
CHAPTER V

PLANE PROJECTIVE GEOMETRY

In this chapter we shall present the classical results of plane projective geometry. For the most part, we

shall be working with coordinate projective planes and using homogeneous coordinates, but at certain

points we shall also use synthetic methods, especially when it is more convenient to do so. Our treatment

will make extensive use of concepts from linear algebra. Since one major geometric result (Pappus’

Theorem) is closely connected to the algebraic commutativity of multiplication in a skew-field, we shall

be fairly specific about using left or right vector spaces in most sections of this chapter.

1. Homogeneous line coordinates

If F is a skew-field, it will be convenient to let view FP
n as the set of all 1-dimensional vector

subspaces of the (n + 1)-dimensional right vector space F
n+1,1 of (n + 1) × 1 column matrices

over F with the obvious entrywise right multiplication:
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· · ·
· · ·
xn+1









· c =









x1 c
· · ·
· · ·

xn+1 c









It follows from Theorem III.12 that a line in FP
2 is definable by an equation of the form u1x1 +

u2x2 + u3x3 = 0, where u1, u2, u3 are not all zero. Furthermore, two triples of coefficients
(u1, u2, u3) and (v1, v2, v3) define the same line if and only if there is a nonzero k ∈ F such
that Ui = k vi for i = 1, 2, 3. Thus we see that a line in FP

2 is completely determined by a

one-dimensional subspace of the left vector space of 1 × 3 row matrices. — Therefore the dual
projective plane to FP

2 is in 1–1 correspondence with the 1-dimensional subspaces of F
1,3, where

the latter is the left vector space of 1 × 3 matrices. Under this correspondence the lines in the
dual of FP

2 correspond to lines in S1(F
1,3). For a line in the dual is the set of lines through

a given point, and by a reversal of the previous argument a line in S1(F
1,3) is just the set of

elements whose homogeneous coordinates (u1, u2, u3) satisfy a linear homogeneous equation of
the form u1x1 + u2x2 + u3x3 = 0, where x1, x2, x3 are not all zero. Much as before, the
triples (x1, x2, x3) and (y1, y2, y3) define the same set if and only if yi = xim for some nonzero
constant m ∈ F. We can summarize the discussion above as follows:

Theorem V.1. Let F be a skew-field, and identify FP
2 with S1(F

3,1) as above. Then the dual
plane

(

FP
2
)

∗

is isomorphic to S1(F
1,3) such that if the point x corresponds to the 1-dimensional

right vector subspace ξ · F and the line L corresponds to the 1-dimensional left vector subspace
F · λ, then x ∈ L if and only if λ · ξ = 0.�
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The dot indicates matrix multiplication operation

F
1,3 × F

3,1 −→ F
1,1 ∼= F .

As before, F · λ denotes all left scalar multiples of λ, and we similarly let ξ · F denote all right
scalar multiples of ξ. Note that if λ · ξ = 0 for one pair of homogeneous coordinate choices,
then the same is true for every other pair. For the most general change of representatives is
given by k λ and ξ m so that

(k λ) · (ξ m) = k (λ · ξ)m = 0

by associativity of multiplication.

Definition. Given a line L in
(

FP
2
)

∗ ∼= S1(F
1,3), we say that a nonzero vector λ ∈ F

1,3 is a
set of homogeneous coordinates for L if the latter is the set of all points x whose homogeneous
coordinates ξ satisfy λ · ξ = 0.

By construction, three points in FP
2 are collinear if and only if their homogeneous coordinates

span a 2-dimensional right vector subspace of F
3,1. The dualization of this to homogeneous line

coordinates is an easy consequence of Theorem 1.

Theorem V.2. Let L, M and N be three distinct lines in FP
2. Then they are concurrent if and

only if their homogeneous line coordinates are linearly dependent.�

NOTATIONAL CONVENTIONS. Throughout this chapter we shall be passing back and forth
between geometric points and lines and the algebraic homogeneous coordinates which represent
them. Needless to say, it is convenient to have some standard guidelines for passing back and
forth between the geometric and algebraic objects. Normally we shall denote the geometric
objects by Roman letters and appropriate homogeneous coordinates by corresponding Greek
letters (strictly speaking, we use mathematicians’ versions of Greek letters). For example, if X
and Y are points, then we shall normally use ξ or η for homogeneous coordinates, and if L is a
line we shall normally use λ.

