a
  ( =  all x such that  h(x)  =  

and of course the sets  F 
a
  consist of all on or below the 

Observe that if  a  is not a critical value of  h  then  L 
a
  is a bicollared 

in fact, this is true for every smooth function on a manifold 

 
 

A close inspection of this picture suggests that if the function  h  has no critical 

the set V[a, b] of all points  x  such that  a  

is diffeomorphic to a product of either  L 
a
  or  L 

a
  with the closed interval  

the following generalization of this observation is a cornersto

 
n
  be a compact smooth manifold with boundary  

is the disjoint union of two submanifolds  ∂∂∂∂0 M  and  ∂∂∂∂

be a smooth real valued function on M 
n
 which takes values in the closed interval 

M  and the interior of  M 
n
 to  {0},  {1}, and 

uppose we are given real numbers  0  <  a  <  b  <  1 such that 

has no critical values on the interval  [a, b].  Then the following hold:

L 
b
, given by points where the function’s value is 

are bicollared smooth submanifolds, and for  t  =  a, b  the sublevel sets  

smooth submanifolds whose boundaries are the disjoint unions of  ∂∂∂∂0

; namely, the 

matrices of second partial derivatives at these points (in some coordinate system) 

( =  all x such 

reases from the minimum to the maximum value.   

  a)  are drawn 

consist of all on or below the 

is a bicollared 

this is true for every smooth function on a manifold 

has no critical 

  ≤  h(x)  ≤  b 

with the closed interval  [a, b].  

the following generalization of this observation is a cornerstone of Morse 

be a compact smooth manifold with boundary  ∂∂∂∂M  

∂∂∂∂1 M, and let  f  

which takes values in the closed interval 

and  (0, 1) 

such that  f  

Then the following hold: 

s value is a or b, 

the sublevel sets  F 
t
  are 

0 M  and  L 
t
. 
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(2)  The  set  V [a, b]  of all  x  such that  a  ≤  h(x)  ≤  b is a submanifold which is 

diffeomorphic to both L 
a
 × [a, b] and L 

b
 × [a, b]. 

 

It follows immediately that the manifolds  F 
a
  and  F 

b
  are diffeomorphic. 

 

The idea of the proof is to take a smooth Riemannian metric on  M which looks 

like a product metric near manifolds  L 
a
  and  L 

b
, and to construct the gradient of  

h  with respect to this metric.  Then the diffeomorphism is defined using the 

integral flow of this vector field.  In the drawing below, the arrows point in the 

opposite  direction of the gradient in our discussion. 

 

 
  
We shall now apply this to the function which was defined on the torus.  The 

Product Theorem verifies that the sublevel sets  F 
t
  are all diffeomorphic in the 

following ranges: 
 

– 3   <   t   <  – 1,        – 1   <   t   <  1,       1   <   t   <   3 
 

In view of this, it is natural to ask the following question:   
 

Suppose that  c  is a critical value of  h  and there is an interval [a, b] 

containing  c  in its interior such that no other value in the interval  is 

a critical value.   How are the manifolds  F 
a
  and  F 

b
  related?  In the 

example, there is only one critical point between  L 
a
  and  L 

b
, and 

hence there is only one critical value in this range. 
 

For our basic example, a complete representative list of sublevel sets is given by   

F
 – 4

,  F
 – 2

,  F 
0
,  F 

2
 and F 

4
.  Note that the first of these is empty and the second is 

the entire torus.  Passage from  F
 – 4 

 to  F
 – 2

  amounts to taking a  2 – disk at the 

bottom of the torus. 
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The next passage is from  F
 – 2

  to  F 
0
.   From a homotopy – theoretic viewpoint we 

are adding a  1 – cell along the boundary of the disk (see the color picture below).  

Topologically, we are actually adjoining a thickened  1 – cell called a  1 – handle 

or a handle of index  1.  Roughly speaking, we first thicken the copy of  S 
0
  in the 

boundary of  F
 – 2

  to a smooth embedding of  S 
0
 × D 

2
, and then we attach a copy 

of  D 
1
 × D 

2
  along  S 

0
 × D 

2
 (see the second picture below; the original disk is the 

dark region and the handle is indicated by horizontal stripes).  Finally, we add a 

collar along the boundary to get the entire sublevel set (the dotted region); note 

that if we have  M  such that ∂∂∂∂M is a disjoint union of pieces  ∂∂∂∂0 M  and  ∂∂∂∂1 M,  and 

we glue a collar ∂∂∂∂1 M × [0, 1] onto M along  ∂∂∂∂1 M,  then the manifold we obtain is 

diffeomorphic to M, so the final step does not change the diffeomorphism type. 
 

