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Reinhard Schultz

The purpose of this note is to describe a result from geometric topology which is well-known
to workers in the area but difficult to locate in the literature. Our discussion will be somewhat
informal, the goal being mainly to explain how the result can be extracted from the literature.

Question. Suppose we have a (second countable) smooth manifold N n and a topological sub-
manifold Mm ⊂ Nn, where m < n. Can one describe necessary and sufficient conditions under
which Mm can be approximated (within its homeomorphism type) by a smooth submanifold of
Nn?

The main result on this question is essentially answered by the work of R. Kirby and L. Sieben-
mann on triangulations and smoothings of topological manifolds [15]; a corresponding result for
piecewise smooth submanifolds, with no dimensional restrictions, is contained in earlier work of
R. Lashof and M. Rothenberg [23], and the proof of the result for topological submanifolds is
similar to the argument in [23]. A discussion of cases not covered by the main result appears in
Section 5.

To expedite the discussion, we shall make two simply stated assumptions that are not particularly
restrictive.

1: We shall assume that the submanifold M is a closed subset of N . The motivation for
this hypothesis is discussed in the third paragraph of Section 1.

2: We shall assume that M is connected. In general, M may have up to ℵ0 components,
but since N is normal and M is closed in N , one can use the Tietze Extension Theorem
for continuous real valued mappings to construct a continuous real valued function on N
which maps each component of M to a distinct positive integer. One can then take the
inverse images of pairwise disjoint neighborhoods for the individual integers to obtain
have pairwise disjoint open neighborhoods for the separate components, and then one
can restrict attention to each of these neighborhoods individually.

For similar reasons, we shall also assume that the boundaries of M and N are empty ; some
remarks about the bounded case appear in Section 4.

1. The main result

If Nn is a smooth manifold and Mm is a smooth submanifold (both without boundary), then by
the (smooth) Tubular Neighborhood Theorem (see [2], [10] or [21]), then M m has a tubular
neighborhood given by a vector bundle (i.e., a vector bundle neighborhood). Specifically,
there is an open neighborhood U of Mm in Nn and an (n−m)-dimensional vector bundle ξ over
M with total space E(ξ) such that the pair (U,M) is homeomorphic — in fact, diffeomorphic —
to the pair

(

E(ξ), zero section
)

; the total space E(ξ) has a canonical smooth structure which
is determined up to a suitable notion of equivalence by the vector bundle ξ and the smooth
structure on M .

The existence of a topological vector bundle neighborhood implies that the embedding of M
in N is locally flat (see [34], p. 33). Since it is possible to construct uncountable families of
inequivalent manifold embeddings that are not locally flat for almost all choices of m and n
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(compare [34], Chapter 2), it follows immediately that many topological submanifolds cannot
be smoothable.

Local flatness implies that M is a locally closed subset of N ; i.e., for every point x ∈ M there
is an open neighborhood U of x ∈ N such that U ∩ M is a closed subset of U . A standard
exercise in point set topology states that a subset of a space is locally closed if and only if it
is the intersection of an open subset and a closed subset, and hence if M is locally flat in N
then there is an open subset N0 ⊂ N such that M ⊂ N0 and M is closed in N0. Thus if we
replace N by the open subset N0, then we can adjust things so that M is a closed subset of the
ambient manifold. Therefore every smoothly embedded submanifold S of a smooth manifold X
is closed in some open subset X0 ⊂ X, so there is no real loss of generality in assuming that the
submanifold is a closed subset.

Although local flatness is a necessary condition for smoothability, the condition by itself is
usually not sufficient to imply that a submanifold is smoothable. For example, if M m is a
compact manifold (without boundary) which does not admit a smooth structure (e.g., the 10-
dimensional manifold constructed in [16]), then one can construct a locally flat embedding of
Mm in R

n for n sufficiently large (see [26] for a strong global version of this result), but the
results of [26] show that Mm cannot have a vector bundle neighborhood.

