
CHAPTER I

SYNTHETIC AND ANALYTIC GEOMETRY

The purpose of this chapter is to review some basic facts from classical deductive geometry and coordinate

geometry from slightly more advanced viewpoints. The latter reflect the approaches taken in subsequent

chapters of these notes.

1. Axioms for Euclidean geometry

In his book, Foundations of Geometry , which was first published in 1900, D. Hilbert (1862–
1943) described a set of axioms for classical Euclidean geometry which met modern standards
for logical completeness and have been extremely influential ever since. In his formulation,
there are six primitive concepts: Points, lines, the notion of one point lying between two others
(betweenness), congruence of segments (same distances between the endpoints) and congruence
of angles (same angular measurement in degrees or radians). The axioms on these undefined
concepts are divided into five classes: Incidence, order, congruence, parallelism and continuity.
One notable feature of this classification is that only one class (congruence) requires the use of
all six primitive concepts. More precisely, the concepts needed for the axiom classes are given
as follows:

Axiom class Concepts required
Incidence Point, line, plane

Order Point, line, plane, betweenness
Congruence All six
Parallelism Point, line, plane
Continuity Point, line, plane, betweenness

Strictly speaking, Hilbert’s treatment of continuity involves congruence of segments, but the
continuity axiom may be formulated without this concept (see Forder, Foundations of Euclidean

Geometry , p. 297).

As indicated in the table above, congruence of segments and congruence of angles are needed
for only one of the axiom classes. Thus it is reasonable to divide the theorems of Euclidean
geometry into two classes — those which require the use of congruence and those which do
not. Of course, the former class is the more important one in classical Euclidean geometry (it is
widely noted that “geometry” literally means “earth measurement”). The main concern of these
notes is with theorems of the latter class. Although relatively few theorems of this type were
known to the classical Greek geometers and their proofs almost always involved congruence in
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some way, there is an extensive collection of geometrical theorems having little or nothing to do
with congruence.1

The viewpoint employed to prove such results contrasts sharply with the usual viewpoint of
Euclidean geometry. In the latter subject one generally attempts to prove as much as possible
without recourse to the Euclidean Parallel Postulate, and this axiom is introduced only when
it is unavoidable. However, in dealing with noncongruence theorems, one assumes the parallel
postulate very early in the subject and attempts to prove as much as possible without explicitly
discussing congruence. Unfortunately, the statements and proofs of many such theorems are
often obscured by the need to treat numerous special cases. Projective geometry provides
a mathematical framework for stating and proving many such theorems in a simpler and more
unified fashion.

2. Coordinate interpretation of primitive concepts

As long as algebra and geometry proceeded along separate paths, their advance was

slow and their applications limited. But when these sciences joined company [through

analytic geometry], they drew from each other fresh vitality, and thenceforward marched

on at a rapid pace towards perfection. — J.-L. Lagrange (1736–1813)

Analytic geometry has yielded powerful methods for dealing with geometric problems. One
reason for this is that the primitive concepts of Euclidean geometry have precise numerical
formulations in Cartesian coordinates. A point in 2- or 3-dimensional coordinate space R

2 or R
3

becomes an ordered pair or triple of real numbers. The line joining the points a = (a1, a2, a3)
and b = (b1, b2, b3) becomes the set of all x expressible in vector form as

x = a + t · (b = a)

for some real number t (in R
2 the third coordinate is suppressed). A plane in R

3 is the set of
all x whose coordinates (x1, x2, x3) satisfy a nontrivial linear equation

a1x1 + a2x2 + a3x3 = b

for three real numbers a1, a2 a3 that are not all zero. The point x is between a and b if

x = a + t · (b − a)

where the real number t satisfies 0 < t < 1. Two segments are congruent if and only if the
distances between their endpoints (given by the usual Pythagorean formula) are equal, and two
angles ∠abc and ∠xyz are congruent if their cosines defined by the usual formula

cos ∠uvw =
(u − v) · (w − v)

|u− v| |w − v|

are equal. We note that the cosine function and its inverse can be defined mathematically
without any explicit appeal to geometry by means of the usual power series expansions.

