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Introductory remarks

In these notes, we are interested in the following basic question:

Is there some purely topological way to describe the intuitive notion of n−dimensionality,
at least for spaces that are relatively well-behaved?

Of course, in linear algebra there is the standard notion of dimension, and this concept has far-
reaching consequences for understanding dimensions in geometry. A topological approach to de-
scribing the dimensions of at least some spaces is implicit in our proof for Invariance of Dimension
(see Proposition IV.2.16), which can be used to define a notion of dimension for topological spaces
which locally look like an open subset of R

n for some fixed n ≥ 0. There is an extensive literature
on topological approaches to defining the dimensions of spaces. Our purpose here is to discuss one
particularly important example known as the Lebesgue covering dimension; for reasonably well-
behaved classes of spaces this is equivalent to other frequently used concepts of dimension. Here
are some printed and online references for topological dimension theory:

W. Hurewicz and H. Wallman. Dimension Theory (Revised Edition, Princeton
Mathematical Series, Vol. 4). Princeton University Press, Princeton, 1996.

K. Nagami. Dimension Theory (with an appendix by Y. Kodama, Pure and Applied
Mathematics Series, Vol. 37). Academic Press, New York , 1970.

J. Nagata. Modern Dimension Theory (Second Edition, revised and extended; Sigma
Series in Pure Mathematics, Vol. 2). Heldermann-Verlag, Berlin, 1983.

http://en.wikipedia.org/wiki/Lebesgue covering dimension

http://en.wikipedia.org/wiki/Dimension

http://en.wikipedia.org/wiki/Inductive dimension

FRACTAL DIMENSIONS. There are several notions of fractal dimension for subsets of R
n

which depend on the way in which an object is embedded in R
n and not just the subset’s underlying

topological structure; for example, various standard examples of nonrectifiable curves in the plane
have fractal dimensions which are numbers strictly between 1 and 2. Such objects are interesting
for a variety of reasons, but they are beyond the scope of this course so we shall only give two
online references here:

http://en.wikipedia.org/wiki/Fractal dimension

http://www.warwick.ac.uk/∼masdbl/dimension-total.pdf

The basic setting

We shall base our discussion upon the material in Section 50 of Munkres, Topology. For the
sake of clarity we shall state the main definition and mention some standard conventions.

Definition. Let X be a topological space, let n be a nonnegative integer, and let U be an indexed
open covering of X. Then we shall say that the open covering U has order at most n provided
every intersection of the form

Uα(0) ∩ · · · ∩ Uα(n)

is empty, and we shall say that the space X has Lebesgue covering dimension ≤ n provided every
open covering U of X has a refinement V of order ≤ n. Frequently we shall write dimX ≤ n if the
Lebesgue covering dimension is at most n.
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We shall say that dimX = n (the Lebesgue covering dimension is equal to n) if dimX ≤ n is
true but dimX ≤ n − 1 is not. By convention, the Lebesgue covering dimension of the empty set
is taken to be −1, and we shall write dimX = ∞ if dimX ≤ n is false for all n.

Several fundamental results about the Lebesgue covering dimension appear in Munkres, Topol-
ogy , and we shall not try to copy or rework most of these results here. Instead, our emphasis in
this section will be on the following key issues:

(1) Describing precise connections between the topological theory of dimension as in Munkres,
Topology , and the algebraic notions of k-dimensional homology groups for various choices
of k.

(2) Using the methods of these notes to give an alternate proof of Theorem 50.6 in Munkres,
Topology ; namely, if A ⊂ R

n is compact, then the topological dimension of A satisfies
dimA ≤ n.

(3) Using algebraic topology to prove that the topological dimension of an n-dimensional poly-
hedron is in fact equal to n (the results in Munkres, Topology , show that this dimension
is at most n).

We shall begin by addressing the dimension question in (2); one reason for doing this is that
the approach taken here will play a crucial role in our treatment of the subject.

THEOREM 50.6 in MUNKRES (Topology). If A is a compact subset of R
n, then dimA ≤ n.

Alternate proof. We know that there is some very large hypercube K of the form [−M,M ]n

which contains A, and we also know that A is closed in this hypercube. By Theorem 50.1 on pages
306–307 of Munkres, Topology , it is enough to show that the hypercube has dimension at most
n. Since every hypercube has a simplicial decomposition with simplices of dimension ≤ n, it will
suffice to prove the following result:

LEMMA 1. If P ⊂ R
m is a polyhedron with an n-dimensional simplicial decomposition, then

the topological dimension of P is at most n.

If we know this, then we know that the hypercube, and hence A, must have topological
dimension ≤ n.

Proof of Lemma 1. Let U be an open covering of the hypercube K, and let ε > 0 be a
Lebesgue number for U . Using barycentric subdivisions, we can find an n-dimensional simplicial
decomposition of K whose simplices all have diameter less than ε/2. Therefore if v is a vertex of
this simplicial decomposition, then the open set Openstar(v) is contained in some element of U .
Now these sets form an open covering of K (see Section 2.C of Hatcher), and therefore these open
stars form a finite open refinement of U . Since an intersection of open stars ∩i Openstar(vi) is
nonempty if and only if the vertices vi lie on a simplex from the underlying simplicial decomposition,
the n-dimensionality of the decomposition implies that every intersection of (n + 2) distinct open
stars must be empty. This is exactly the criterion for the covering by open stars to have order at
most (n+1). Therefore we have shown that U has a finite open refinement with at most this order,
which means that the topological dimension of K is at most n.

The discussions of the first and third issues are closely related, and they use the material
on partitions of unity on pags 225–226 of Munkres, Algebraic Topology (see Theorem 36.1 in
particular).

Definitions. Let X be a T4 space, and let U be a finite open covering of X. Set Vec(U) equal
to the (finite-dimensional) real vector space with basis given by the sets in U , and define the nerve
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of U , written N(U), to be the simplicial complex whose simplices are given by all vertex sets of the
form Uα(0), · · · , Uα(q) such that

Uα(0) ∩ · · · ∩ Uα(q) 6= ∅ .

By construction, the vertices of this simplicial complex are all symbols of the form [Uα], where Uα

is nonempty and belongs to U .