The main result on the question about smoothable submanifolds is essentially a converse to the
smooth Tubular Neighborhood Theorem:

Theorem 1. Let n,m ≥ 5, let Nn be a smooth n-manifold, and let Mm ⊂ Nn be a topological
m-manifold that is embedded in Nn. Then there is a smooth structure on Mm such that the
inclusion of M in N is isotopic to a smooth embedding if and only if M has a topological vector
bundle neighborhood.

We have already noted that the proof of this result is formally parallel to the earlier result of
Lashof and Rothenberg on smoothing piecewise smooth submanifolds [23]; the main difference
is that the latter depends crucially on the Cairns-Hirsch smoothability theorem for piecewise
linear manifolds [11], and in the proof of Theorem 1 we shall substitute the Product Structure
Theorem of Kirby and Siebenmann ([15], Essay I, Section 5) for the Cairns-Hirsch Theorem.

Although local flatness does not in general imply the existence of a vector bundle neighborhood
for a topological submanifold, there are reasonable analogs of tubular neighborhoods for locally
flat submanifolds. For n − m ≥ 3 the basic results are described in [33] and [12] (see also [9]),
and in the remaining cases with n − m ≤ 2 vector bundle neighborhoods always exist (e.g., see
[14]). If we combine the latter with Theorem 1, we obtain following conclusion:

Theorem 2. Let k = 1 or 2, let m ≥ 5, let Nm+k be a smooth (n + k)-manifold, and let Mm

be a locally flat m-dimensional submanifold of N m+k. Then there is a smooth structure on Mm

such that the inclusion of M in N is isotopic to a smooth embedding.

In Section 5 we shall give examples to show that Theorem 2 does not extend to the cases where
m = 3 or 4, and it also does not extend to the case where m = 2 and n = 4; in contrast, the
analog of Theorem 2 is valid when n ≤ 3, and this will also be discussed in Section 5.
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2. Smoothing vector bundles

Although there are many treatments of vector bundles in textbooks and other publications,
such accounts usually emphasize one of two basic categories — the smooth and topological
categories — with very little (if anything) said about the relationship between smooth and
topological vector bundles over a smooth manifold. Since the proof of Theorem 1 requires an
explicit understanding of this relationship, we shall review the necessary facts here. The key
ideas appear in Steenrod’s classic book ([35], Section 6.7, pp. 25–28), so we shall limit ourselves
to stating the crucial points in the form that is useful for our purposes.

In order to simplify the discussion we shall limit our attention to real vector bundles, but one can
also treat complex vector bundles similarly by substituting C for R (and “unitary” for “orthog-
onal”) throughout; everything also goes through for quaternionic vector bundles, but at some
points one must phrase things more carefully in order to compensate for the noncommutativity
of the quaternions.

COMPARING CATEGORIES OF VECTOR BUNDLES. The classical examples of vector bundles
in differential geometry are tangent bundles and various sorts of tensor bundles over a smooth
manifold, and these are smooth vector bundles, at least if the manifold is smooth of class C 2

(e.g., see [21]). On the other hand, for many purposes in topology it is more convenient to
consider continuous and topological vector bundles as in M. F. Atiyah’s classic set of lecture
notes [1]. It is straightforward to check that every smooth vector bundle has an underlying
topological vector bundle, just as smooth manifolds have underlying topological manifolds. For
our purposes the following converse relationship is fundamentally important:

Theorem 3. Let M be a smooth manifold, and let q be a positive integer.
(i) If ξ is a continuous q-dimensional vector bundle over M , then there is a smooth q-dimensional
vector bundle ξ′ and a vector bundle isomorphism ϕ : ξ ′ → ξ; in other words, if E(ξ ′) and
E(ξ) are the total spaces and π and π′ are the projections, then there is a homeomorphism
E(ϕ) : E(ξ′) → E(ξ) such that πϕ = π′, and for each x ∈ M the map ϕ defines a vector bundle
isomorphism from the vector space ξ ′x = π′−1[{x}] to ξx = π−1[{x}].
(ii) If ξ and ξ′ are smooth q-dimensional vector bundles over M and ϕ : ξ ′ → ξ is a continuous
vector bundle isomorphism, then ϕ is isotopic to a smooth vector bundle isomorphism; in other
words, there is a homotopy Φ : E(ξ ′)× [0, 1] → E(ξ) such that Φ|E ×{0} is given by ϕ, for each
t ∈ [0, 1] the map Φ|E×{t} is a vector bundle isomorphism, and Φ|E×{1} is a diffeomorphism.

