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There are several approaches to summarizing a mathematician’s research accomplishments, and
each has its advantages and disadvantages. This article is based upon a talk given at Tulane that
was aimed at a fairly general audience, including faculty members in other areas and graduate
students who had taken the usual entry level courses. As such, it is meant to be relatively
nontechnical and to emphasize qualitative rather than quantitative issues; in keeping with this
aim, references will be given for some standard topological notions that are not normally treated
in entry level graduate courses.

Since this was an hour talk, it was also not feasible to describe every single piece of published
mathematical work that Terry Lawson has ever written; in particular, some papers like [42] and
[50] would require lengthy digressions that are not easily related to the central themes in his
main lines of research. Instead, we shall focus on some ways in which Terry’s work relates to
an important thread in geometric topology; namely, the passage from studying problems in a
given dimension to studying problems in the next dimensions. Qualitatively speaking, there are
fairly well-developed theories for very low dimensions and for all sufficiently large dimensions,
but between these ranges there are some dimensions in which the answers to many fundamental
questions are extremely unclear. Much of Terry’s work, and most of his best known results and
papers, are directly related to such questions.

Acknowledgments. I am grateful to S lawomir Kwasik for inviting me to speak on this topic
at Tulane and for assistance with some questions which arose in preparing this writeup. Also, I
would like to thank Elmar Winkelnkemper for some helpful comments regarding the theory and
applications of Open Book Decompositions.

1. Lower versus higher dimensions

Of course, the concept of dimension is central to many geometrical questions, and in the physical
world one can have objects of dimension n for n = 0, 1, 2, 3. During the nineteenth century,
several mathematicians recognized that the methods of coordinate geometry lead to a theory of
n-dimensional geometrical objects, where n is an arbitrary nonnegative integer. In particular,
the vector space structure on R

n, including the standard inner product, provide a setting in
which one can describe an n-dimensional analog of classical Euclidean plane or solid geometry.
Higher dimensional objects are more than just intellectual curiosities, for they have multiple
uses in many contexts, including a many areas in the mathematical sciences, several branches
of physics, and even in other subjects like mathematical economics.

Many important n-dimensional geometrical objects are examples of topological n-manifolds;
formally, these are Hausdorff topological spaces in which every point has an open neighborhood
which is homeomorphic to R

n. Objects of this sort were introduced in the middle of the nine-
teenth century, and as noted above they arise naturally in a wide range of topics, both within
the mathematical sciences and in their applications to other fields. We shall deal mainly with
topological manifolds in this article, but in some cases we must restrict attention to differential
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or smooth n-manifolds (see [46] or [33]), which have the additional structure needed to discuss
differentiation and integration on the space.

In classical Euclidean geometry, clearly some things become more complicated when one passes
from line geometry to plane geometry or from plane geometry to solid geometry, and it is normal
to expect a similar pattern when one goes from n-dimensional objects to (n + 1)-dimensional
objects. This is true in many cases, but one also has the following somewhat unanticipated fact:

Sometimes the answers to basic geometrical questions become simpler if the di-
mension n is sufficiently large. In other words, there are instances where general
patterns of results exist if one excludes finitely many exceptional dimensions.

AN EXAMPLE FROM EUCLIDEAN GEOMETRY. The classification of (solid) regular polyhedra
in Euclidean n-space up to similarity illustrates this phenomenon fairly well. If n = 2 then the
possibilities are given by the usual regular k-gons, where k is an arbitrary integer ≥ 3. On the
other hand, if n = 3 then the theory is simpler in some ways but more complicated in others.
There are only finitely many possibilities, and they are given by the classical Platonic solids;
namely, the regular triangular pyramid (or tetrahedron), the cube, the regular octahedron (which
can be constructed by taking the centers of the six faces of a cube), the regular dodecahedron
and the regular icosahedron (compare [15] and [32]).

If we pass to higher dimensions, then purely algebraic considerations show that for every n ≥ 4
one can construct a hypercube given by all x ∈ R

n whose coordinates lie between 0 and 1, an
n-simplex which is analogous to an equilateral triangle or regular tetrahedron, and a third object
which is dual to the hypercube, with vertices given by the centers of the faces of the hypercube;
such objects are analogous to the regular octahedron in 3 dimensions. Further information on
these figures can be found in either [32] or [15].

One immediate question is whether there are any other examples, and this was answered by
results of Ludwig Schläfli [94] which date back to the mid-nineteenth century. In particular, he
showed that there are three additional examples if n = 4, but no additional examples if n ≥ 5.
All but one of the examples for n = 4 are analogs of Platonic solids (again see [32] or [15]).

The illustrates the earlier comment about simplifications for sufficiently large dimensions; if we
agree that the 2- and 3-dimensional cases are understood, then we see that the 4-dimensional
case is more complicated than the 3-dimensional situation and in all dimensions n ≥ 5 there is
a uniform pattern of behavior which is simpler to describe than in either dimension 3 or 4.