 
 

A homotopy model for F 
0
 

 

 
 

The thickening process – adding a handle and then a collar 
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Similar considerations hold for passage from  F 
2
  to  F 

4
,  but now the  1 – cell’s 

end points lie on different components of the level set  L 
0
 (see the picture below).  

Note that the level set L 
2
 is a circle. 

 

 
 

Finally, we can now pass from  F 
2
  to  F 

4
  by gluing on a  2 – disk along  L 

2
. 

 
Generalizing the basic example 

 
In Morse Theory it is customary to formulate everything in terms of cobordisms, 

which are merely manifolds M with boundaries  ∂∂∂∂M  that are split into two pieces 

denoted by  ∂∂∂∂0 M  and  ∂∂∂∂1 M; such objects contain all manifolds with our without 

boundaries, for we can let either one or both boundary pieces by empty.  We shall 

be interested in smooth functions  f  from  M  to  [0, 1]  such that (as before)  f  

maps  ∂∂∂∂0 M,  ∂∂∂∂1 M  and the interior of  M 
n
 to  {0},  {1}, and  (0, 1) respectively.   

 

If we are given a smooth manifold  M  without boundary, we shall often consider 

Morse functions on the manifold  N  formed from  M  by choosing two disjointly 

embedded closed  n – disks  A0  and  A1  (where  n  is the dimension of  M  as 

usual) and removing their interiors; in this case we arbitrarily set  ∂∂∂∂ A0  =  ∂∂∂∂0 N  and  

∂∂∂∂ A1  =  ∂∂∂∂1 N.  Note that if  M  is oriented and we choose orientation – preserving 

embeddings  gi  from  D 
n
  onto  Ai , then the induced orientations on  ∂∂∂∂ A1  is the 

usual one and the induced orientation on  ∂∂∂∂ A0  will be its opposite (by definition, if  

P  is an oriented manifold with boundary, then the orientation on  ∂∂∂∂ P  is obtained 

by first pulling back the orientation form to an orientation  ωωωω  on  ∂∂∂∂ P × (0, 1)  by a 

collar neighborhood, then taking the interior product or contraction  – (d/dt )        ωωωω, 

and finally restricting the latter to a slice  ∂∂∂∂ P × { t }; as in multivariable calculus, 

we want to use the outward pointing normal to the boundary). 
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We need to assume some regularity property for the behavior of the function  f  

near the boundary components.  One simple way of doing this is to assume that 

there are smooth collar neighborhoods   
 

c0 : ∂∂∂∂0 M × [0, εεεε) →→→→ M    and    c1 : ∂∂∂∂1 M × (1 – εεεε, 1] →→→→ M 
 

such that  f ci (y, t)  =  t  for all  i, y, t.   
 

In the example of a function on the torus, the critical points were  nondegenerate  

in the sense that the Hessian matrices of second partial derivatives were invertible.  

The natural generalization of this property is the defining condition for a Morse 

function.  More precisely, we need the following local result in order to proceed: 
 

Lemma.  Suppose that  U  is an open subset of  RRRR
n
  and we are given a smooth 

function  f : U →→→→ RRRR and a point  p  in  U  such that  p  is a critical point of  f  and 

the Hessian matrix  H(f ; p)  of second partial derivatives at  p  is invertible.  Let  h  

be a diffeomorphism  from an open subset  V  to  U, and choose  q  such that  h(q)  

=  p.  Then  f h  has a critical point at  q  and  H(f h; q)  =  
T
A H(f ; p) A, where  A  

=  Dh(q)  and  
T
A  denotes the transpose of  A. 

 

This is discussed in the top half of page 144 of Hirsch, and it has two important 

consequences.  First of all,  H(f ; p)  is invertible if and only if  H(f h; q)  is (since  

A  is invertible).  Second, if we define the Morse index of a symmetric matrix to be 

the number of negative eigenvalues counted with multiplicities (recall that the 

eigenvalues of a real symmetric matrices are always real), then the Morse indices 

of the two Hessians are equal by standard results on symmetric real bilinear forms. 
 