VECTOR BUNDLES AND PRINCIPAL BUNDLES. Recall that in both the smooth and topological
categories, there is a 1–1 correspondence between isomorphism classes of q-dimensional (real)
vector bundles over a given base B and principal GL(q, R)-bundles over B. Given a vector
bundle π : E → B, the corresponding GL(q, R)-bundle is called the bundle of q-frames, and
it consists of all ordered q-tuples (v1, · · · ,vq) where vj ∈ E for all j such that the following
hold:

1: π(v1) = · · · = π(vq) (call this common point b).
2: In the vector space Eb = π−1[{b}], the vectors v1, · · · ,vq are linearly independent and

hence form a basis for Eb.

Conversely, if we start with a principal GL(q, R)-bundle, then the corresponding vector bundle
is merely the associated fiber bundle with fiber R

q, where GL(q, R) acts on R
q in the usual

way by invertible linear transformations. Further details on this correspondence can be found
in Section 4.4 of [37] (in particular, see Proposition 4.11 on page 31).
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By the preceding discussion, the proof of Theorem 3 reduces to proving a similar result for
smooth and topological principal GL(n, R)-bundles over a smooth manifold. We shall analyze
this relationship between the two types of bundles using standard results from bundle theory.
The classical formulation of bundle theory in the 1949–1950 Séminaire Henri Cartan ([5], Exposés
5–8bis) is particularly useful for our purposes.

The next step in the process is to observe that isomorphism classes of principal GL(n, R)-
bundles correspond bijectively to isomorphism classes of principal Oq-bundles, where as usual
Oq ⊂ GL(q, R) is the orthogonal group. Furthermore, if we are given two principal Oq-bundles
and an isomorphism of their extensions to principal GL(q, R)-bundles, then this isomorphism can
be deformed to second isomorphism which is an extension of a principal Oq-bundle isomorphism.

By the discussion thus far, Theorem 3 will be true if we can prove the following more general
result:

Theorem 4. Let M be a smooth manifold, and let G be a compact Lie group.
(i) If ξ is a topological principal G-bundle over M , then there is a smooth principal G-bundle
bundle ξ′ and a principal bundle isomorphism ϕ : ξ ′ → ξ; in other words, if E(ξ ′) and E(ξ) are
the total spaces and π and π′ are the projections, then there is a homeomorphism E(ϕ) : E(ξ ′) →
E(ξ) such that πϕ = π′, and for each x ∈ M the map ϕ defines a G-equivariant bijection from
the fiber ξ′x = π′−1[{x}] to ξx = π−1[{x}].
(ii) If ξ and ξ′ are smooth principal G-bundles bundles over M and ϕ : ξ ′ → ξ is a continuous
principal bundle isomorphism, then ϕ is isotopic to a smooth principal bundle isomorphism; in
other words, there is a homotopy Φ : E(ξ ′) × [0, 1] → E(ξ) such that Φ|E × {0} is given by ϕ,
for each t ∈ [0, 1] the map Φ|E × {t} is a principal bundle isomorphism, and Φ|E × {1} is a
diffeomorphism.

Sketch of proof. Given a compact Lie group G and a positive integer n, one has the usual sort
of n-universal principal G-bundle pn : En → Bn such that if Mm is a manifold whose dimension
m is sufficiently small with respect to m, then principal G-bundles over M are classified up
to isomorphism by homotopy classes of maps from M into Bn. A closer examination of the
construction in [5] yields two stronger conclusions. First, an isomorphism of principal G-bundles
over M determines a homotopy of classifying maps. Second, an isotopy of principal G-bundle
isomorphisms determines a homotopy of homotopies of classifying maps.