If {ϕα } is a partition of unity which is subordinate to (= dominated by) U , then there is a
canonical map kϕ from X to N(U) given by the partition of unity:

kϕ(x) =
∑

ϕα(x) · [Uα]

Different partitions of unity yield different maps, but we have the following:

CLAIM: For each finite open covering U , all canonical maps from X to N(U) are homotopic to each
other.

Proof of the claim. For each choice of x and canonical maps ϕ0, ϕ1, we know that the points ϕi(x)
lie on the simplex whose vertices are all [Uα] such that x ∈ Uα. Thus the straight line segment
joining ϕ0(x) to ϕ1(x) also lies on this simplex, and hence also lies in the nerve of U . In other
words, the image of the straight line homotopy from ϕ0 to ϕ1 is always contained in N(U), and
therefore the two canonical maps into N(U) are homotopic.

In the special case where (P,K) is a simplicial complex and U is the open covering given by
open stars of vertices (see Hatcher for the definitions), the canonical map(s) from P to the nerve
of U can be described very simply as follows:

PROPOSITION 2. Let P , K and U be as above, and for each vertex v of K define the extended

barycentric coordinate function v∗ : P → [0, 1] as follows: If x ∈ A for some simplex A which contains
v as a vertex, let v∗(x) denote the barycentric coordinate of x with respect to v, and if x lies on
a simplex A which does not contain v as a vertex, set v∗(x) = 0 (it follows immediately that this
map is well-defined and continuous). Define a map κ : P → N(U) by κ(x) =

∑

v∗(x) · v. Then
κ defines a homeomorphism from P to N(U), and every canonical map with respect to the open
covering U is homotopic to κ.

Sketch of proof. First of all, the barycentric coordinate functions are well-defined, for if x lies
on a simplex A with vertex v and also on a simplex B for which v is not a vertex, then it follows
that the barycentric coordinate of x with respect to v must be zero. The assertion that κ defines a
homeomorphism from P to the nerve of U follows because κ maps the simplices of K bijectively to
the simplices of N(U); more precisely, there is a 1–1 correspondence of simplices and each simplex
of K is sent to a simplex of the nerve by a bijective affine map.

Finally, the proof that κ is homeomorphic to a canonical map associated to a partition of
unity follows from the same considerations which appear in the proof that two canonical maps are
homotopic (for every x ∈ P , there is a simplex in the nerve containing both κ(x) and the value of
a canonical map at x).

Čech homology groups

The idea behind singular homology groups is that one approximates a space by maps from

simplicial complexes (in particular, simplices) into a space X. Dually, the idea behind Čech homol-
ogy groups is that one approximates a space by maps into simplicial complexes. Constructions of
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this type play an important role in the theory and applications of machinery from algebraic topol-
ogy, but we shall only focus on what we need. As is often the case, the first step is to construct
some necessary algebraic machinery.

Inverse systems and inverse limits

The definition of Čech homology requires the notion of inverse limit; special cases of this
concept appear in Hatcher, but since we need the general case we must begin from scratch.

Definition. A codirected set is a pair (A,≺) consisting of a set A and a binary operation ≺ such
that the following hold:

(a) (Reflexive Property) For all x ∈ A we have x ≺ x.

(b) (Transitive Property) If x, y, z ∈ A are such that x ≺ y and y ≺ z, then x ≺ z.

(c) (Lower Bound Property) For all x, y ∈ A there is some w ∈ A such that w ≺ x and w ≺ y.

These are similar to the defining conditions for a partially ordered set, but we do not assume the
symmetric property (so x ≺ y and y ≺ x does not necessarily imply x = y), and the Lower Bound
Property does not necessarily hold for a partially ordered set which is not linearly ordered. On
the other hand, if a partially ordered set is a lattice (i.e., finite subsets always have least upper
bounds and greatest lower bounds), then it is a codirected set.

The basic example of a codirected set in Hatcher is given by the positive integers N
+ with the

reverse of the usual partial ordering, so that a ≺ b if and only if b ≥ a.

Given a codirected set (A,≺), there is an associated category CAT (A,≺) for which Morph (x, y)
is nonempty if and only if x ≺ y, and in this case Morph (x, y) contains exactly one element.

Definition. Let (A,≺) be a codirected set, and let C be a category. An inverse system in C

indexed by (A,≺) is a covariant functor F from CAT (A,≺) to C. If a ≺ b, then the value of F on the
unique morphism a → b is frequently denoted by notation like fa,b; in other words, fa,b = F (a ≺ b).

There is a closely related concept of inverse limit for inverse systems. One can do this in
purely categorical terms, but we are only interested in working with inverse limits over categories
of modules. For inverse systems F = {F (a)} of modules, the inverse limit

lim
←

= inv lim
A

F (a) = proj lim
A

F (a)

is defined to be the set of all x = (xa) in
∏

A F (a) such that for each a ≺ b we have fa,b(xa) = xb.
For each a ∈ A the map pa denotes projection onto the a-coordinate.

Inverse limits have the following universal mapping property, which in fact characterizes the
construction.

PROPOSITION 3. Suppose that F is an inverse system as above, and suppose that we are
given a module L with maps qa : L → F (a) such that fa,b

oqa = qb whenever a ≺ b. Then there is
a unique homomorphism h : L → lim

←

F (a) such that ga = fa
oh for all a.

This is an immediate consequence of the definitions.

There are straightforward analogs of the inverse limit construction for may categories (sets,
compact Hausdorff spaces, groups, ...), and we shall leave the details of setting up such objects to
the reader as an exercise.

5



Frequently it is important to recognize that inverse limits of directed systems can be given by
inverse limits over “good” subobjects. We shall say that B ⊂ A is a codirected subobject if B is
a subset, the binary relation is the restriction of the binary relation on A, and the Lower Bound
Property still holds on B (however, if w ∈ A is such that w ≺ b, a we do not necessarily assume
that w ∈ B; we only assume that there is some w′ ∈ B with w′ ≺ a, b). We shall say that such a
object is cofinal if for each x ∈ A there is some y ∈ B such that y ≺ x.