Homogeneous coordinate formulas

In the remainder of this section, we shall describe some useful formulas which are valid provided
the skew-field F is commutative. Of course, if F is commutative the distinction between left
and right vector subspaces is unnecessary.

We begin by stating two obvious problems:

1. If L is a line determined by x and y, express homogeneous coordinates for L in terms
of homogeneous coordinates for x and y.

2. If x is the point of intersection for lines L and M , express homogeneous coordinates
for x in terms of homogeneous coordinates for L and M .
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Consider the first problem. By the definition of homogeneous coordinates of lines, a set of
homogeneous coordinates λ for L must satisfy λ · ξ = λ · η = 0. If F is the real numbers, this
means that the transpose of λ is perpendicular to ξ and η. Since x 6= y, it follows that ξ and
η are linearly independent; consequently, the subspace of vectors perpendicular to both of the
latter must be 1-dimensional. A nonzero (and hence spanning) vector in the subspace of vectors
perpendicular to ξ and η is given by the cross product ξ × η, where the latter are viewed as
ordinary 3-dimensional vectors (see Section 5 of the Appendix). It follows that λ may be chosen
to be an arbitrary nonzero multiple of ξ × η. We shall generalize this formula to other fields.

Theorem V.3. Let F be a (commutative) field, and let x and y be distinct points in FP
2 having

homogeneous coordinates ξ and η. Then the line xy has homogeneous coordinates given by the
transpose of ξ × η.

Proof. The definition of cross product implies that

T(ξ × η) · ξ = T(ξ × η) · η = 0

so it is only necessary to show that if ξ and η are linearly independent then ξ × η 6= 0.

Let the entries of ξ be given by xi, let the entries of η be given by yj, and consider the 3 × 2
matrix B whose entries are the entries of the 3 × 1 matrices ξ and η:





x1 y1

x2 y2

x3 y3





Since the columns are linearly independent, the rank of this matrix is 2. By Theorem A.11 this
means there is 2 × 2 submatrix of B with nonzero determinant. If k ∈ {1, 2, 3} is such that the
matrix obtained by deleting the kth row is nonzero, then by the definition of cross product the
kth entry of the latter must be nonzero. Therefore the transpose of ξ×η is a set of homogeneous
coordinates for L.�

Dually, we have the following result:

Theorem V.4. Let F be a (commutative) field, and let L and M be distinct lines in FP
2 having

homogeneous coordinates λ and µ. Then the intersection point of L and M has homogeneous
coordinates given by the transpose of λ× µ.�

The “Back-Cab Rule” for triple cross products

a × (b × c) = b (a · c) − c (a · b)

(see Theorem A.20) implies the following useful formula:

Theorem V.5. Let L be a line in FP
2, and let x and y be points of FP

2 not on L. Let λ, ξ and
η be homogeneous coordinates for L, x and y respectively. Then the common point of the lines
L and xy has homogeneous coordinates equal to (λ · ξ) Tη − (λ · η) Tξ.
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Proof. By Theorem 3 the line xy has homogeneous coordinates Tξ×Tη, and thus by Theorem
4 the common point of L and xy has homogeneous coordinates equal to

T
(

λ× T
(

Tξ × Tη
) )

.

The latter is equal to (λ · ξ) Tη − (λ · η) Tξ by the Back-Cab Rule.�

EXERCISES

1. Consider the affine line in F
2 defined by the equation ax + by = c. What are the

homogeneous coordinates of its extension to FP
2? As usual, consider the 1–1 map from F

2 to
FP

2 which sends (x, y) to the point with homogeneous coordinates




x
y
1



 .

2. Suppose that three affine lines are defined by the equations aix+biy = ci, where i = 1, 2, 3.
Prove that these three lines are concurrent if and only if

∣

∣

∣

∣

∣

∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣

∣

∣

∣

∣

∣

= 0 and

∣

∣

∣

∣

a1 b1
a2 b2

∣

∣

∣

∣

6= 0 .

What can one conclude about the lines if both determinants vanish?