SIMILAR PATTERNS IN ALGEBRA. Such patterns also arise very often in group theory. For
example, for each integer n consider the alternating group An of all even permutations on n

letters. A basic result of group theory states that An has no nontrivial normal subgroups for
all n except n = 4. For lower values of n there is no room to squeeze in any nonzero proper
subgroups at all, while if n ≥ 5 there is enough room to perform certain algebraic constructions
which force a nontrivial normal subgroup to be the whole group.

Still further examples arise at deeper levels of group theory. In each case there is a very sys-
tematic conclusion provided one avoids a finite list of exceptional values; however, in general
the latter are not contained in {1, 2, 3, 4}. For example, one can consider the automorphism
group of the symmetric group Σn on n letters; one natural question is whether this group has
automorphisms besides the standard inner automorphisms; in this case there are no other au-
tomorphisms unless n = 6, in which case there is an additional “outer” automorphism (for
example, see [88]). Another illustration of systematic behavior with finitely many exceptions
is the classification of compact simply connected Lie groups, which can be written down very
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directly provided a numerical invariant called the rank is greater than 8 [4] (a quick but ac-
curate summary is available online at http://en.wikipedia.org/wiki/Compact Lie Group), and yet
another such pattern is the classification of finite simple groups (see [109] for a summary and
[102] for a more detailed discussion; this result involves 26 exceptional or sporadic examples —
the orders of the latter are often astronomical, so the notion of “sufficiently large” is not in the
very small ranges we have seen thus far).

COUNTERPARTS IN GEOMETRIC TOPOLOGY. Here is a basic question that is simple to
formulate:

For a fixed value of n, which finite abelian groups can arise as the fundamental
groups of compact (unbounded) n-manifolds?

If n ≤ 2 one can answer this using the well-known classification theory for manifolds in these
dimensions (e.g., see [70] for the 2-dimensional case); no finite groups can be realized if n = 1,
and only finite groups of orders 1 and 2 can be realized if n = 2. Fundamental results of C. D.
Papakyriakopoulos in 3-dimensional topology [85] imply that a finite abelian group G can be
realized if n = 3 if and only if G is cyclic (see Chapter 9 of [31] for further information). On the
other hand, if n ≥ 4 then by results of A. A. Markov (see [74] or [75]) one has enough geometric
“room” to show that every finite abelian group can be realized.

Similar patterns appear elsewhere in geometric topology. Often one sees that everything can be
described fairly systematically if n ≥ M for some small value of M (which is generally equal
to 4, 5 or 6), and for all sufficiently small values of n (usually n ≤ 2) everything is fairly well
understood but usually for entirely different reasons. In particular, if n = 1 everything is usually
extremely straightforward (for example, see the relevant sections of [35]), and our understanding
geometric topology in dimension 2 is fairly complete based upon advances from the first part of
the twentieth century (compare [70], [95], or [112]). If n = 3, there are many new phenomena
to consider (including some highly pathological ones as in [7] or [93] in addition to new regular
patterns discussed in [31] and [79]), but it appears that 3-dimensional topology will be in a fairly
definitive (but still incomplete) form within the next ten years.

As in the case of regular polyhedra (but for entirely different reasons), many basic phenomena
in geometric topology become much easier to analyze if n ≥ 5, As noted in a survey article by
L. Siebenmann [99] several breakthroughs involving work from the nineteen forties to seventies
have laid a very solid foundation for studying n-manifolds with a few loose ends remaining
if n = 5 (see [40] for additional information; some later developments are covered in [87]).
The results in [99] and [40] also imply that some basic results in higher dimensions cannot be
extended to dimensions 3 and 4 (see [98]) Our present understanding of the case n = 4 is still
only partial despite some revolutionary advances during the past three decades, particularly in
the work of M. H. Freedman (see [24] and [25]) and S. K. Donaldson (see [16], [17], [18]); when
R. Kirby compiled a list of open questions in 4-dimensional topology during the past decade
[41], the result was a massive work of more than 350 pages. A good qualitiative description
of the situation is given at the beginning of of A. Scorpan’s long and very readable survey of
4-dimensional topology [97]: Dimension 4 has enough room for wild things to happen, but not
enough room to tame and undo them.

REMARK. Since n = 4 is exceptional in both geometric topology and the structure of alternating
groups, it seems worthwhile to stress that the similarities are qualitative and (presumably) the
appearance of the same number 4 in both contexts is basically coincidental.

Much of Terry’s mathematical work has been devoted to issues involving the relation of 4-
manifold theory to the theory of manifolds in higher dimensions. I shall concentrate on two
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themes runing through many of his papers; the first mainly involves work up to the early
nineteen eighties, and the second mainly involves work after that point.