1This discovery did not come from mathematical axiom manipulation for its own sake, but rather from the

geometrical theory of drawing in perspective begun by Renaissance artists and engineers. See the books by

Courant and Robbins, Newman, Kline and Coolidge for more information on the historical origins; some online

references are also given in the comments on the 2007 reprinting of these notes, which appear in the Preface.
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In the context described above, the axioms for Euclidean geometry reflect crucial algebraic
properties of the real number system and the analytic properties of the cosine function and its
inverse.

3. Lines and planes in R
2 and R

3

We have seen that the vector space structures on R
2 and R

3 yield convenient formulations for
some basic concepts of Euclidean geometry, and in this section we shall see that one can use
linear algebra to give a unified description of lines and planes.

Theorem I.1. Let P ⊂ R
3 be a plane, and let x ∈ P . Then

P (x) = { x ∈ R
3 | y = z − x, some z ∈ P }

is a 2-dimensional vector subspace of R
3. Furthermore, if v ∈ P is arbitrary, then P (v) = P (x).

Proof. Suppose P is defined by the equation a1x1 + a2x2 + a3x3 = b. We claim that

P (x) = { y ∈ R
3 | a1y1 + a2y2 + a3y3 = 0 } .

Since the coefficients ai are not all zero, the set P (x) is a 2-dimensional vector subspace of R
3

by Theorem A.10. To prove that P (x) equals the latter set, note that y ∈ P (x) implies

3∑

i=1

aiyi =

3∑

i=1

ai(zi − xi) =

3∑

i=1

aizi −

3∑

i=1

aixi = b − b = 0

and conversely
∑

3

i=1
aiyi = 0 implies

0 =

3∑

i=1

aizi −

3∑

i=1

aixi =

3∑

i=1

aizi − b .

This shows that P (x) is the specified vector subspace of R
3.

To see that P (v) = P (x), notice that both are equal to { y ∈ R
3 |

∑
3

i=1
aiyi = 0} by the

reasoning of the previous paragraph.�

Here is the corresponding result for lines.

Theorem I.2. Let n = 2 or 3, let L ⊂ R
n be a line, and let x ∈ L. Then

L(x) = { x ∈ R
n | y = z − x, some z ∈ L }

is a 1-dimensional vector subspace of R
n. Furthermore, if v ∈ L is arbitrary, then L(v) = L(x).
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Proof. Suppose P is definable as

{ z ∈ R
n | z = a − t(b − a), some t ∈ R }

where a 6= b. We claim that

L(x) = { z ∈ R
n | z = a − t(b− a), some t ∈ R } .

Since the latter is a 1-dimensional subspace of R
n, this claim implies the first part of the theorem.

The second part also follows because both L(v) and L(x) are then equal to this subspace.

Since x ∈ L, there is a real number s such that x = a+ s(b−a). If y ∈ L(x), write y = z−x,
where z ∈ L; since z ∈ L, there is a real number r such that z = a + r(b− a). If we subtract x
from z we obtain

y = z − x = (r − s)(b − a) .

Thus L(x) is contained in the given subspace. Conversely, if y = t(b− a), set z = x + y. Then

z = x + y = a + s(b − a) + t(b − a) = a + (s + t)(b − a) .

Thus y ∈ L(x), showing that the given subspace is equal to L(x).�

The following definition will yield a unified reformulation of the theorems above:

Definition. Let V be a vector space over a field F, let S ⊂ V be a nonempty subset, and let
x ∈ V . The translate of S by x, written x + S, is the set

{ x ∈ S | y = x + s, some s ∈ S } .

The fundamental properties of translates are given in the following theorems; the proof of the
first is left as an exercise.

Theorem I.3. If z, x ∈ V and S ⊂ V is nonempty, then z + (x + S) = (z + x) + S.�

Theorem I.4. Let V be a vector space, let W be a vector subspace of V , let x ∈ V , and suppose

y ∈ x + W . Then x + W = y + W .