Definition.  Let  f  be a smooth real valued function on a smooth manifold  W  

without boundary, and let  p  be a point of  W.  Then  f  is said to be a 

nondegenerate critical point if there is a coordinate chart  h:U →→→→ W  at  p, with  

h(q)  =  p  for some (unique)  q,  such that  f h  is a critical point of  q  and the 

Hessian of  f h  at  q  is invertible.  The (Morse) index of the critical point  p  is 

given by the number of negative eigenvalues for this Hessian and is often denoted 

by  λλλλ p  or simply  λλλλ.  | 
 

The preceding discussion implies that the definitions of nondegenerate critical 

points and their indices do not depend upon the choice of smooth coordinate 

charts. 
 

We can now define a  Morse function  on a cobordism  M  to be a smooth 

function  f  which satisfies the previously stated conditions and also has only 

nondegenerate critical points.  Note that if  M  is not a cylinder  ∂∂∂∂0 M × [0,  1], then  

f  must have at least one critical point; in particular, if  N  is a compact unbounded 
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manifold and  M  is formed by deleting the interior of two closed disks, then there 

must be at least one critical point on  M  unless  N  is homeomorphic to a sphere.  
 

A fundamental but fairly straightforward result (the Morse Lemma; see pages 145 

147 in Hirsch) states that we can always find a smooth coordinate chart  ϕϕϕϕ  at  p  of 

the form  ϕϕϕϕ:V0 × V1 →→→→ W, where  V0  is an open neighborhood of  0  in  RRRR
λλλλ
   and  

V1  is an open neighborhood of  0  in  RRRR
n – λλλλ

, such that  ϕϕϕϕ (0, 0)  =  p  and  f ϕϕϕϕ(x, y) 

=  | y|
2222
  –  | x|

2222
  +  C, where  C  is the critical value and  |v|  denotes the length of 

the vector  v.    
 

The Morse Lemma has many far – reaching consequences for Morse functions, 

beginning with the following: 
 

Corollary.  The critical points of a Morse function are isolated. 
 

Obviously, the usefulness of Morse functions depends upon our ability to construct 

them, but fortunately this is no problem (see pages 147 – 148 of Hirsch to see how 

this falls out of basic general position theorems or pages 16 – 18 of Milnor, 

Lectures on the hhhh – cobordism Theorem , for a more self – contained proof that 

one can construct Morse function approximations to arbitrary smooth functions on 

a cobordism which send the pieces to the appropriate subsets of the unit interval).  

Furthermore, we can do this so that no two critical points map to the same critical 

value (Milnor works this out explicitly).    
 

This puts us into a situation very much like the one we had on the torus.  There is a 

finite number of critical points, and we can label them in sequence as  p1 , … , pm  

such that  0  <  f ( p1 )  <  …  <  f ( pm )  <  1.  We know that the sublevel sets  F
 t
 

are cylinders for all positive  t  <  f ( p1 ), and once again we want to know what 

happens when we pass from  a sublevel set  F 
pk – εεεε 

  to    F 
pk + εεεε

, where  εεεε  is 

positive and small enough that  pk – 1  <   pk – εεεε   <  pk  <   pk + εεεε   <  pk + 1 .  

Fortunately, we can do this fairly explicitly. 

 
Theorem.  Suppose that we are given a Morse function  h  on an n – dimensional  

cobordism  M  with exactly one critical point, and the index of the critical point is 

equal to  λλλλ.   Then the following hold: 
 

(1)   There is a smooth embedding  g: S 
λλλλ – 1

 × D 
n – λλλλ

 →→→→  ∂∂∂∂0 M  such that  M  is 

homotopy equivalent to  ∂∂∂∂0 M  with a  λλλλ – cell attached along the restriction of  g  

to  S 
λλλλ – 1

 × {0}. 
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(2)   If  i1 denotes the standard inclusion of  X  in  X × [0, 1] as the slice  X × { i }, 

then  M  is homeomorphic to the union of  ∂∂∂∂0 M × [0, 1]  and  D 
λλλλ
 × D 

n – λλλλ
 with the  

image of  i1 g  in the former identified with S 
λλλλ– 1

 × D 
n – λλλλ

     in the latter (there is an 

illustration below).  Furthermore, there is a canonical smooth structure on  M  

which depends only on the embedding  h. 
 