Example. Let γ be a cardinal number, and let Cov γ(X) be the family of indexed open
coverings of X such that the cardinality of the indexing set is at most γ. We shall say that an
indexed open covering V = {Vβ}β∈B is an indexed refinement of U = {Uα}α∈A if there is a map
of indexing spaces j : B → A such that Vβ ⊂ Uj(β) for all β; note that if V is a refinement of U
in the usual sense then by the Axiom of Choice we can always find a function j with the required
properties. — Suppose now that X is a compact metric space and FinCov (X) is a set of all finite
indexed open coverings whose indexing sets are subsets of the set N of nonnegative integers. If A

is a subset of FinCov (X) such that for each k > 0 there is an open covering Ak ∈ A whose (open)
subsets all have diameter less than 1/k, then a Lebesgue number argument implies that A is cofinal
in FinCov (X).

Given a cofinal subobject B and an inverse system F on A, then there is an associated inverse
system F |B. The following crucial observation suggests the importance an usefulness of such
restricted inverse systems.

PROPOSITION 4. Suppose that we are given the setting above, and let B be a cofinal
subobject. Then there is a canonical isomorphism from lim

←

F to lim
←

F |B.

Proof. By definition, the inverse limit LA over all of A is a submodule of PA =
∏

a∈A F (a) and
the inverse LB limit over B is a submodule of PB =

∏

b∈B F (b). Let ϕ0 : PA → PB be given by the
projections onto the factors F (b); since the operations in the product are defined coordinatewise,
it follows immediately that ϕ0 is a module homomorphism.

By construction it follows that ϕ0 maps LA to LB . If ϕ : LA → LB be the homomorphism
defined by ϕ0, the objective is to prove that ϕ is an isomorphism. It is straightforward to verify
that ϕ is onto. Suppose now that we are given x = (xa) and y = (ya) such that ϕ(x) = ϕ(y).
Then xb = yb for all b ∈ B, and we need to show that this implies xa = ya for all a. Let α ∈ A
be arbitrary, and choose β ∈ B such that β ≺ α. Then we have xα = fβ,α(xβ) and yα = fβ,α(yβ).
Since we are assuming that yβ = xβ , it follows that yα = xα.

Definition and properties of Čech homology

Suppose that X is a compact Hausdorff space, let A ⊂ X be a closed subspace, and let
FinCov (X,A) denote the codirected set of all pairs (U ,U|A), where U is a finite open covering of
X and U|A denotes its restriction to A with all empty intersections deleted; the binary relation

β = (V,V|A) ≺ (U ,U|A) = α

is taken to mean that (V,V|A) is an indexed refinement of (U ,U|A). Since we are working with
indexed refinements, it follows that the map of indexing sets will define a simplicial mapping of
nerve pairs

jβ,α : (Nβ , N ′β) =
(

N(V),N(V|A)
)

−→
(

N(U),N(U|A)
)

= (Nα, N ′α)
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and therefore we obtain an inverse system of simplicial complex pairs and simplicial mappings. If
we take the simplicial or singular chain complexes associated to such a system we obtain inverse
systems of chain complexes, and if we pass to homology we obtain inverse systems of homology
groups; at the chain complex level the inverse systems are different, but their homology groups are
the same.

Definition. If X is a compact Hausdorff space and A ⊂ X is a closed subspace, then the Čech

homology groups Ȟq(X,A) are the inverse limits of the inverse systems Hq(Nα, N ′α), where α
runs through all pairs (U ,U|A).

Presumably we have introduced these groups because they have implications for dimension
theory, and one can also ask if these groups can be computed for finite simplicial complexes. The
next two results confirm these expectations.

THEOREM 5. If X is a compact Hausdorff space whose Lebesgue covering dimension is ≤ n
and A is a closed subset of X, then Ȟq(X,A) = 0 for all q > n.

Proof. The condition on the Lebesgue covering dimension implies that every finite open covering
U of X has a (finite) refinement such that each subcollection of n + 2 open subsets from U has an
empty intersection. This condition means that the nerve of U has no simplices with n + 2 vertices
and hence no simplices of dimension ≥ n + 1; in other words, the (geometric) dimension of the
nerve is at most n. By Proposition 4 and the assumption on the Lebesgue covering dimension,
we know that the Čech homology of (X,A) can be computed using open coverings for which each
subcollection of n+2 open subsets from U has an empty intersection, and hence the Čech homology
is an inverse limit of homology groups of simplicial complexes with dimension ≤ n. Since the q-
dimensional homology of such complexes vanishes if q > n, it follows that the same is true for the
inverse limit groups when q > n, and therefore we must have Ȟq(X,A) = 0 for all q > n.

The next main result states that the Čech homology for a simplicial complex pair is the same
as the homology we have already defined. a more general result:

THEOREM 6. If X is a compact Hausdorff space and A ⊂ X is a closed subspace, then there
is a canonical mapping ϕ∞ from H∗(X,A) to Ȟ∗(X,A) (the singular-Čech comparison map), where
the groups on the left are singular homology groups. If X is a polyhedron with some simplicial K

such that A is a subcomplex with respect to this decomposition, then the singular-Čech comparison
map is an isomorphism.

Before proving this result, we shall use the conclusion to derive the main implications for
dimension theory.

THEOREM 7. (i) For all n ≥ 0, the Lebesgue covering dimension of the disk Dn is equal to n.

(ii) If (P,K) is a simplicial complex whose geometric definition is equal to n, then the Lebesgue
covering dimension of P is also equal to n.

(iii) If A ⊂ R
n is a compact subset with a nonempty interior, then the Lebesgue covering

dimension of A is equal to n.

(iv) If Q = [0, 1]∞ is the Cartesian product of countably infinitely many copies of the unit
interval (the so-called Hilbert cube), then the Lebesgue covering dimension of Q is equal to ∞.

Proof. We shall take these in order.

Proof of (i). By the discussion at the beginning of this section (or the corresponding discussion
in Munkres, Topology), we know that the Lebesgue covering dimension of Dn is at most n, so we
need to show that it cannot be ≤ (n−1). We shall exclude this by deriving a contradiction from it. If
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the Lebesgue covering dimension was strictly less than n, then it would follow that Ȟn(Dn, A) would
vanish for all closed subsets A ⊂ Dn. By Theorem 6 we know that Ȟn(Dn, Sn−1) ∼= Hn(Dn, Sn−1),
and since the latter is isomorphic to Z it follows from Theorem 5 that the Lebesgue covering
dimension cannot be ≤ n − 1. Therefore this dimension must be equal to n.

Proof of (ii). This follows immediately from (i) and Theorem 50.2 of Munkres, Topology (see
page 307 for details).