The assertions in the previous paragraph are true for both the topological and smooth categories.
In order to check this for the smooth category, it is necessary to find an n-universal principal
G-bundle which is smooth. However, thes can be done fairly directly as in Steenrod’s book [35]:
For each compact Lie group G there is a smooth injective homomorphism ρ : G → Op for some
p > 0, and one can then take the n-universal bundle to be the smooth principal bundle

G −→ On+p+1/On+1 −→ On+p+1/On+1 × ρ(G)

where the first arrow represents the composite

G → Op → On+1 × Op → On+1+p → On+p+1/On+1 .

To prove the theorem, take a topological principal bundle ξ over M , and choose a continuous
mapping f from M to the base space of a smooth n-universal bundle Bn, where n > m such
that ξ is isomorphic to the pullback of the universal bundle γ via f . Standard results on smooth
approximations to continuous functions (e.g., see the first half of [28]) show that f is homotopic
to a smooth map f1. By construction the pullback bundle f ∗

1 γ is a smooth bundle, and as noted
before the homotopy from f to f1 defines a topological principal bundle isomorphism from
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ξ ∼= f∗γ to f∗

1 γ. This proves the first part. To prove the second part, note that in this case the
topological isomorphism of smooth principal bundles from ξ1

∼= f∗

1 γ and and ξ2
∼= f∗

2 γ (where
fi is smooth) will determine a continuous homotopy H : M × [0, 1] → Bn from the smooth map
f1 to the smooth map f2. Constructing the desired isotopy amounts to constructing a relative
homotopy K : M × [0, 1] × [0, 1] from H to a smooth homotopy H ′ such that the homotopy
is fixed on M × {0, 1} × [0, 1]; such a relative homotopy will define a relative isotopy from the
original continuous isomorphism of principal bundles to a smooth isomorphism. In this case,
the existence of a suitable relative homotopy follows from a relative version of the results on
approximating continuous mappings by smooth ones.�

Theorems 3 and 4 have the following important consequence that we shall need in the next
section:

Theorem 5. Let M be a smooth manifold, let q be a positive integer, and let ξ be a continuous
q-dimensional vector bundle over M . Then there is a canonical smooth structure on the total
space E(ξ) such that the embedding of the zero section is a smooth embedding.�

3. Proof of the main results

We have noted that Theorem 2 follows from Theorem 1 and the result of Kirby-Siebenmann,
so we shall concentrate on the proof of Theorem 1. Furthermore, since we know the “only if”
implication is true, it will suffice to restrict our attention to the “if” implication.

Suppose now that we have n > m ≥ 5, and we are given a smooth manifold N n with an embedded
topological submanifold Mm such that M has a topological vector bundle neighborhood. Let ξ
be the vector bundle such that M has an open neighborhood U in N which is homeomorphic
to E(ξ) with M corresponding to the zero section. The smooth structure on N determines a
smooth structure on U and hence on E(ξ). Let π : E(ξ) → M be the projection map.

The next step in the proof is to show that M is smoothable, and the argument closely resembles
the corresponding part of [23]. We know that for some positive integer p there is a p-dimensional
inverse vector bundle ωp over M such that the Whitney sum ξ ⊕ ω is a trivial vector bundle
and hence E(ξ ⊕ ω) ∼= M × R

q+p. For every vector bundle β over M there is a standard vector
bundle identity

E(π∗β) ∼= E(ξ ⊕ β)

and if we apply this to ω we see that E(π∗ω) is homeomorphic to M × R
q+p.

Since we have a smooth structure on E(ξ), the results of the preceding section imply that

E(π∗β) ∼= E(ξ ⊕ β) ∼= M × R
q+p

also has a smooth structure. Since m ≥ 5, we can apply the Product Structure Theorem in [15]
(see Essay I, Theorem 5.1, p. 31) to conclude that M is smoothable.

Choose an arbitrary smooth manifold M0 which is homeomorphic to M . The results of Section 2
yield a smooth manifold V0 which is homeomorphic to E(ξ), and we shall need some insight into
the relationship between the smooth structure carried by V0 and the original smooth structure
which arises from the homeomorphism E(ξ) ∼= U and the smooth structure which U inherits
from N .