3. Using the methods of this section, find the equation of the affine line joining ( 1
4 ,

1
2) to the

point of intersection of the lines defined by the equations x+2y+1 = 0 and 2x+ y+3 = 0.

4. Fine the homogeneous coordinates of the point at which the line with homogeneous
coordinates (2 1 4) meets the line through the points with homogeneous coordinates





2
3

−1



 and





1
1
0



 .

5. Let A be an invertible 3 × 3 matrix over F, and let T be the geometric symmetry of
FP

2 ∼= S1(F
3,1) defined by the equation

T (x) = A · ξ · F
where ξ is a set of homogeneous coordinates for x and the dot indicates matrix multiplication.
If L is a line in FP

2 with homogeneous coordinates λ, show that the line f [L] has homogeneous
coordinates given by λ ·A−1.
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2. Cross ratio

At the beginning of Chapter III, we mentioned that one forerunner of projective geometry was the
development of a mathematical theory of perspective images by artists during the 15th and early
16th century. Clearly, if one compares such perspective photographic images with the physical
objects they come from, it appears that some physical properties are faithfully captured by the
photograph while others are not. For example, if three points on a physical object are collinear,
then their photographic images are also collinear, and under suitable conditions if we have three
distinct points A, B and C such that B is between A and C, then the image point B ′ of B will
also lie between the corresponding image points A and C ′.1 However, it is also apparent that
the relative distances among the three points can be greatly distorted. For example, if B is the
midpoint of A and C, then we cannot conclude that B ′ is the midpoint of A′ and C ′. Similarly,
if B is between A and C and the distance from B to C is twice the distance from A to B, we
cannot conclude that a similar relationship holds for the corresponding relative distances among
the image points A′, B′ and C ′. HOWEVER, if we are given four collinear points on the physical
object, then there is a number called the cross ratio, which is determined by relative distances
among the four points, that is the same for the original four points on the physical object(s) as
well as their photographic images. The cross ratio itself was apparently first defined algebraically
by P. de la Hire (1640–1718), but the perspective invariance property was essentially known to
Pappus of Alexandria (c. 290 – c. 350??) and perhaps even earlier. Throughout the rest of
these notes we shall see that the cross ratio plays a fundamentally important role in projective
geometry.

It will be convenient to define the cross ratio in terms of homogeneous coordinates and to give
a nonvisual motivation for the concept. In problems involving coordinate projective spaces, it
is often helpful to choose homogeneous coordinates in a particular way. We shall prove some
results justifying such choices below and use them to give a fairly simple definition of the cross
product. The discussion up to (but not including) Theorem 8 is valid for any skew-field F.
Starting with Theorem 9, we assume F is commutative.

Theorem V.6. Let A, B, C, D be four points in FP
2, no three of which are collinear. Then

there exist homogeneous coordinates α, β, γ, δ for A, B, C, D such that δ = α+ β + γ.

Proof. Let α0, β0, γ0 be arbitrary homogeneous coordinates for A, B, C respectively.
Since A, B, C are noncollinear, the vectors α0, β0, γ0 form a basis for F

3,1. Thus there exist
x, y, z ∈ F such that homogeneous coordinates for D are given by δ = α0x+ β0y + γ0z. We
claim that each of x, y, z is nonzero. If x = 0, then it follows that δ = yβ0 + zγ0, so that D
lies on the line BC; therefore it follows that x 6= 0, and similarly we can conclude that y and
z are nonzero. But this means that α0x, β0y, γ0z are homogeneous coordinates for A, B, C
respectively, and accordingly we may take α = α0x, β = β0y, and γ = γ0z.�

The next few results are true in FP
n for any n ≥ 1.

1The suitable, and physically reasonable, conditions are given in terms of the aperture of the camera at some
point X and the image plane P which does not contain X: If Q is the unique plane through X which is parallel
to P , then normally the plane P the physical object(s) being photographed will lie on opposite sides of the plane
Q.
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Theorem V.7. Let A and B Let A and B be distinct points in FP
n with homogeneous coordinates

α and β respectively. Let C be a third point on AB. Then there exist homogeneous coordinates
γ for C such that γ = αx+ β for some unique x ∈ F.