Proof of (iii). By the discussion at the beginning of this section we know that the Lebesgue
covering dimension of A is ≤ n. Since A has a nonempty interior, it follows that A contains a
closed subset which is homeomorphic to Dn. This means that the Lebesgue covering dimension of
A must be at least as large as the Lebesgue covering dimension of Dn, which is n. Combining these
observations, we conclude that the Lebesgue covering dimension of A is equal to n.

Proof of (iv). Let H〈n〉 ⊂ Q be the subset of all points whose coordinates satisfy xk = 0 for
k ≥ n + 1. Then it follows that H〈n〉 is a closed subset of Q which is homeomorphic to Dn, and
therefore we have n = dimH〈n〉 ≤ dimQ for all n.

Remark. The preceding result implies that the Lebesgue covering dimension does not behave
well with respect to quotients, even if the space and its quotient are polyhedra. In particular, if
f : X → Y is a continuous and onto mapping of compact Hausdorff spaces, then in general we
cannot say anything about the relation between the Lebesgue covering dimensions of X and Y
even if we know that both numbers are finite. The simplest counterexamples are given by the
continuous surjection from [0, 1] to [0, 1]2 given by the Peano curve (described in Section 44 of
Munkres, Topology) and the usual first coordinate projection from [0, 1]2 to [0, 1]; in the first
case the dimension increases when one passes to the quotient, and in the second case the dimension
decreases (which is what one reasonably expects). Of course, if we take f as above to be an identity
map, then the dimension does not change.

We shall discuss the behavior of dimensions under taking products after proving Theorem 6.

Proof of Theorem 6. We begin by proving the general statement. If U is an open covering of X
and A is a closed subset of X, then we have seen that a partition of unity subordinate to U defines
a canonical map from X into the nerve N(U), and by construction this map sends A into N(U|A).
We have also seen that the homotopy class of this map is well defined (at least when A = ∅, but
the same argument implies that the canonical maps of pairs associated to different partitions of
unity will be homotopic as maps of pairs). Therefore we have homomorphisms

(kα)
∗

: H∗(X,A) −→ H∗
(

N(U),N(U|A)
)

and we need to show that these yield a map into the inverse limit of the groups on the right hand
side, which is true if and only if

(kα)
∗

= (jβα)
∗

o (kβ)
∗

for all α and β such that β ≺ α. But if the latter holds, then it follows that the composite jβα
o (kβ)

defines a canonical map into the nerve pair (Nα, N ′α), and therefore this composite is homotopic to
kα; therefore the associated maps in homology are equal, and this implies that we have the desired
homomorphism ϕ∞ into the inverse limit Ȟ∗(X,A).

We must now show that the singular-Čech comparison map ϕ∞ is an isomorphism if X is a
polyhedron with simplicial decomposition K and A corresponds to a subcomplex of (X,K). Let
r > 0, and let Wr be the open covering by open stars of vertices in the rth barycentric subdivision
Br(K). Then by construction we have Wr+1 ≺ Wr for all r, and a Lebesgue number argument
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shows that the set of all open coverings Wr determines a cofinal subset of FinCov (X). If (Nr, N
′

r)
denotes the nerve pair associated to Wr, then it follows that Ȟ∗(X,A) is isomorphic to the inverse
limit of the groups H∗(Nr, N

′

r).

If we can show that the canonical maps kr into Nr all define isomorphisms from H∗(X,A) to
H∗(Nr, N

′

r), then the map into the inverse limit will be an isomorphism for the following reasons:

(1) If ϕ∞(u) = 0, then (kr)∗ (u) = 0 for all r, and since each of these maps is an isomorphism
it follows that u = 0.

(2) If v lies in the inverse limit, then v has the form (v1, v2, · · · ) where vr = (jr,r+1)∗ (vr+1)
for all r. Since kr defines an isomorphism, it follows that vr = (kr)∗ (ur) for some unique
ur ∈ Ȟ(X,A), and if we can show that ur = ur+1 for all r then it will follow that
v = ϕ∞(u). But the previous equations imply that

(kr)∗ (ur+1) = (jr,r+1)∗
o (kr+1)∗ (ur+1) = (jr,r+1)∗ (vr+1) vr = (kr)∗ (ur)

and since (kr)∗ is injective it follows that ur+1 = ur.

To conclude the proof, we note that the relative version of Proposition 2 implies that the map of
pairs determined by each kr is homotopic to a homeomorphism of pairs.

As noted before, this concludes the proof that the Lebesgue covering dimension of Dn is equal
to n. It is also possible to prove the following result:

THEOREM 8. For every n ≥ 0 the Lebesgue covering dimension of R
n is equal to n.

Sketch of proof. The exercises at the end of Section 50 in Munkres, Topology (see pages 315–
316) provide machinery for extending results on covering dimensions to “reasonable” noncompact
spaces. In particular, Exercise 8 shows that the Lebesgue covering dimension of R

n is at most n.
Since the dimension of the closed subspace Dn is equal to n, it follows that the Lebesgue covering
dimension of R

n is at least n, and therefore it must be exactly n.

One cap proceed similarly to extend the conclusions for Exercises 9 and 10 on page 316 of
Munkres, Topology . Specifically, every (second countable) topological n-manifold has Lebesgue
covering dimension equal to n, and if A ⊂ R

n is a close subset with nonempty interior, then the
Lebesgue covering dimension of A is also equal to n.

Note. For topological n-manifolds, second countability is equivalent to the σ-compactness
condition which appears on page 316 of Munkres , Topology .

(proof?).

Dimensions of products

The standard homeomorphism R
n × R

m ∼= R
m+n strongly suggests the following question:

QUESTION. If we know that the Lebesgue covering dimensions of the nonempty compact Hausdorff
spaces X and Y are m and n respectively, does it follow that the Lebesgue covering dimension of
the product X × Y is equal to m + n?

In the next subheading we shall prove the following result:

PROPOSITION 9. If X and Y are compact Hausdorff spaces whose Lebesgue covering dimen-
sions are m and n respectively, then the Lebesgue covering dimension of the product X × Y is less
than or equal to m + n.
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We shall derive this result as an immediate consequence of Proposition 18 below.