By the results of [15], if W is an arbitrary smooth manifold of dimension ≥ 5, then the isotopy
classes of smoothings of W are in 1–1 correspondences with homotopy classes of continuous
mappings from W to a space known as TOP/O; the main thing we shall need about this space
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is that it has the homotopy type of a topological group, a fact which follows from geometric
considerations. Furthermore, this bijection is compatible with taking total spaces of vector
bundles. Specifically, if α is a vector bundle over W and πα : E(α) → W is the projection, then
the map of homotopy groups

π∗

α : [W,TOP/O] −→
[

E(α), TOP/O
]

sends the class of a smooth structure M1 to the class of the associated smooth structure on the
total space which is given by the results of Section 2. Since πα is a homotopy equivalence, the
map of homotopy groups is bijective.

If we apply the preceding discussion to the comparison between U and V0, we see that the
smooth structure which U inherits from N is isotopic to a smooth structure on E(ξ) associated
to some smooth structure M1 on M . But this means that U is diffeomorphic to smooth tubular
neighborhood for a smooth embedding of M1. In fact, a closer examination of the situation
shows that the original topological embedding of M is topologically ambient isotopic to the
smooth embedding of M1 in U ⊂ N , which is the result we wanted to prove.�

REMARK. The smooth structure on the submanifold M is not necessarily unique, and in general
it depends upon the choice of a homeomorphism from a neighborhood of M to the total space
of some vector bundle. For example, if M = Sm and n is sufficiently large with respect to m,
then different choices of the homeomorphism yield the usual smooth structure on Sn and also all
possible diffeomorphism classes of exotic smooth structures (ef. [17]). In fact, similar examples
exist for all m and n such that m ≥ 5 and n − m ≥ 4. For example, if M m = S3 × T m−3 and
we take the standard neighborhood of Mm in R

n given by

S3 × T m−3 × {0} ⊂ S3 × T m−3 × R
n−m ⊂ S3 × R

n−3 ⊂ R
n

then by the results of [15] one can find a homeomorphism of S3×T m−3×R
n−m to itself which is

the identity on S3 × T m−3 ×{0}, such that the resulting smoothing of Mα is not diffeomorphic
to S3 × T m−3 (although Mα is homeomorphic to S3 × T m−3).

4. Generalization to bounded manifolds

Similar methods yield analogs to the previous results for bounded manifolds. We shall merely
summarize the results and indicate what one needs in order to prove the generalizations. Al-
though we continue to assume that our manifolds are connected, we shall not assume that their
boundaries are connected.

DEFAULT ASSUMPTIONS. In this section we shall only consider properly embedded sub-
manifolds with boundary; in other words, we have an inclusion of pairs (M,∂M) ⊂ (N, ∂N)
such that M ∩ ∂N = ∂M . We shall also assume that M − ∂M is locally flat in N − ∂N and
that for points on ∂M we have the following elaboration of local flatness which always holds for
proper smooth embeddings. In this context R

k
+ ⊂ R

k denotes the set of all points whose first
coordinates are nonnegative.

Each point in ∂M has an open neighborhood U in N such that (U,U ∩ M) is
homeomorphic/diffeomorphic to (Rn

+, Rm
+ × {0}) with (U ∩ ∂N,U ∩ ∂M) corre-

sponding to ({0} × R
n−1, {0} × R

m−1 × {0}).