2. Higher dimensional shadows: Stabilization and bisection

We have already noted one basic fact from higher dimensional topology which in fact holds for
all n ≥ 4 (all finite abelian groups arise as fundamental groups of compact n-manifolds). During
the nineteen sixties it was known that reasonably simple modifications of certain other basic
results for n ≥ 5 were also true if n = 4, and one recurrent (but often unstated) motivation
for much of the research during the sixties and seventies was to see how much insight into 4-
dimensional topology could be obtained using the methods and results from higher dimensions
(cf. [72]).

We shall be particularly interested in the following problem, which is important for its own sake
and has many far-reaching implications throughout the topology of manifolds:

CYLINDER RECOGNITION QUESTION. Suppose that we are given a compact connected un-
bounded n-manifold Mn. Can one describe elementary criteria under which a topological space
X is equivalent to the cylinder Mn × [0, 1]?

If n = 1 this question has a very elegant answer given by the classical theory of surfaces. The
first step is to generalize the concept of n-manifold to include manifolds with boundaries. For
example, the unit disk in R

n should be an n-manifold whose boundary is the (n−1)-dimensional
unit sphere, and a standard cylinder M n×[0, 1] should be an (n+1)-manifold whose boundary
is two disjoint copies of M ; more generally, an (n + 1)-manifold with boundary W will then
have a closed subset ∂W (called the boundary of W ) such that ∂W is an n-manifold without
boundary and the interior W −∂W is an (n + 1)-manifold without boundary. More information
on manifolds with boundary can be found in the standard textbooks by S. Lang [46] and M.
Hirsch [33].

Standard results in classical surface theory (see [70]) imply that a compact connected 2-manifold
with boundary W is topologically equivalent to the standard circular cylinder S 1 × [0, 1] if and
only if

(i): the boundary of W has two components, say V0 and V1,
(ii): the inclusion of either boundary component is a homotopy equivalence.

More generally, manifolds with boundary that satisfy these properties are called h-cobordisms,
and the following h-cobordism Theorem, which was shown by S. Smale [101] around 1960, is one
of the cornerstones of high-dimensional geometric topology. The standard source for the proof
in the category of smooth manifolds is Milnor’s book [77]; the first proof in the topological case
was given a few years later by E. H. Connell [14] and predates the results presented in [40].

Theorem 1. Let n ≥ 5, and let W be a simply connected compact (n + 1)-manifold with
boundary V0 q V1 such that conditions (i) and (ii) above are satisfied. Then W is topologically
equivalent to the cylinders V0 × [0, 1] and V1 × [0, 1].

This result extends to manifolds with free abelian fundamental groups, but it does not extend
to the general case. Instead, one has the following result, known as the s-cobordism Theorem
[43] (original sources include [89] and [40]):
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Theorem 2. Let n ≥ 5, and let W be a connected compact (n + 1)-manifold with boundary
V0 qV1 such that conditions (i) and (ii) above are satisfied. Then W is topologically equivalent
to the cylinders V0 × [0, 1] and V1 × [0, 1] if and only if a Whitehead torsion invariant τ(W,V0) in
the algebraically defined Whitehead group Wh(π1(V0)) is equal to zero.

Elements of the Whitehead group are represented by invertible matrices over a certain ring
associated to π1(M), and the Whitehead torsion can be defined entirely in terms of algebraic
topology (see [13]); the Whitehead group is trivial if π1(V0) is a free abelian group, and it
follows from our previous remarks that the s-cobordism theorem is also true if n = 1; thus the
result is true provided n 6= 2, 3, 4. It is not known whether the result remains true for arbitrary
topological manifolds if n = 4, but the analogous result for smooth 5-dimensional h-cobordisms
was shown to be false in the nineteen eighties by S. Donaldson [18]. If a basic statement about
3-manifolds known as the Thurston Geometrization Conjecture [80] is true (as most workers in
the area expect), then the s-cobordism Theorem will also hold if n = 2, but if n = 3 then there
are s-cobordisms that are not cylinders (the first examples are described in [11]). Finally, we
should note that

the topological h-cobordism Theorem for simply connected manifolds is true in
EVERY positive dimension.

If n = 4 this follows from the work of Freedman [25] in the nineteen eighties, if n = 2 this follows
from the recent solution of the 3-dimensional Poincaré Conjecture by G. Perelman [80], and if
n = 3 this follows by combining Perelman’s result with certain parts of Freedman’s work.

The techniques which prove the s-cobordism theorem yield weak analogs of the latter if n = 4
by results of D. Barden [5] and C. T. C. Wall [107]. In particular, Wall’s results are part of a
general pattern.

Many basic results concerning manifolds of dimension ≥ 5 have “stabilized”
analogs in dimension 4.