If we assume that our spaces are somewhat reasonable, then we can prove a stronger and more
satisfying result:

PROPOSITION 10. In the setting of Proposition 9, suppose that X = ∪i Ai and Y = ∪j Bj

where the sets Ai and Bj are all homeomorphic to k-disks for suitable values of k. Then the
Lebesgue covering dimension of X × Y is equal to m + n.

Proof of Proposition 10. By Theorem 50.2 of Munkres, Topology , and finite induction, it
follows that the dimension of X × Y is equal to the maximum of the dimensions of the closed
subsets Ai × Bj . On the other hand, the same result implies that there are some indices p and q
such that Ap is homeomorphic to Dm and Bq is homeomorphic to Dn (otherwise the dimensions
of X and Y would be strictly less than m and n). Since Dm × Dn is homeomorphic to Dm+n it
follows that X × Y has a closed subset with Lebesgue covering dimension equal to m + n. On the
other hand, we also know that the dimension of each disk Ai is at most m and the dimension of
each disk Bj is at most n, so the dimension of X × Y is at most m + n. If we combine these, we
find that the dimension of X × Y is equal to m + n.

Counterexamples to the general question

Although Propositions 9 and 10 may suggest that the formula dim(X × Y ) = dimX + dimY
holds more generally, it is possible to construct examples where the left hand side is less than the
right. The first examples of this sort were discovered by L. S. Pontryagin; here is a reference to the
original paper:

L. S. Pontryagin. Sur une hypothèse fondementale de la théorie de la dimension.
Comptes Rendus Acad. Sci. (Paris) 190 (1930), 1105–1107.

In Pontryagin’s example one has X = Y and dimX = 2 but dim(X × X) = 3. By the following
result, these are the lowest dimensions in which one can have dim(X × Y ) < dimX + dimY .

DIMENSION ESTIMATES FOR PRODUCTS. Let X and Y be nonempty compact metric
spaces. Then the following hold:

(a) If dimY = 0, then dimX × Y = dimX.

(b) If dimY = 1, then dimX × Y = dimX + 1.

(c) If dimY ≥ 2, then dimX × Y ≥ dimX + 1.

Proofs of these results are beyond the scope of this course, so we shall limit ourselves to
mentioning some key points which arise in the proofs.

The proof of the first statement is actually fairly direct, and it only requires a small amount
of additional machinery. Proofs of the second and third statements using an alternate approach
to defining topological dimensions (the weak inductive or Menger-Urysohn dimension) are due to
Hurewicz (we should note that the Menger-Urysohn definition is the one which appears in Hurewicz
and Wallman). Here is a reference to the original paper.

W. Hurewicz. Sur la dimension des produits cartésiens. Annals of Mathematics 36

(1935), 194–197.

There is a brief indication of another way to retrieve (b) at the top of page 241 in the book by
Nagami (however, this requires a substantial amount of input from algebraic topology). One proof
of (c) can be obtained by combining (b) with the following existence theorem: If Y is a compact
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metric space such that n = dimY is finite and 0 < k < n, then there is a closed subset B ⊂ Y
such that dimB = k. — This result and the equivalence of the Lebesgue and Menger-Urysohn
dimensions for compact metric spaces are discussed in an appendix to this section.

Spaces for which dim(X × Y ) < dimX + dimY are generally far removed from the sorts of
objects studied in most of topology, but it is important to recognize their existence. On the other
hand, even though there is no general product formula for the dimensions of compact metric spaces,
the validity of the formula for many well-behaved examples (see Proposition 9) leads one naturally
to look for necessary and sufficient conditions under which one has dim(X × Y ) = dimX + dimY .
Here is one reference which answers the question:

Y. Kodama. A necessary and sufficient condition under which dim(X × Y ) = dimX +
dimY . Proc. Japan. Acad. 36 (1960), 400–404.

As in several previously cited cases, the proofs of the main results in this paper rely heavily on
input from algebraic topology.

Further results

We shall consider two issues related to the discussion of dimension theory:

1. Giving an example of a compact subset of R
2 for which the singular and Čech homology

groups are not isomorphic.

2. Showing that a compact subset of R
n has Lebesgue covering dimension n if and only if

it has a nonempty interior (one can then use the previously cited exercises in Munkres,
Topology , to show that the same conclusion holds for arbitrary closed subsets). The
machinery developed for this question will also yield a proof of Proposition 9 on the
Lebesgue covering dimensions of cartesian products.

The example for the first problem will be the Polish circle, and our discussion will be based
upon the following online reference:

http://math.ucr.edu/∼res/math205B/polishcircle.pdf
The key to studying the Čech homology of arbitrary compact subsets in R

n is a fundamental
continuity property which does not hold in singular homology.

Continuity in Čech homology

The results in Chapter IX of Eilenberg and Steenrod show that Čech homology is functorial
with respect to continuous maps of compact Hausdorff spaces. Given this, we can the basic result
very simply.

THEOREM 11. (Continuity Property) Suppose that X is a subspace of some Hausdorff
topological space E, and suppose further that there are compact subsets Xα ⊂ E such that X =
∩α Xα for all α and the family Xα is closed under taking finite intersections. Then we have

Ȟ∗(X) ∼= lim
←

Ȟ∗(Xα) .

If E = R
n for some n, then it is always possible to find such a family of compact subsets Xn

such that Xn+1 ⊂ Xn for all n and Xn is a finite union of hypercubes of the form

n
∏

i=1

(

xi, xi +
1

2n

)

11



where each xi is a rational number expressible in the form pi/2
n for some integer pi. For example,

one can take Xn to be the union of all such cubes which have a nonempty intersection with X.

Reference for the proof of Theorem 11. A proof is given on page 261 of Eilenberg and
Steenrod (specifically, see theorem X.3.1).

Remark. One can also make the singular-Čech comparison map into a natural transformation
of covariant functors, but we shall not do this here because it is not needed for our purposes except
for a remark following the proof of Theorem 15 (as before, details may be found in Chapters IX
and X of Eilenberg and Steenrod).

Singular and Čech homology of the Polish circle

As in the previously cited document

http://math.ucr.edu/∼res/math205B/polishcircle.pdf
the Polish circle P is defined to be the union of the following curves:

(1) The graph of y = sin(1/x) over the interval 0 ≤ x ≤ 1.

(2) The vertical line segment {1} × [−2, 1].

(3) The horizontal line segment [0, 1] × {−2}.
(4) The vertical line segment {0} × [−2, 1].