Special cases of this principle are implicit in the torus example (including pictures) 

which was discussed earlier.  The picture below illustrates what happens for  ∂∂∂∂0 M  

=  S 
2
  and  λλλλ  =  1, and it suggests the reason why the construction is often called  

handle attachment. 

 

 (Source: http://www.uff.br/cdme/pdp/pdp-html/handle-01.jpg) 

 

The relationship between  ∂∂∂∂0 M and ∂∂∂∂1 M is that the second is obtained from the 

first by the following process, which is called a surgery (or spherical modification) 

of type (λλλλ, n – λλλλ):  One removes  the interior of  h (S 
λλλλ– 1

 × D 
n – λλλλ) from  M  and 

glues in a copy of  D
λλλλ
 × S 

n – λλλλ – 1
  using the obvious identification of hbdy with 

∂∂∂∂(D
λλλλ
 × S 

n – λλλλ – 1
)  =   S 

λλλλ– 1
  × S 

n – λλλλ – 1
.  In the example depicted above, the 

surgery relates S 
2
 with a manifold which is homeomorphic (in fact, diffeomorphic) 

to the torus T  

2
.   

 

Given a Morse function  f  on an n – dimensional  cobordism  M  with exactly one 

critical point, let  c  denote the associated critical value.   As in the case of no 

critical points, we shall use a suitably defined gradient – like vector field on the 

cobordism to analyze the topological structure of  M, and not surprisingly we shall 

also use the Morse Lemma which describes the behavior of  f  near the isolated 

fixed point.  The latter yields the following picture of the situation near the single 

critical point.  Note that if we remove the points inside the circle, then the closed 
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region bounded by  L 
c – εεεε

  and  L 
c + εεεε

  is a product of the relevant part of either 

with the closed interval [ c – εεεε, c + εεεε].   

 

 

 

In order to proceed, we need to define a gradient – like vector field  X  for the 

Morse function  h explicitly.   Such a vector field should have the following 

properties: 

 

1. The directional derivative  X h  is positive away from the critical points. 
 

2. On collar neighborhoods of the boundary pieces  c0 : ∂∂∂∂0 M × [0, εεεε) →→→→ M    

and    c1 : ∂∂∂∂1 M × (1 – εεεε, 1] →→→→ M  the vector field  X  corresponds to the 

standard vector field  ∂∂∂∂/∂∂∂∂t.  
 

3. Near a critical point  p, for a suitably chosen smooth chart  ϕϕϕϕ  at  p  so that 

the conclusion of the Morse Lemma is true, the vector field  X  corresponds 

to  the gradient of  hϕϕϕϕ(x, y)  =  | y|
2222
  –  | x|

2222
  +  C . 

 

It will be extremely important to understand how such a vector field behaves near 

critical points, so we shall elaborate on the consequences of the third condition 

using the following picture (corresponding to the case  λλλλ  =  1  and  n  =  2). 
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(Source: http://www.math.ou.edu/~amiller/math/images/vf3.gif) 
 

In this drawing the critical point is the origin, the critical value is  0, and the level 

curves correspond to the hyperbolas drawn in black.  The colored arrows describe 

the gradient vector field, and the two coordinate axes represent  λλλλ –  and  (n – λλλλ)  – 

dimensional vector spaces.   For points not on these axes the integral curves of the 

vector field are given by branches of the hyperbolas | x|·| y|  =  constant, which 

are orthogonal to the level sets for  | y|
2222
  –  | x|

2222
.  For nonzero points on the axes, 

the integral curves either move radially towards the origin or radially away from it.  

Of course, at the critical point the vector field vanishes and the integral curve is 

constant.   
 

To construct a gradient – like vector field, it will suffice to take a Riemannian 

metric which is built locally out of pieces and has the desired properties (these 

clearly exist) and to piece them together using a smooth partition of unity;  one can 

then take  X  to be the gradient of  h  with respect to this metric. 

 
Sketch of proof of the theorem.   We shall derive the first conclusion from the 

second, so we begin with that part.  Our discussion will be based on the argument 
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given on pages  33 – 34 of  Lectures on the hhhh – cobordism Theorem ,  and we shall 

only give the main points here and explain why the methods yield the stronger 

conclusion which we have stated.   
 