Roughly speaking, the advantage of stabilization is that it provides some extra room in which
to make key constructions. The alternating groups An provide a simple but fundamentally
important example of algebraic stabilization. One crucial step in proving the simplicity of
An for n ≥ 5 is showing that it is generated by cyclic permutations of three letters. If n = 4,
then there is not enough room in A4 to express some even permutations in this manner, but if
one stabilizes by passing to A5 then there is enough working room to write an even permutation
of four letters as a product of such cyclic permutations.

There are several ways of viewing the geometric stablization process. Given a manifold
Mn, one can adopt the viewpoint of algebraic geometry and “blow up” a finite number of
points topologically in a suitable manner (the mental picture is the nonexplosive inflation of a
balloon). More precisely, one finds a manifold N n and a map f : Nn → Mn such that f is a
homeomorphism (or diffeomorphism of smooth manifolds) on some set f−1[A], where A is a finite
subset of M , and the inverse images of points in A all have some prescribed topological type
(the classical process of blowing up points is described in detail, with extensive illustrations,
on pages 286–290 of [97]). For one of Wall’s result when n = 4, these exceptional sets are
all homeomorphic to unions of two 2-dimensional spheres with exactly one point in common;
alternatively, one can view these stabilizations as connected sums [92] with finitely many copies
of S2 × S2, and if there are k exceptional points we shall say that N 4 is a k-fold stabilization of
M4 by S2 × S2.

One then has the following analog of the s-cobordism theorem when n = 4 for finite stabilizations
by S2 × S2 (see [107]).
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Theorem 3. Let n = 4, and let W be a connected compact smooth (n+1)-manifold with bound-
ary V0 q V1 such that conditions (i) and (ii) above are satisfied (hence W is an h-cobordism).
Then there is some k ≥ 0 such that the k-fold stabilizations of V0 and V1 by S2 × S2 are
diffeomorphic.

There are also several interesting and important results involving stabilizations by other 4-
manifolds (e.g., see [73] or page 151 of [97]), but for our purposes it will suffice to consider only
stabilizations by S2 × S2.

Numerous other results involving stabilizations by S2 × S2 were obtained by many topologists
during the nineteen sixties and seventies (for example, [9], [10], [23], and [100]), and Terry was
also one of the contributors ([51], [52], [53], [54], [55], [58]). In some instances his work also shed
light on related questions about higher dimensional manifolds; for example, his paper with A.
Hatcher [30] proves a strong analog of Wall’s result in higher dimensions and also gives a very
nice 1-parameter analog. The latter can also be viewed as one aspect of Terry’s work on fiber
bundles (see [48], [49], [52]), which contains several interesting results but was not covered in
my talk at the miniconference due to time constraints.

One of the more important and easily stated contributions in Terry’s work is his extension
of Wall’s result to a stabilized h-cobordism theorem [55] which gives deeper insight into the
structure of a 5-dimensional h-cobordism and shows that such an object becomes a product if
one performs a 1-parameter version of the stabilization construction described above.

TWISTED DOUBLES AND OPEN BOOKS. Certain other results from around this time concern
special structures on manifolds that are highly significant, both for the insights they yield into
the structure theory of manifolds and for their usefulness in studying various sorts of flexible
geometrical structures on manifolds. The underlying concept is given as follows:

Definition. Let W be a manifold with boundary V , and let h : V → V be a homeomorphism.
The twisted double W ∪h W is the space formed by taking two disjoint copies W1 and W2 of
W and gluing them together such that each point x ∈ ∂W1

∼= V is identified to the corresponding
point h(x) ∈ W2

∼= V . A result of M. Brown (the Collar Neighborhood Theorem [8]) implies that
W ∪h W is a topological manifold without boundary. Furthermore, if W has a smooth structure
and h is a diffeomorphism, then the twisted double has a smooth structure, and frequently other
special properties of h translate into corresponding special properties of W ∪h W .

For each positive integer n, the n-dimensional sphere Sn ⊂ R
n+1 has a standard description as a

twisted double, where W is the unit disk and the images of W1 and W2 correspond to northern
and southern hemispheres, given by points for which the last coordinate xn is either nonnegative
or nonpositive. Of course, the common boundary corresponds to the equator, which is merely
Sn−1, and in this case one can take h to be the identity map (i.e., the sphere is an untwisted
double). More generally, if W is any manifold with boundary we can form the untwisted double

D(W ) = W ∪ identity W .

The only compact 1-manifold (without boundary) is the circle S1, and we have seen that the
latter is an untwisted double. In the case of 2-manifolds, the theory of surfaces yields three
important facts about twisted doubles.