One important fact about the Polish circle is that it is arcwise connected but not locally arcwise
connected. The proof of this is analogous to the discussion on page 66 of the online notes

http://math.ucr.edu/∼res/math205A/gentopnotes2008.pdf
which shows that the space B, which is given by closure (in R

2) of the graph of sin(1/x) for x > 0,
is connected but not arcwise connected. For the sake of completeness, we shall indicate how one
modifies the argument to show the properties of P stated above. First of all, since P is the union of
four arcwise connected subspaces A∪B∪C∪D such that A∩B, B∩C and C∪D are all nonempty,
the arcwise connectedness of P follows immediately. To prove that P is not arcwise connected, we
need the following result, whose proof is similar to the previously cited argument which shows that
B is not arcwise connected:

LEMMA 12. Let Y be a compact, arcwise connected, locally arcwise connected topological
space, let f : Y → P be continuous, and suppose that a0 ∈ Y is such that the first coordinate of
f(a0) is zero and f(a0) 6= (0,−2). Then there is an arcwise connected open neighborhood V of a0

in Y such that f [V ] is contained in the intersection of Y with the y−axis.

This observation has far-reaching consequences for the fundamental group and singular homol-
ogy of P , all of which come from the following:

PROPOSITION 13. Let Y and f be as in the preceding lemma. Then there is some ε > 0
such that f [Y ] is disjoint from the open rectangular region (0, ε) × (−2, 2).

In terms of the presentation of P given above, this means that f [Y ] is contained in the union of
B∪C ∪D with the graph of sin(1/x) over the interval [ε, 1]. This subspace Mε is homeomorphic to
a closed interval and as such is contractible. Therefore Proposition 13 has the following application
to the algebraic-topological invariants of the Polish circle:

THEOREM 14. If P is the Polish circle, then π1(P, p) is trivial for all p ∈ P , and the inclusion
of {p} in P induces an isomorphism of singular homology groups.

12



Proof of Theorem 14, assuming Proposition 13. We begin with the result on the funda-
mental group. Suppose that γ is a closed curve in P based at p. By Proposition 13 we know that
the image of γ lies in Mε for some ε > 0, so that the class of γ in π1(P, p) lies in the image of
π1(Mε, p). Since Mε is contractible, it follows that the image of π1(Mε, p) in π1(P, p) is trivial, and
therefore the latter must also be trivial.

The proof for singular homology is similar. If z ∈ Sq(P ) is a cycle, then there is some Mε such
that p ∈ Mε and z lies in the image of Sq(Mε). Of course, this means that the class u represented by
z lies in the image of the homomorphism Hq(Mε) → Hq(P ), and since Mε is contractible it follows
that this image is trivial if q > 0. On the other hand, if q = 0, then the arcwise connectedness
of all the spaces implies that the various inclusion maps all induce isomorphisms in 0-dimensional
singular homology.

Proof of Proposition 13. Let E denote the inverse image of the intersection of P with
{0} × [− 3

2 , 1]. Then for each c ∈ E there is an arcwise connected open neighborhood Vc of c
in Y such that f [Vc] is contained in the intersection of Y with the y−axis. Let Wc be an open
neighborhood of c whose closure is contained in Vc. By continuity E is closed in Y and hence E
is a compact subset, so there is a finite subcollection of the sets Wc, say {W1, · · · ,Wn}, which
covers E.

Define G ⊂ Y to be the closed subset

Y − ∪n
i=1 Wi

so that f [G] is compact and disjoint from P ∩ {0} × [− 3
2
, 1]. If A ⊂ P is the piece of the graph of

sin(1x) described above, then it follows that the second coordinates of all points in f [G] ∩ A are
positive and by compactness must be bounded away from zero; in other words, there is some ε > 0
such that f [G] ∩ A is disjoint from (0, ε) × R. But this means that

f [Y ] = f [G] ∪
(

∪n
i=1 f [Wi]

)

must be disjoint from (0, ε) × (−2, 2).

In contrast to the preceding, we have the following result:

THEOREM 15. The Čech homology groups of the Polish circle P are given by Ȟq(P ) = Z if
q = 0, 1 and zero otherwise.

The results on Čech homology groups in Eilenberg and Steenrod show that these groups
are functorial for continuous mappings and that homotopic mappings induce the same algebraic
homomorphisms in Čech homology. If we combine this with Theorem 15 and the results on singular
homology, we see that the Polish circle P is a space which is simply connected and has the singular
homology of a point, but P is not a contractible space. A self-contained proof of the preceding
statement is given in polishcircle.pdf.

Proof. We shall prove this using the continuity property of Čech homology as stated above, and
we shall use the presentation of P as an intersection of the decreasing closed subsets Bn in the
previously cited polishcircle.pdf. Since P = ∩n Bn it follows that

Ȟ∗ ∼= lim
←

Ȟ∗(Bn)

and since each Bn is homeomorphic to a finite simplicial complex (describe this explicitly — it is
fairly straightforward), we can replace Čech homology with singular homology on the right hand
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side. It will suffice to prove that each Bn is homotopic to a circle and the inclusion mappings
Bn+1 ⊂ Bn are all homotopy equivalences. We shall do this using the subspaces Cn from the
polishcircle document.

By construction, Cn is a subset of Bn, and we claim that Cn is a deformation retract of Bn.
Let Xn be the closed rectangular box

[

2

(4n + 3)π

]

× [−1, 1]

(the piece shaded in blue in the third figure of polishcircleA.pdf), and let Qn denote the bottom
edge of Xn defined by the equation y = −1. It follows immediately that Qn is a strong deformation
retract of Xn; since the closure of Bn−Xn intersects Xn in the two endpoints of Yn, we can extend
the retract Xn → Yn and homotopy Xn× [0, 1] → Xn by taking the identity on Bn − Xn to extend
the retraction and the trivial homotopy from the identity to itself on Bn − Xn . This completes
the proof that Cn is a strong deformation retract of Bn.