Proof. If z ∈ y + W , then z = y + u, where u ∈ W . But y = x + v, where v ∈ W , and
hence z = x + u + v, where u + v ∈ W . Hence y + W ⊂ x + W .

On the other hand, if z ∈ x + W , then z ∈ x + w, where w ∈ W . Since y = x + v (as above),
it follows that

x + w = (x + v) + (w − v) = y + (w − v) ∈ y + W .

Consequently, we also have x + W ⊂ y + W .�

We shall now reformulate Theorem 1 and Theorem 2.

Theorem I.5. Every plane in R
3 is a translate of a 2-dimensional vector subspace, and every

line in R
2 or R

3 is a translate of a 1-dimensional vector subspace.

Proof. If A is a line or plane with x ∈ A and A(x) is defined as above, then it is easy to verify
that A = x + A(x). �

The converse to Theorem 5 is also true.
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Theorem I.6. Every translate of a 2-dimensional subspace of R
3 is a plane, and every translate

of a 1-dimensional vector subspace of R
2 or R

3 is a line.

Proof. CASE 1. Two-dimensional subspaces. Let b and c form a basis for W , and let
a = c × b (the cross product; see Section 5 of the Appendix). Then y ∈ W if and only if
a · y = 0 by Theorem A.10 and the cross product identities at the beginning of Section 5 of the
Appendix). We claim that z ∈ x ∈ W if and only if a · z = a · x.

If z ∈ x + W , write z = x + w, where w ∈ W . By distributivity of the dot product we have

a · z = a · (x + w) = (a · x) + (a ·w) = (a · x)

the latter following because a ·w = 0. Conversely, if a · z = (a · x), then

a · (w − x) = (a · z) − (a · x) = 0

and hence z − x ∈ W . Since z = x + (z · x), clearly x ∈ z + W .

CASE 2. One-dimensional subspaces. Let w be a nonzero (hence spanning) vector in W , and
let y ∈ x + w. Then the line xy is equal to x + W .�

The theorems above readily yield an alternate characterization of lines in R
2 which is similar to

the characterization of planes in R
3.

Theorem I.7. A subset of R
2 is a line if ane only if there exist a1, a2, b ∈ R such that not both

a1 and a2 are zero and the point x = (x1, x2) lies in the subset if and only if a1x1 + a2x2 = b.

Proof. Suppose that the set S is defined by the equation above. Let W be the set of all
y = (y1, y2) such that a1yx1 + a2y2 = 0. By Theorem A.10 we know that W is a 1-dimensional
subspace of R

2. Thus if y ∈ W , the argument proving Theorem 1 shows that S = y + W .

On the other hand, suppose that y + W is a line in R
2, where W is a 1-dimensional vector

subspace of R
2. Let w = (w1, w2) be a nonzero vector in W ; then J(w) = (w2,−w1) is also

nonzero, and z ∈ W if and only if it is perpendicular to J(w) by Theorem A.10. A modified
versionof the proof of Theorem 6, Case 1, shows that x ∈ y + W if and only if

J(w) · x = J(w) · y .

Thus it suffices to take (a1, a2) = J(w) and b = w · y. �

EXERCISES

1. Prove Theorem 3.

2. Verify the assertion S = x + S(x) made in Theorem 5.

3. Let V be a vector space, let W ⊂ V be a vector subspace, and suppose that u and v are
vectors in V . Prove that the sets u + W and v + W are either disjoint or equal.

4. Fill in the details of the proof of Theorem 7.
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5. Let P be the unique plane through the given triples of points in each of the following
cases. Find an equation defining P , and determine the 2-dimensional vector subspace of which
P is a translate.

(i) (1, 3, 2), (4, 1,−1), (2, 0, 0).

(ii) (1, 1, 0), (1, 0, 1), (0, 1, 1).

(iii) (2,−1, 3), (1, 1, 1), (3, 0, 4).