Dependence on h: Different choices of h generally yield manifolds that are not homeo-
morphic (or even homotopy equivalent). For example, the 2-dimensional torus is homeo-
morphic to the untwisted double of S1 × [0, 1], but if one forms the twisted double using
the homeomorphism of

∂S1 × [0, 1] = S1 × {0} ∪ S1 × {1}
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which sends (x, y, ε) to (x, (−1)εy, ε), then one obtaines the Klein bottle [110].
Most surfaces are doubles: A compact unbounded 2-manifold is (homeomorphic to) a

twisted double if and only if it is NOT homeomorphic to the real projective plane RP
2

(see [81], p. 372), and every oriented surface is in fact (homeomorphic to) an untwisted
double. (See pp. 234–236 of [29] for a discussion of orientations.)

Converse statement: The manifold RP
2 is not (homeomorphic to) a twisted double.

In 3-dimensional topology, twisted double structures always exist (cf. Chapter 2 of [31]); the
standard examples are called Heegaard splittings because the existence of such structures on
arbitrary compact unbounded 3-manifolds was discovered (in the smooth case, at least) by P.
Heegaard just before the end of the nineteenth century.

What happens in higher dimensions? There are systematic infinite families of manifolds in
all even dimensions ≥ 2 which cannot be realized as twisted doubles (for example, the even-
dimensional complex projective spaces CP

2n, where n ≥ 1; these are defined on pp. 90–93 of [6]).
On the other hand, in odd dimensions such structures always exist, and for sufficiently large odd
dimensions this was shown in the unpublished doctoral dissertations of D. Barden [5] and J. P.
Alexander [2]. In the early nineteen seventies, H. E. Winkelnkemper [113] and (independently)
I. Tamura ([104] and [105]) described a very special type of twisted double structure called an
open book decomposition [27], which has proven to be extremely useful in the theory of foliations
on manifolds (see [47]) and also in recent work on contact geometry. A detailed discussion of
these matters would require substantial digressions (see the survey by Winkelnkemper [114] for
more information, and see [115] for a purely algebraic approach to the 3-dimensional case). For
our purposes it will suffice to state the Open Book Theorem for simply connected manifolds as
follows:

Theorem 4. Let n ≥ 6, and let M be a simply connected compact smooth n-manifold (without
boundary). Then M has an open book decomposition if and only if either n is NOT divisible by
4 or if n is divisible by 4 and an integer valued invariant called the signature of M (see [78])
is equal to zero.

Terry’s results establish a nontrivial extension of the Open Book Theorem to arbitrary odd-
dimensional manifolds in dimensions ≥ 7 [56], and in another paper the existence of twisted
double structures for 5-manifolds is shown [57]. If one combines these results with the previous
remarks on low-dimensional cases, then one has the following unified conclusion.

Theorem 5. If n is an odd positive integer, then every compact n-manifold can be realized as
a twisted double.

In addition to its intrinsic interest and applications, this result reflects a relationship between 2k-
manifolds and (2k+1)-manifolds that plays a central role in the classification theory of manifolds;
for example, in Wall’s theory of nonsimply connected surgery [108] one has a parallel relationship
between the surgery obstruction groups in dimensions 2k and 2k + 1 (in more technical terms,
the common thread is that (2k + 1)-dimensional objects correspond to automorphisms of 2k-
dimensional objects that are represent zero in some appropriate group of equivalence classes).

Incidentally, if one has a nonsimply connected 2k-manifold, the existence of an open book
structure implies additional numerical conditions beyond the vanishing of the signature, and
further work is needed. Subsequent work of F. Quinn [86] gives a definitive formulation of
the necessary conditions and shows that they are also sufficient for the existence of open book
decompositions on arbitrary 2k-dimensional compact manifolds if k > 2.
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From the preceding discussion it is clear that Terry’s work on some of these problems during
the nineteen seventies is closely related to the research of several other topologists, and in fact
there are cases of overlapping, independently obtained results; we shall not try to tabulate such
instances for the sake of relative brevity (in particular, there is no conscious effort to ignore or
denigrate the contributions of others). In cases where there is overlap with the contributions of
others, usually Terry’s work is particularly noteworthy because (i) he always added some fresh
insights of his own, (ii) he was very effective at writing up his results in a clear and thorough
form. At the time, geometric topology was an extremely active field with an enormous amount
of competition, and in the rush for recognition many pieces of work were written up too hastily
(or never even published!) and did not always meet the high standards for mathematical writing
that are implicit in Terry’s papers (related concerns are stated emphatically and but perhaps
excessively in [83]).

STABILIZATION REVISITED. The work of Terry described above was done during the nineteen
seventies. However, during the nineteen eighties he wrote one more paper on the subject, and it
reflected some important breakthroughs that had taken place in 4-dimensional topology during
the intervening years and yielded the following results on 5-dimensional h-cobordisms.