Proof. Since A, B, and C are noncollinear, there exist u, v ∈ F such that homogeneous
coordinates for C are given by αu+βv. We claim that v 6= 0, for otherwise γ = αu would imply
C = A. Thus αu v−1 + β is also a set of homogeneous coordinates for C, proving the existence
portion of the theorem. Conversely, if αy + β is also a set of homogeneous coordinates for C,
then there is a nonzero scalar k such that

α y + β = (αx + β) · k = αxk + β k .

Equating coefficients, we have k = 1 and y = xk = x.�

Notation. If C 6= A, the element of F determined by Theorem 7 is called the nonhomogeneous

coordinate of C with respect to α and β and written γ(α,β).

Theorem V.8. Let A, B, and C be distinct collinear points in FP
n. Then there exist homo-

geneous coordinates α, β, γ for A, B, C such that γ = α + β. Furthermore, if α′, β′, γ′ are
arbitrary homogeneous coordinates for A, B, and C, then there is a nonzero constant k ∈ F

such that α′ = αk, β′ = βk, and γ ′ = γk.

Proof. By Theorem 7 there exist homogeneous coordinates α′′ and β′′ for A and B such that
homogeneous coordinates for C are given by γ = α′′x+ β′′. If x were zero then B and A would
be equal, and consequently we must have x 6= 0. Thus if we take α = α′′x and β = β′, then
γ = α+ β is immediate.

Suppose that α′, β′, γ′ satisfy the condition of the theorem. Then there exist constants a, b, c
such that α′ = α a, β′ = β b, and γ ′ = γ c. It follows that

α c + β c = γ c = α′ + β′ = α · a + β · b .
Equating coefficients, we obtain a = c = b, and thus we may take k = c.�

COMMUTATIVITY ASSUMPTION. Throughout the rest of this section F is assumed to be
commutative. The definition of cross ratio is justified by the following result:

Theorem V.9. Let A, B and C be distinct collinear points in FP
n, and let D be a point on

this line such with D 6= A. Suppose that homogeneous coordinates α, β, γ for A, B, C are
chosen such that γ = α+ β, and write homogeneous coordinates for D as δ = uα+ vβ in these
coordinates (since D 6= A we must have v 6= 0). Then the quotient u/v is the same for all
choices of α, β, γ satisfying the given equation.

Definition. The scalar u/v ∈ F is called the cross ratio of the ordered quadruple of collinear
points (A,B,C,D), and it is denoted by XR(A,B,C,D).
Proof. If α′, β′, γ′ is another triple such that γ ′ = α′ + β′, then by Theorem 8 there is
a nonzero scalar k ∈ F such that α′ = kα, β′ = kβ, and γ ′ = kγ. If δ′ is another set of
homogeneous coordinates for D, then δ ′ = rδ for some r ∈ F. Thus if δ′ = u′α′ + v′β′, it follows
that δ′ = ku′α + kv′β. On the other hand, δ′ = rδ implies that δ′ = ruα + rvβ. Equating
coefficients, we find that ku′ = ru and kv′ = rv. Therefore we have

u

v
=

ru

rv
=

ku′

kv′
=

u′

v′
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and therefore the ratio of the coefficients does not depend upon the choices of homogeneous
coordinates.�

The next result answers a fundamental question concerning the cross ratio:

Theorem V.10. Suppose that A, B and C are distinct collinear points and r ∈ F is an arbitrary
constant. Then there is a unique D ∈ AB such that XR(A,B,C,D) = r.

Proof. Existence. Choose D so that it has homogeneous coordinates equal to δ = rα+ β.

Uniqueness. Suppose that XR(A,B,C,D) = XR(A,B,C,E) = r, where neither D nor E is
equal to A. Choose homogeneous coordinates soγ = α+ β; then we may write δ = uα+ vβ and
ε = sα+ tβ, where

u

v
= r =

s

t
;

note that v and t are nonzero because neither D nor E is equal to A. It follows that u = vr and
s = tr, from which we conclude that δ = v t−1ε. The latter in turn implies that D = E.ε

Another fundamental property of the cross ratio is given by the following result, whose proof is
left as an exercise:

Theorem V.11. Let A, B, C and D be distinct noncollinear points, and let E 6= A be another
point on the same line. Then XR(A,B,C,E) = XR(A,B,C,D) · XR(A,B,D,E).�

There are 24 possible orders in which four distinct collinear points A, B, C, D may be reordered.
We summarize what happens to the cross ration under reordering below.