By construction the space Cn is homeomorphic to the standard unit circle, and furthermore it
is straightforward to check that the composite

Cn+1 ⊂ Bn+1 ⊂ Bn −→ Cn

(where the last map is the previously described homotopy inverse) must be a homeomorphism
which is the identity off the points which lie in the vertical strip

(

2

4n + 7
,

2

4n + 3

)

× R

and on this strip it is the flattening map which sends a point (x, y) ∈ Cn+1 to (x,−1) ∈ Cn.
Therefore the map in homology from Hq(Cn+1) to Hq(Cn) is an isomorphism of infinite cyclic
groups in dimensions 0 and 1 and of trivial groups otherwise, and it follows that the map from
Hq(Bn+1) to Hq(Bn) is also an isomorphism of of infinite cyclic groups in dimensions 0 and 1 and
of trivial groups otherwise. As in the proof of the second half of Theorem 6, it follows that Ȟq(X)
must be infinite cyclic if q = 0 or 1 and trivial otherwise.

In fact, as noted before the proof of Theorem 15 one can show that a standard map from
P to S1 induces isomorphisms in Čech homology. This requires the naturality property of the
comparison map from singular to Čech homology.

Dimensions of nowhere dense subsets

We have seen that if A is a compact subset of R
n with a nonempty interior, then the Lebesgue

covering dimension of A is equal to n; we shall conclude this section with a converse to this result.
In order to prove the converse we shall need some refinements of the ideas which arise in the proof
of the embedding theorem stated as Theorem 50.5 in Munkres, Topology (see pages 311–313).

Definition. Let (X,d) be a metric space, let f : X → Y be a continuous map of topological
spaces, and let ε > 0. We shall say that f is an ε−map if for all u, v ∈ X the equation f(u) = f(v)
implies that d(u, v) ≤ ε; an equivalent formulation is that for all y ∈ Y the diameter of the level
set f−1[{y}] is less than or equal to ε.
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Clearly a continuous map f is 1–1 if and only if it is an ε−map for all ε > 0 (equivalently, it
suffices to have this condition for all numbers of the form 1/k where k is a positive integer or all
numbers of the form 2−k where k is a positive integer).

We shall need the following result, which is entirely point set-theoretic.

LEMMA 17. Let (X,dX) and (Y,dY ) be compact metric spaces, let ε > ε′ > 0, and let
f : X → Y be a continuous ε′−map. Then there is a δ > 0 such that if A ⊂ Y has diameter less
than or equal to δ, then f−1[A] has diameter less than ε.

Proof. Let η = 1
2 (ε + ε′) and let Kη ⊂ X ×X be the set of all (x1, x2) such that dX(x1, x2) ≥ η.

Then Kη is a closed (hence compact) subset of X ×X and f × f [Kη] is a compact subset of Y ×Y
which is disjoint from the diagonal ∆Y because f is an ε′−map. It follows that the restriction
of the distance function dY to f × f [Kη] is bounded away from zero by a positive constant h; in
other words, if Uh ⊂ Y × Y is the set of all (y1, y2) ∈ Y × Y such that dY (y1, y2) ≤ h/2, then
(y1, y2) 6∈ f × f [Kη].

Suppose now that the diameter of A is less than δ = h/2; then we have A × A ⊂ Uh, and it
follows that if (p, q) ∈ f−1[A], then dY

(

f(p), f(q)
)

< δ, and this means that (p, q) cannot lie in
Kη because the image of the latter under f × f is disjoint from Uh, which contains A×A. In other
words, if the diameter of A is less than δ, then the diameter of f−1[A] must be less than or equal
to η, which is less than ε.

The next result gives a method for approximating n-dimensional compact metric spaces by
n-dimensional simplicial complexes.

PROPOSITION 18. Let X be a compact metric space, and let n be a nonnegative integer.
Then the Lebesgue covering dimension of X is ≤ n if and only if for every ε > 0 there is an ε−map
from X into some n-dimensional polyhedron P .

Proof. Suppose first that the Lebesgue covering dimension of X is ≤ n. Take the open covering
of X by open disks of radius ε/2 about the points of X, and extract a finite subcovering

U =
{

Nε/2(x1), · · · , Nε/2(xm)
}

.

Let {ϕj } be a partition of unity subordinate to this finite covering, and consider the canonical map
k from X to N(U). If k(u) = k(v), then ϕj(u) = ϕj(v) for all j; at least one of these values must
be positive, and therefore we can find some j such that u, v ∈ Nε/2(xj). Since the latter implies
d(u, v) ≤ diameterNε/2(xj) ≤ ε, it follows that k is an ε−map.

As usual, with respect to this metric there is a Lebesgue number η > 0 for this open covering.
Let 0 < ε′ < ε < η, and let f : X → P be an ε′−map from X to some polyhedron P of dimension
≤ n. By the preceding lemma there is some δ > 0 such that if A ⊂ Y has diameter less than δ then
f−1[A] has diameter less than ε.

Take a sufficiently large barycentric subdivision of P such that all simplices have diameter at
most δ/2, and let V be the open covering given by the inverse images (under f) of open stars of the
vertices in P . Then the intersection of any n + 2 open subsets in V is empty; if we can show that
V is a refinement of U , then we are done. But the open stars of vertices in P all have diameter at
most δ, and thus by Lemma 17 their inverse images have diameters which are at most ε. Since ε is
less than a Lebesgue number for U , it follows that each of the open subsets in V must be contained
in some open set from U , and thus V is an open refinement of U such that every subcollection n+2
subsets in V has an empty intersection.
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Before proceeding, we shall show that Proposition 18 yields the previously stated result about
the dimensions of Cartesian products (namely, dim(X × Y ) ≤ dimX + dimY ). In this argument
we assume that dimX and dimY are both finite; it is straightforward to verify that if X and Y are
T1 spaces and either dimX = ∞ or dimY = ∞, then dim(X ×Y ) = ∞ (look at the contrapositive
statement).

Proof of Proposition 9. Suppose that dimX ≤ m and dimY ≤ n, and let ε > 0. By Proposition
18, it will suffice to construct an ε-map from X × Y to some polyhedron T of dimension at most
m + n. For the sake of definiteness, in this argument the metrics on products are given by the d2

metrics associated to metrics on the factors (using the notation of the 205A notes).

The construction is fairly straightforward. By the dimension hypotheses and Proposition 18
we know there are (ε/

√
2)-maps f : X → P and g : Y → Q, where P and Q are polyhedra of

dimension at most m and n respectively. It follows that the product map f × g : X × Y → P × Q
is an ε-map into a polyhedron whose dimension is at most m + n.