Theorem 6. Let W be a simply connected compact 5-manifold with boundary V0 ∪ V1 that is
an h-cobordism. Then W is topologically equivalent to the cylinders V0 × [0, 1] and V1 × [0, 1].
However, there are examples of smooth simply connected compact 5-dimensional h-cobordisms
that are NOT smoothly equivalent to cylinders because V0 and V1 are not diffeomorphic.

The first part of this follows from the work of M. Freedman [25], while the second follows from
the work of S. Donaldson [18]. Further work of many topologists and geometers yielded large
families of examples similar to Donaldson’s (see [26] for a survey of the earliest examples, and [97]
for an extensive survey of work through the middle of 2004), and one particularly noteworthy
family involves a class of objects related to algebraic geometry which are called Dolgachev
surfaces (see pp. 310-316 of [97]). By Wall’s earlier work, if such 4-manifolds are h-cobordant
then certain stabilizations of them are diffeomorphic, and the central question in [65] concerns
the number of stabilizations that are needed. We know that this number must be positive,
and [65] gives simple conditions on Dolgachev surfaces for which one or two stabilizations will
suffice. In some cases this yielded new classification theorems for smooth h-cobordisms between
nondiffeomorphic Dolgachev surfaces.

The preceding results reflect the emergence of gauge theory as an important tool for studying
questions about smooth 4-manifolds, and as such they provide a natural transition to the second
theme in Terry’s work to be discussed here.

3. Gauge theory and surfaces in 4-manifolds

Gauge theory was first studied by physicists, and in the late nineteen seventies mathematicians
began to discover some striking results on the relationship of gauge theories to geometry [3]. In
the early nineteen eighties the potential of gauge theory to be a powerful tool in topology became
undeniably obvious in monumental work of Donaldson (see [16] and [17]), including his totally
unanticipated discovery of smooth manifolds that are homeomorphic to ordinary Euclidean 4-
space but not smoothly equivalent to it. We shall not attempt to discuss the details of gauge
theory here, for our emphasis will be on its applications to topological questions in Terry’s work
during the nineteen eighties and nineties. Much of the work involves questions regarding smooth
nonsingular surfaces embedded in a smooth 4-manifold.
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Questions about embedded surfaces play important roles in the structure theory of n-manifolds
if n 6= 1 (in which case everything can be worked our directly). The reasons for this may be
summarized as follows.

n = 2: The quickest justification is that “a surface IS a surface.”
n ≥ 5: Fundamental methods due to H. Whitney [111] show it is possible to construct

embedded surfaces which can be used to replace certain geometric configurations with
much simpler ones (in fact, this property essentially characterizes topological manifolds
in sufficiently large dimensions [87]).

n = 3: The work of Papakyriakopoulos [85] (see also Chapter 4 of [31] and later results of
other topologists (e.g., W. Haken [28], F. Waldhausen [106], K. Johannson [38], W. Jaco
and P. Shalen [37]) show that one can often detect embedded surfaces from relatively
weak algebraic data, and these surfaces can often be used to cut a 3-manifold into
relatively manageable pieces.

n = 4: Under suitable restrictions, the work of Freedman yields locally flat topological
surfaces (see [93], p. 33) which behave like Whitney’s surfaces when n ≥ 5.

In several respects, our understanding of 4-manifolds is limited by our lack of understanding
embedded surfaces. The first example of a breakdown was discovered by M. Kervaire and J.
Milnor around 1960 [39], and it concerns smoothly embedded copies of S2 in S2 × S2. Up to
homotopy, continuous mappings from S2 to S2 ×S2 are classified by an ordered pair of integers
known as the degrees of the projections onto the factors (see Hatcher’s book [29] for the concept
of degree). It is not difficult to show that a degree pair (a, b) can be realized if either a or
b is equal to 0 or ± 1 (the other can be arbitrary). In contrast, the result of Kervaire and
Milnor showed that the pair (2, 2) cannot be realized by a smoothly embedded sphere (however,
one can realize every pair by a piecewise smooth embedded sphere). Several further results
on nonembeddings of surfaces in 4-manifolds were obtained by others before the emergence of
gauge theory in the early nineteen eighties Their methods and results were extended by others
(e.g., see W.-C. Hsiang and R. Szczarba [36]; in a somewhat different direction see [12]). One
early application of gauge theory was a complete determination of the pairs (a, b) that could be
realized by a theorem first published by K. Kuga [45] (see also [103]):

Theorem 7. A pair of integers (a, b) is realized by a smooth embedding of S2 into S2 × S2 if
and only if one of a or b is equal to 0 or ± 1.