The appropriate notion of vector bundle neighborhood for proper submanifolds with boundary
requires an extra condition called neatness with respect to the boundary (compare [10]), and
it involves collar neighborhoods for the boundaries; the latter exist by the Collar Neighbor-
hood Theorems for smooth [21] and topological [3] manifolds. Neatness means that (M∂M)
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and (N, ∂N) have compatible smooth/topological collar neighborhoods given by homeomor-
phisms/diffeomorphisms cM : ∂M × [0, 1) → M and cN : ∂N × [0, 1) → N such that cM (x, t) =
cN (x, t) for all (x, t) ∈ ∂M × [0, 1). One can refine the proofs of the Collar Neighborhood The-
orems to prove neatness under our default assumptions at the boundary (for the smooth case
this is done explicitly in [10]). A neighborhood W of M in N is said to be neat with respect to
a pair of compatible collar neighborhoods if there is an open set W0 ⊂ ∂N containing ∂M such
that

W ∩ cN

(

∂N × [0, 1)
)

= cN

(

W0 × [0, 1)
)

.

A vector bundle neighborhood pair for the properly embedded submanifold with boundary

(M,∂M) ⊂ (N, ∂N)

will be a pair of open neighborhoods (U, ∂U) of (M,∂M) in (N, ∂N) such that there is a
vector bundle ξ over M and a homeomorphism of pairs from

(

E(ξ), E(ξ|∂M)
)

to (U, ∂U) such

that (M,∂M) ⊂ (U, ∂U) corresponds to the pair of zero sections in
(

E(ξ), E(ξ|∂M)
)

. Such
a neighborhood pair is said to be neat at the boundary if U is neat with respect to a pair of
compatible collar neighborhoods.

As noted before, the existence of neat smooth vector bundle neighborhood pairs for a properly
embedded smooth submanifold is established in [10]. It is an elementary (but not quite trivial)
exercise to prove the following result.

Theorem 6. Let n > m, and let (Mm, ∂Mm−1) ⊂ (Nn, ∂Nn−1) be a (topologically) properly
embedded submanifold with boundary which satisfy the default hypotheses, and suppose we are
given compatible topological collar neighborhoods of the boundaries. Suppose further that we have
a topological vector bundle neighborhood pair (U, ∂U) of (M,∂M). Then there is a subneighbor-
hood pair (V, ∂V ) ⊂ (U, ∂U) such that (V, ∂V ) is a neat topological vector bundle neighborhood
pair for (M,∂M).�

RELATIVE VERSIONS OF THEOREMS 1 AND 2. Compatible collar neighborhoods provide one
tool needed for extending Theorems 1 and 2 to properly embedded manifolds with boundaries.
Another important step in the proof involves relative versions of Theorems 1 and 2. Precise
statements are given below; in each case the proof proceeds along similar lines but requires more
care to ensure that nothing is changed near a closed subset, and we shall omit the details.

Theorem 7. Let n,m ≥ 5, let Nn be a smooth n-manifold, and let Mm ⊂ Nn be a topological
m-manifold that is embedded in Nn. Assume that F is a closed subset of M and U is an open
subset of M which contains U , and suppose that U has a smooth structure for which it is a
smoothly embedded submanifold. Then there is a an open subset V such that F ⊂ V ⊂ V ⊂ U
and a smooth structure on Mm extending the given one on V such that the inclusion of M in N
is isotopic to a smooth embedding, by an isotopy which fixes V , if and only if M has a topological
vector bundle neighborhood which is a smooth vector bundle neighborhood over U .�

Theorem 8. Let k = 1 or 2, let m ≥ 5, let Nm+k be a smooth (n+k)-manifold, and let Mm be
a locally flat submanifold of Nn, Assume that F is a closed subset of M and U is an open subset
of M which contains U , and suppose that U has a smooth structure for which it is a smoothly
embedded submanifold. Then there is an open set V such that F ⊂ V ⊂ V ⊂ U and a smooth
structure on Mm such that the smooth structure extends the given smooth structure on V and
inclusion of M in N is isotopic to a smooth embedding by an isotopy which is fixed on V .�
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PROOFS OF THEOREMS 1 AND 2 FOR PROPERLY EMBEDDED SUBMANIFOLDS WITH
BOUNDARY. The first step is an application of the unbounded case to the embedding of
∂M in ∂N . Using compatible collar neighborhoods, we can then construct an ambient isotopy
which moves a collar neighborhood of ∂M to a properly embedded smooth submanifold of a
collar neighborhood for ∂N . Suppose that cM : ∂M × [0, 1) → M is a collar neighborhood which
is mapped smoothly into a collar neighborhood of ∂N , let F be the image of ∂M × [0, 1