Theorem V.12. Let A, B, C and D be distinct noncollinear points in FP
n, and assume that

XR(A,B,C,D) = r. Then the other 23 cross ratios involving these points by reordering are
given as follows:

r = XR(A,B,C,D) = XR(B,A,D,C) = XR(C,D,A,B) = XR(D,C,B,A)

1

r
= XR(A,B,D,C) = XR(B,A,C,D) = XR(D,C,A,B) = XR(C,D,B,A)

1 − r = XR(A,C,B,D) = XR(C,A,B,D) = XR(B,D,A,C) = XR(D,B,C,A)

1

1 − r
= XR(A,C,D,B) = XR(C,A,B,D) = XR(D,B,A,C) = XR(B,D,C,A)

1 − r

r
= XR(A,D,B,C) = XR(D,A,C,B) = XR(B,C,A,D) = XR(C,B,D,A)

r

1 − r
= XR(A,D,C,B) = XR(D,A,B,C) = XR(C,B,A,D) = XR(B,C,D,A)

The proof is a sequence of elementary and eventually boring calculations, and it is left as an
exercise.�

The next result gives a useful expression for the cross ratio:
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Theorem V.13. Let A1, A2, A3 be distinct collinear points, and let A4 6= A1 lie on this line.
Let B1, B2, B3 be distinct collinear points on this line with B1 6= Ai for all i, and suppose that
XR(B1, B2, B3, Ai) = xi for i = 1, 2, 3, 4. Then the following holds:

XR(A1, A2, A3, A4) =
(x1 − x3) (x2 − x4)

(x1 − x4) (x2 − x3)

Proof. Choose homogeneous coordinates βi for Qi such that β3 = β1 + β2. Then
homogeneous coordinates αj for the points Aj are given by xjβ1 + β2. It is not difficult to
verify that

(x1 − x2)α3 = (x3 − x2)α1 + (x1 − x3)α2

is true and similarly

(x1 − x2)α3 = (x3 − x2)α1 + (x1 − x3)α2 .

Thus if α′

1 = (x3 − x2)β1 and α′

2 = (x1 − x3)β2, then we have

(x1 − x2)α4 =
(x4 − x2)

(x3 − x2)
α′

1 +
(x1 − x4)

(x1 − x3)
α′

2 .

The cross ratio formula in the theorem is an immediate consequence of these formulas.�

DUALIZATION. The preceding discussion can be dualized to yield the cross ratio of four con-

current lines in FP
2. Cross rations of collinear points and concurrent lines are interrelated as

follows.

Theorem V.14. Let L1, L2, L3 be distinct concurrent lines, and let L4 6= L1be another line
through this point. Let M be a line in FP

2 which does not contain this common point, and let
Ai be the point where Li meets M , where i = 1, 2, 3, 4. Then the point A4 ∈M lies on L4 if and
only if XR(A1, A2, A3, A4) = XR(L1, L2, L3, L4).

Proof. Suppose that A4 ∈ M ∩ L4. Let r be the cross ratio of the lines, and let s be the
cross ratio of the points. Choose homogeneous coordinates for the points Ai and lines Li such
that α3 = α1 +α2 and λ3 = λ1 +λ2, so that α4 = sα1 +α2 and λ4 = r λ1 +λ2. Since Ai ∈ Li

for all i, we have λi · αi = 0 for all i. In particular, these equations also imply

0 = λ3 · α3 = (λ1 + λ2) · (α1 + α2) =

λ1 · α1 + λ1 · α2 + λ2 · α1 + λ2 · α2 =

λ1 · α2 + λ2 · α1

so that λ1 · α2 = −λ2 · α1. Therefore we see that

0 = λr · αr = (rλ1 + λ2) · (sα1 + α2) =

rλ1 · α2 + sλ2 · α1 = (r − s)λ1 · α2 .

The product λ1 · α2 is nonzero because A2 6∈ L1, and consequently r − s must be equal to zero,
so that r = s.�

Suppose that the cross ratios are equal. Let C ∈ M ∩ L4; then by the previous discussion we
know that

XR(A1, A2, A3, C) = XR(L1, L2, L3, L4) .