This result also illustrates one of the many ways in which the structure theories of topological
and smooth 4-manifolds differ, for it is known that many ordered pairs of integers (a, b) can
be realized by locally flat topologically embedded spheres; if a and b are nonzero and relatively
prime, this is true by Corollary 1 of [24], and the results of [71] provide considerably more
detailed information for other ordered pairs. Incidentally, there is a much closer relationship
between smooth and locally flat embeddings in higher dimensions (cf. Theorem 2 in [96]).

More generally, for every compact, unbounded, smooth, simply connected 4-manifold M and
every continuous mapping from S2 to M , one can assign a multidegree — i.e., a sequence of k

integers (d1, · · · , dk), where k depends upon the underlying topological space of M — which
generalizes the notion of degree pair when M = S2×S2, and one can then ask which multidegrees
are realized by smooth embeddings of S2.

For the most basic choices of M , there are relatively short lists of multidegrees which can be
realized by well-known constructions. The preceding theorem implies that no others can be
realized if M = S2×S2, and a similar conclusion holds for the complex projective plane CP

2. In
[64] Terry considered some of the next few cases from a somewhat different viewpoint involving
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results of R. Fintushel and R. Stern [21], and he obtained new results for the manifolds M(1, 1)
and M(1, 2) given by taking connected sums of CP

2 with 1 or 2 copies of the oppositely oriented

manifold CP2 (in the previously used language of algebraic geometry [26], this corresponds to
blowing up one or two points). The results for M(1, 1) are complete, while the results for M(1, 2)
apply to exactly half of the possible multidegrees.

Several other papers by Terry address further questions involving the methods of Fintushel and
Stern as well as the applications of their techniques. To describe this work, we first recall that
gauge theory analyzes topological questions by first constructing certain associated “moduli
spaces of instantons” whose elements are equivalence classes of appropriate types of geometric
structures, and then studying the properties of such spaces. Especially in the early work,
compactness questions involving such spaces played a fundamental role, and a pair of Terry’s
papers ([20] and [66]) — one of which was joint with Fintushel — show that earlier compactness
results of Fintushel and Stern [22] could be generalized extensively.

In some related papers such as [63] and [68], Terry considered another question arising from
work of Fintushel and Stern [21]. It is known that every compact 3-manifold M 3 bounds a
smooth compact manifold W 4, and a central problem in low-dimensional topology is to make
W 4 as simple as possible. The results of [63] yield lower limits on the amount of simplification
that can be done for certain fundamental 3-manifolds called Seifert homology 3-spheres (see
[84]), and the precise conclusions are stated in terms of certain trigonometric expressions. Terry
extended the the earlier results of [21] on such questions in two ways, using his compactness
results and analyzing the trigonometric expressions by number-theoretic methods from work of
W. Neumann and D. Zagier [82].

An entirely different class of contributions appear in [62], which consider smooth embeddings
of the real projective plane RP

2 into simply connected 4-manifolds. Terry’s interest in such
issues was already evident in earlier papers about embeddings of RP

2 in S4 ([59], [60], [61]). In
general, if we are given a smooth embedding of RP

2 into a simply connected 4-manifold, then
there is an integer called the twisted Euler number which describes small neighborhoods of the
embedded submanifold, and the goal of [62] is to describe the possible Euler numbers for certain
choices of M . When M = S4, the answer to this question was found in the late nineteen sixties
[76]. Using the methods described above for the given 4-manifolds, Terry proves a numerical
congruence mod 4 and determines a lower bound for the twisted Euler number in a substantially
more general situation; there is also a natural conjecture for the upper bound, but this remains
an open question.

In all these cases, Terry’s results yielded strong new results on questions that had seemed totally
beyond reach in 1980 (the beginning of the decade when the papers were written). Equally
important, his work was also significant because it provided models for applying the recently
developed machinery of gauge theory in a systematic manner that did not require extensive work
with the deep and complicated details of gauge theory itself. Terry’s work marked a major step
in reducing many topologists’ apprehensiveness about the powerful and effective new methods
that had already made such an enormous impact on the subject.

The results of [63] on Seifert homology 3-spheres led to some highly original joint work with S.
Kwasik [44] on symmetries of certain compact 4-manifolds with boundary. References are given
for several specialized terms which appear in the statement of the main result.

Theorem 8. There are infinitely many finite group actions [91] on compact, smooth, con-
tractible 4-manifolds with boundary W 4 (see [81], p. 330) such that
(i) each action is free [90] on the complement of a single fixed point in the interior of W 4,
(ii) the restrictions of each action to the interior and boundary are smoothable,
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(iii) none of these actions are globally smoothable.

The results of [44] also yielded some new implications about the differences between the structure
theories for smooth and topological 4-manifolds which are unique to dimension 4.