2
] (this

is a closed subset of M) and let U be the open set defined by the image of ∂M × [0, 3

4
). The

relative versions of Theorems 1 and 2 imply that we can find a smoothing of the unbounded
manifold M − ∂M which agrees with the smoothing of the collar on the image of ∂M × (0, 1

2
)

and an ambient isotopy which is fixed on the image of ∂M × (0, 1

2
] and moves M to a smoothly

embedded submanifold. The latter is a smooth perturbation of the original submanifold with
all the required properties.�

5. Exceptional dimension pairs

We have already noted that the analogous result to [23] for smoothing piecewise differentiable
submanifolds of a smooth manifold is valid for all dimension pairs (n,m) such that n > m, so
it is natural to ask whether the conclusion to Theorem 1 holds if either m ≤ 4 or n ≤ 4. The
answer depends upon m and also to some extend upon n. We shall assume m > 0 since Theorem
1 extends to cases where m = 0 for trivial reasons. In most cases we have chosen examples and
arguments which reflect the main ideas of earlier sections; there are alternative arguments in
many cases, and some do not require the full force of the machinery developed in [15].

The case m = 4 and n ≥ 5. Theorem 1 DOES NOT EXTEND to this case. The work of M.
Freedman [8] and S. Donaldson [6] on 4-dimensional manifolds can be used to find examples as
follows: There is a smooth simply connected 4-manifold K called the Kummer manifold such
that H2(K; Z) ∼= Z

22 and the cup product defines an even quadratic form on this group with
signature equal to 16. The results of [8] show that K splits topologically as a connected sum
L#3S2 ×S2, and that L has a positive definite even quadratic form with signature equal to 16.
By the results of [15], it follows that L×R

k is smoothable for all k > 0. However, the results of
[6] imply that L itself is not smoothable.�

Note. It is not known whether there are counterexamples for which M 4 is smoothable but
there is no smoothing such that the topological embedding of M 4 in the smooth manifold N 5

can be isotoped to a smooth embedding.

The case m = 3 and n ≥ 5. Theorem 1 also DOES NOT EXTEND to this case, and in
fact counterexamples can be constructed using the results of Kirby and Siebenmann in [15].
Their results yield a smooth manifold M 5 such that M is homeomorphic to S3 × T 2 but not
diffeomorphic to it. The slice inclusion of S3 ∼= S3 ×{pt.} in S3 × T 2 can be combined with the
homeomorphism S3 × T 2 ∼= M to yield a locally flat topological embedding of S3 in M5, but it
cannot be deformed to a smooth embedding. If it could, then there would be an exotic smooth
structure on S3 and it would be detected by the Rochlin invariant (see [29], Section 3), but it is
known that S3 only has smooth structures that are equivalent to the standard one. — One can
construct similar examples for n > 5 by taking the corresponding locally flat embedding of S 3

in M × T k, where k > 0 is arbitrary.�

A somewhat different example for m = 3 and n = 5 is due to Lashof [22], who constructed a
locally flat topological embedding of S3 in R

5 which is not smoothable. The nonsmoothability
of this embedding is related to the Rochlin invariant.�
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The case m = 3 and n = 4. Theorem 1 also DOES NOT EXTEND to this case. Let
Σ(2, 3, 5) be the Poincaré homology 3-sphere obtained by taking the quotient of SO3 by the
group of orientation preserving symmetries of the regular icosahedron. It is known that the
Rochlin invariant of this manifold is nonzero (again see Section 3 of [29]). On the other hand,
results of [8] imply that there is an open subset of R

4 (with the usual smooth structure) which
is homeomorphic to Σ(2, 3, 5) × R. If one could approximate the corresponding topological
submanifold Σ × {0} by a smooth embedding, then it would follow that the Rochlin invariant
of Σ would be zero.�

Because of the complexity of 4-manifold topology, we shall also describe a more subtle example.
The results of [7] and [8] show the existence of a smooth manifold M 4 which is homeomorphic but

not diffeomorphic to the connected sum CP
2#9 CP2, where CP2 denotes CP

2 with the opposite
orientation. It follows immediately that the signatures of both manifolds are equal to −8, and
one major conclusion in Donaldson’s work [7] is that a manifold like the exotic example M 4

cannot be written as a smooth connected sum of smooth manifolds whose signatures are both

negative; in contrast, there are obvious ways of writing the standard manifold CP
2#9 CP2 as a

connected sum of two 4-manifolds with negative signatures:

CP
2#9 CP2 ∼=

(

CP
2#k CP2

)

#
(

9 − k CP2

)

(where 1 ≤ k ≤ 8)
Therefore, if we take the separating 3-spheres in these connected sum decompositions and con-
sider their images in M 4 under the homeomorphism, it will follow that these 3-spheres have
vector bundle neighborhoods in M 4 but are not smoothable.�

The cases m = 1, 2 and n ≥ 5. In contrast to the cases discussed thus far, Theorem 1 CAN
BE EXTENDED to these situations. One quick way to see this is to use the fact that the space
TOP/O is 2-connected (see Essay V of [15]). If ξ is the vector bundle which yields a vector
bundle neighborhood for M , then it follows that there is exactly one isotopy class of smoothings
for E(ξ), and by the previous results this must be given by the standard smoothing of M .
Therefore we see that the smoothing of E(ξ) inherited from N is isotopic to the standard vector
bundle smoothing, and thus the original embedding can be deformed to a smooth embedding.�

The case m = 2 and n = 4. Theorem 1 DOES NOT EXTEND to this case, and the reasons
involve many of the exceptional phenomena that one encounters in 4-manifold theory. The first
point to note is that local flatness implies the existence of a vector bundle neighborhood by
results from [8] (see Section 9.4). Perhaps the most easily described examples involve embedded
2-spheres in the 4-manifold S2 × S2. Given a continuous map f : S2 → S2 × S2, let f1 and
f2 denote its projections onto the first and second factors, and let (d1, d2) ∈ Z

2 be defined by
di = deg(fi). The results of [8] imply that that every pair of nonzero relatively prime pair of
integers (d1, d2) can be realized as the degree pair for some locally flat topological embedding
f : S2×S2×S2. On the other hand, a result of K. Kuga [18] and A. Suciu [36] states that a degree
pair can be realized by a smooth embedding if and only if (at least) one of the integers d1 or d2

is equal to 0 or ± 1. Many further results of this type are known (e.g., see [24]), but many easily
stated questions are still unanswered and much remains to be discovered. The smoothability
question for locally flat surfaces in 4-manifolds is currently the least well understood of all the
cases discussed in this section (numerous problems in this area appear in [13]).

The case m = 1 and n = 4. In this case, Theorem 1 CAN BE EXTENDED to embeddings of
S1, and this does not require all the machinery of [15]. The starting point is a result of M. Brown
and H. Gluck [4] that every locally flat embedding of S1 in a smooth 4-manifold is ambiently
isotopic to a piecewise smooth embedding. Results of C. P. Rourke and B. J. Sanderson ([30],
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[31], [32]) combined with geometrical computations from [25] then imply that the piecewise
smoothly embedded curve given by [4] has a piecewise smooth vector bundle neighborhood.
One can now apply the main result of [23] to conclude that the piecewise smooth embedding
is piecewise smoothly ambient isotopic to a smooth embedding (actually, the conclusion in this
particular situation also follows from more elementary arguments, but a reference to [23] requires
the least additional discussion). Similar but more delicate arguments yield the desired result for
locally flat embeddings of R; since every connected 1-manifold without boundary is diffeomorphic
to either S1 or R, this covers all cases.�

The cases 0 < m < n ≤ 3. In these cases, Theorem 1 CAN BE EXTENDED by special versions
of results from [15] which apply to manifolds of dimension ≤ 3. The proofs in these cases are
similar to the arguments in [19] and Sections 4–5 of [20].
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