Using Proposition 18, we can prove the result on the dimensions of nowhere dense subsets
mentioned above.

THEOREM 19. Suppose that A ⊂ R
n is compact and nowhere dense. Then the Lebesgue

covering dimension of A is at most n − 1.

The estimate in the theorem is the best possible estimate because we know that the Lebesgue
covering dimension of the nowhere dense subset Sn−1 is equal to n − 1.

Proof. We shall prove that A satisfies the criterion in Proposition 18. One step in the proof
involves the following result:

CLAIM. If v is an interior point of the disk Dn where n > 0, then Sn−1 is a retract of Dn−{v}.
The quickest way to prove this is to take the map ρ : Dn ×Dn −diagonal → Sn−1 constructed

in the file brouwer.pdf and restrict it to (Dn − {v}) × {v}.
The first steps in the proof are to let ε > 0 and to take a large hypercube Q containing A.

We know that Q has a simplicial decomposition, and if we take repeated barycentric subdivisions
we can construct a decomposition whose simplices all have diameter less than ε/2. Let σ be an n-
simplex in this decomposition. Since σ has a nonempty interior (in the sense of point set topology)
and A is nowhere dense in R

n, it follows that there is some interior point w(σ) in σ such that
w(σ) 6∈ A. By the claim above, we know that the boundary ∂σ is a retract of σ − w(σ), and we
can piece the associated retractions together to obtain a retraction

r : Q −
(

⋃

dim σ=n

{w(σ)}
)

−→ Q[n−1]

where Q[n−1] (the n-skeleton) is the union of all simplices in Q with dimension strictly less than n.
By construction the set A is contained in the domain of r, and therefore we also obtain a retraction
r : A → Q[n−1]. The inverse image of a point z in the codomain is contained in all simplices
which contain z, and since these simplices all have diameter less than ε/2, it follows that each
set r−1[{z}] has diameter less than ε. Therefore we have shown that r|A is an ε−map into the
(n − 1)-dimensional polyhedron Q[n−1]. By Proposition 18, it follows that the Lebesgue covering
dimension of A is at most n − 1.

Using results from Section 50 of Munkres, Topology (including the exercises), it is a straight-
forward exercise to prove the following generalization of Theorem 19:
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COROLLARY 20. Let Mn be a second countable topological n-manifold, and suppose that
A ⊂ M is a closed nowhere dense subset of M n. Then the Lebesgue covering dimension of A is
strictly less than n.

Appendix : The Flag Property

Default hypothesis. Unless stated otherwise, all spaces discussed in this Appendix are compact
metric spaces with finite Lebesgue covering dimensions.

In our discussion of product formulas for the Lebesgue covering dimension, we noted that
dimX × Y > dimX if dimY > 0, and we gave references for the proof when dimY = 1. We also
asserted that the general case followed quickly from this special case because dimY > 0 implies
the existence of a closed subset A ⊂ Y with dimA = 1. In fact, we have the following:

PROPOSITION A1. (Flag Property) Suppose that X satisfies the Default Hypothesis and
dimX = n > 0. Then there is a chain of closed subsets

{y} = A0 ⊂ A1 ⊂ · · · ⊂ An = X

such that dimAk = k for all k.

Note. The name for this result is motivatived by a standard geometrical concept of a flag of
subspaces in R

n, which is a sequence of vector subspaces

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = R
n

such that dimVk = k for all k; of course, there is a similar concept if R is replaced by an arbitrary
field.

The proof of the Flag Property is a fairly direct consequence of equality of the Lebesgue
covering dimension and the previously cited Menger-Urysohn or weak inductive dimension for
compact metric spaces. Here is a summary of what we need in order to prove the Flag Property:

THEOREM A2. Let X be a compact metric space such that dimX ≤ n, and let x ∈ X. Then
there is a countable neighborhood base at x of the form

B = {W1 ⊃ W2 · · · }

such that for each k the set Bdyx(Wk) has dimension at most n−1. Conversely, if such neighborhood
bases exist for each point of X, then dimX ≤ n.

As in Munkres, Topology , the boundary (or frontier) BdyX(E) of E ⊂ X (in X) is the
intersection of the limit point sets LX(E) ∩ LX(X − E); since we are working with metric spaces,
this is a closed subset of X.

Idea of proof for Theorem A2. The statement in the conclusion is essentially the same as
the condition for the Menger-Urysohn dimension of X to be at most n (this is given on page 24 of
Hurewicz and Wallman). Therefore the conclusion will follow if we know that the Lebesgue covering
dimension and the Menger-Urysohn dimension are equal for compact metric spaces. Virtually every
book on dimension theory from the past 50 years contains some abstract version of this equality.
More directly, one can use Theorem V.8 on page 67 of Hurewicz and Wallman (in which “dimension”
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means the Menger-Urysohn dimension) to show that the two definitions are the same for compact
metric spaces.

One reason that the standard references for dimension theory phrase things in more abstract
terms is that the Lebesgue covering dimension and Menger-Urysohn dimension are not necessarily
equal for more general topological spaces (usually it is easy to find examples; see also the Wikipedia
article on inductive dimension mentioned earlier).

Proof of Proposition A1. (Compare Hurewicz and Wallman, Proposition III.1.D, pp. 24–
25.) If dimX = 1 then X is nonempty and the conclusion follows immediately. Proceeding
by induction on the dimension, we shall assume the result is true for compact metric spaces of
dimension ≤ n− 1. Suppose that X is an n-dimensional compact metric space. Since dimX is not
less than or equal to n − 1, Theorem A2 implies the existence of some point z ∈ X such that for
all countable neighborhood bases at z of the form

A = {V1 ⊃ V2 · · · }

we have dim (BdyX(Vk)) > n − 2 for infinitely many k (why?). In particular, this holds for the
neighborhood base B for z described in the statement of Theorem A2 (we know such a neighborhood
base exists because dimX = n). It follows that dim (BdyX(Wk)) = n − 1 for all such k. Choose
a specific m such that dim (BdyX(Wm)) = n − 1. By the induction hypothesis, there is a chain of
closed subspaces

{y} = A0 ⊂ A1 ⊂ · · · ⊂ An−1 = BdyX(Wm)

and we may extend this to a chain of subspaces as in the conclusion of the proposition by taking
An = X.
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