During the nineteen nineties, gauge theory underwent some major changes that were motivated
by work in theoretical physics due to N. Seiberg and E. Witten (e.g., see [19]). This new and
improved version of gauge theory depends strongly on geometric properties called Spin and
Spinc structures, which are essentially higher order analogs of orientations on a manifold. In
[1], written jointly with D. Acosta, the role of these conditions in the case of 4-manifolds is
analyzed carefully, and the result is a clear description of issues which, as noted in the summary
of [1] in Mathematical Reviews, “can be confusing even to the initiated.”

Finally, no discussion of Terry’s papers on gauge theory would be complete without mentioning is
two excellent and very highly regarded survey articles of results on smoothly embedded surfaces
in compact simply connected 4-manifolds. The first of these [68] deals with embedded spheres,
while the second [69] concerns more general oriented surfaces and lower bounds for a basic
numerical invariant (the genus) of such a smoothly embedded surface.

4. Closing remarks

Terry Lawson has worked productively on a variety of problems that really matter in geometric
topology, he has been willing and able to move with the subject, and he has done an excellent
job of presenting both his results and related material. Each of these qualities is indispensable
for the successful development of a mathematical subject, and I have very much appreciated
Terry’s contributions in all these directions.
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Seminars, 33. Birkhäuser Verlag, Basel, 2005.

[44] S. Kwasik and T. Lawson, Nonsmoothable Zp actions on contractible 4-manifolds. J.
reine angew. Math. 437 (1993), 29–54.

[45] K. Kuga, Representing homology classes of S2 × S2. Topology 23 (1984), 133–137.
[46] S. Lang, “Differential manifolds.” Addison-Wesley, Reading, Mass. and London-Don

Mills, Ont., 1972.
[47] H. B. Lawson, Foliations. Bull. Amer. Math. Soc. 80 (1974), 369–418.
[48] T. Lawson, Some examples of nonfinite diffeomorphism groups. Proc. Amer. Math. Soc.

34 (1972), 570–572.
[49] T. Lawson, Remarks on the pairings of Bredon, Milnor, and Milnor-Munkres-Novikov.

Indiana Univ. Math. J. 22 (1972/73), 833–843.
[50] T. Lawson, Inertial h-cobordisms with finite cyclic fundamental group. Proc. Amer.

Math. Soc. 44 (1974), 492–496.
[51] T. Lawson, Remarks on the four and five dimensional s-cobordism conjectures. Duke

Math. J. 41 (1974), 639–644.
[52] T. Lawson, Splitting isomorphisms of mapping tori. Trans. Amer. Math. Soc. 205 (1975),

285–294.
[53] T. Lawson, Homeomorphisms of Bk × T n. Proc. Amer. Math. Soc. 56 (1976), 349–350.
[54] T. Lawson, Applications of decomposition theorems to trivializing h-cobordisms. Canad.

Math. Bull. 20 (1977), 389–391.
[55] T. Lawson, Trivializing h-cobordisms by stabilization. Math. Z. 156 (1977), 211–215.



14

[56] T. Lawson, Open book decompositions for odd dimensional manifolds. Topology 17
(1978), 189–192.

[57] T. Lawson, Decomposing 5-manifolds as doubles. Houston J. Math. 4 (1978), 81–84.
[58] T. Lawson, Trivializing 5-dimensional h-cobordisms by stabilization. Manuscr. Math. 29

(1979), 305–321.
[59] T. Lawson, Splitting spheres as codimension r doubles. Houston J. Math. 8 (1982), 205–

220.
[60] T. Lawson, Splitting S4 on RP

2 via the branched cover of CP
2 over S4. Proc. Amer.

Math. Soc. 86 (1982), 328–330.
[61] T. Lawson, Detecting the standard embedding of RP

2 in S4. Math. Ann. 267 (1984),
439–448.

[62] T. Lawson, Normal bundles for an embedded RP
2 in a positive definite 4-manifold. J.

Diff. Geom. 22 (1985), 215–231.
[63] T. Lawson, Invariants for families of Brieskorn varieties. Proc. Amer. Math. Soc. 99

(1987), 187–192.
[64] T. Lawson, Representing homology classes of almost definite 4-manifolds. Michigan

Math. J. 34 (1987), 85–91.
[65] T. Lawson, h-cobordisms between simply connected 4-manifolds. Topology Appl. 28

(1988), 75–82.
[66] T. Lawson, Compactness results for orbifold instantons. Math. Z. 200 (1988), 123–140.
[67] T. Lawson, Smooth embeddings of 2-spheres in 4-manifolds. Exposition. Math. 10 (1992),

289–309.
[68] T. Lawson, A note on trigonometric sums arising in gauge theory. Manuscr. Math. 80

(1993), 265–272.
[69] T. Lawson, The minimal genus problem. Exposition. Math. 15 (1997), 385–431.
[70] T. Lawson, “Topology: a geometric approach.” Oxford Graduate Texts in Mathematics

No. 9. Oxford University Press, Oxford, 2003.
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