We need to examine the picture at the top of page 10 more closely. 
 

 
 

As before, in this picture the function is given by | y|
2222
  –  | x|

2222
  +  C .  By 

definition, the disk  e
λλλλ
  is the disk of radius  εεεε  on the horizontal axis.  Let  K  be 

the set of  (x, y)  such that  f (x, y)  lies in  [C – εεεε, C + εεεε]  and  | y|  <  εεεε/10.   In the 

drawing below (which is not to scale), the set  K  is shaded in turquoise. 
 

 
 

We claim that  K  is homeomorphic to D 
λλλλ
 × D 

n – λλλλ
   such that  K  ∩∩∩∩  L 

c – εεεε
  

corresponds to S 
λλλλ– 1

 × D 
n – λλλλ

; we can do this using homeomorphism which  

flattens out the vertical part of the boundary of   K  by radial shrinking in the 

horizontal direction, as indicated in the drawings below:   
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It follows that  F 
c – εεεε

 ∪∪∪∪ K  has the structure specified in part (2) of the theorem.  

We now need to show that  F 
c – εεεε

 ∪∪∪∪ K  is homeomorphic to the original cobordism, 

and this is where we need to invoke the argument from  Lectures on the hhhh – 

cobordism Theorem.    The idea is to push everything from  F 
c + εεεε

  into  F 
c – εεεε

 ∪∪∪∪ K  

using the integral curves of the gradient – like vector field,  as suggested by the 

drawing below.   Since the Morse function has no critical points besides the given 

one, so that  M  and  F 
c + εεεε

  are diffeomorphic, a modification of this construction 

yields a deformation retraction from  M  back to  F 
c – εεεε

 ∪∪∪∪ K.   
 

 
 

Since  M  and  F 
c + εεεε

  are diffeomorphic,  the assertion on the topological structure 

of  M  reduces to showing that  F 
c + εεεε

   is homeomorphic to F 
c – εεεε

 ∪∪∪∪ K  with a 

collar attached to the upper component of the boundary of the latter.  In other 

words, we need to show that the closure of the set 
 

F 
c + εεεε

   —  ( F 
c – εεεε

 ∪∪∪∪ K ) 
 

is homeomorphic to the product of  ∂∂∂∂1M  with a closed interval.   In fact, one can 

also use the gradient vector field to define this homeomorphism;  the definition 

requires two cases, depending upon whether or not the integral curve through a 

point meets the set  | y|  =  εεεε/10  before or exactly when it meets L 
c – εεεε

, but direct 

computation shows that this is equivalent to the condition  
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We now have to show the first part of the result.  However, given the second part 

and the local picture, this reduces immediately to the following statement: 
 

CLAIM.    S 
λλλλ– 1

 × {0}  is a strong deformation retract of  D 
λλλλ
 × D 

n – λλλλ
. 

 

 
 

The proof is fairly elementary and left as an exercise (one can use the picture as a 

basis for an argument). 
 

The following picture suggests how one might perform a smooth version of the 

handle attachment described above, with suitably rounded edges: 
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As indicated in Section 3 of  Lectures on the hhhh – cobordism Theorem,  there is a 

converse of sorts to the preceding result.  Given an arbitrary topological 

embedding  of  S 
λλλλ– 1

 × D 
n – λλλλ

  in a manifold without boundary  N
 n – 1

, one can 

carry out the topological handle attachment construction described above to obtain 

a topological cobordism whose  0 – component is  N.  By Theorem 3.12 on page 

30 of that reference, if the embedding is smooth, then one has a canonical way of 

making this cobordism into a smooth manifold and defining a Morse function on it 

which has exactly one critical point, whose index is equal to λλλλ.     
 

The preceding discussion has important implications for the homotopy structure of 

the cobordism  M.  If we take a Morse function such that different critical points 

assume different critical values, it follows that  M  can be obtained from  ∂∂∂∂0M    

inductively by attaching cells of dimensions  λλλλ1,  etc.  given by the indices of the 

associated critical points.  In particular, if we start with a manifold  P   without 

boundary and form  M  by deleting the interiors of two closed disks, then it will 

follow that  P  has the homotopy type of a finite cell complex which is given in 

terms of the Morse function. 

 

 

 

 

 

 

 