Therefore we also have XR(A1, A2, A3, C) = XR(A1, A2, A3, A4), so that A4 = C by Theorem
10 and in addition we have A4 ∈ L4.�
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The following consequence of Theorem 14 is the result on perspective invariance of the cross

ratio mentioned at the beginning of this section.

Theorem V.15. Let L1, L2, L3 and L4 be distinct concurrent lines, and let M and N be two
lines which do not contain the common point. Denote the intersection points of M and N with
the lines Li by Ai and Bi respectively. Then XR(A1, A2, A3, A4) = XR(B1, B2, B3, B4).

 
 

 

Figure V.1

Proof. Two applications of Theorem 14 imply that

XR(A1, A2, A3, A4) = XR(L1, L2, L3, L4) = XR(B1, B2, B3, B4) .�

As noted before, Theorem 15 has a visual application to the interpretation of photographs.
Namely, in any photograph of a figure containing four collinear points, the cross ratio of the
points is equal to the cross ratio of their photographic images (as before, think of the common
point as the aperture of the camera, the line N as the film surface, and the points Ai as the
points being photographed).

Finally, we explain the origin of the term cross ratio. If V is a vector space over F and a, b,
and c are distinct collinear points of V , then the ratio in which c divides a and b is given by
(1 − t)/t, where c = ta + (1 − t)b. If d is a fourth point on the line and J : F

n → FP
n is the

usual inclusion, then Theorem 16 shows that XR
(

J(a), J(b), J(c), J(d)
)

is the ratio in which c

divides a and b divided by the ratio in which d divides a and b.

Theorem V.16. Let a, b, c, and d be distinct collinear points of F
n, and write c = ta + (1−t)b

and d = sa + (1 − s)b. Then

XR
(

J(a), J(b), J(c), J(d)
)

=
(1 − t) s

(1 − s) t
.
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Proof. We shall identify F
n+1,1 with F

n+1 and F
n × F in the obvious manner. Recall that

x ∈ F
n implies that ξ = (x, 1) is a set of homogeneous coordinates for x. Clearly we have

(c, 1) = t (a, 1) + (1 − t) (b, 1)

so that we also have

(d, 1) =
s

t
(ta, t) +

1 − s

1 − t

(

(1 − t)b, (1 − t)
)

and the cross ratio formula is an immediate consequence of this.�

The following formula is also useful.

Theorem V.17. Let a, b, and c and be distinct collinear points of F
n, and let P∞ be the point

at infinity on the projective extension of this line. If c = ta + (1 − t)b, then we have

XR
(

J(a), J(b), J(c), P∞

)

=
t− 1

t
.

Proof. Let homogeneous coordinates for J(), J(b), and J(c) be given as usual by (a, 1), (b, 1),
and (c, 1) respectively. Then (c, 1) has homogeneous coordinates

(c, 1) = (ta, t) +
(

(1 − t)b, (1 − t)
)

and P∞ has homogeneous coordinates

(b − a, 0) = (b, 1) − (a, 1) =
1

1 − t
·
(

(1 − t)b, (1 − t)
)

− 1

t
(ta, t) .

Therefore the cross ratio is equal to

−1/t

1/(1 − t)
=

t− 1

t

which is the formula stated in the theorem.�

EXERCISES

1. Prove Theorem 11.

2. Prove Theorem 12.

3. In the notation of Theorem 13, assume that all the hypotheses except A1 6= B1 are valid.
Prove that the cross ratio is given by (x2 − x4)/(x2 − x3) if A1 = B1.

4. Find the cross ratio of the four collinear points in RP
3 whose homogeneous coordinates are

given as follows:








1
3
0
0

















0
1
1
1

















1
7
4
4

















1
1
−2
−2
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5. In RP
2, find the cross ratio of the lines joining the point J( 1

4 ,
1
2 ) to the points with the

following homogeneous coordinates:




0
1
1









1
0
1









1
1
0









1
1
1





6. In RP
2, find the cross ratio formed by the points with homogeneous coordinates T(1 1 2)

and T(2 3 4) and the points in which their line meets the lines defined by x1 + x2 + x3 = 0
and 2x1 + x3 = 0.

7. Let a, b, c, and d be distinct collinear points of R
n. Prove that their cross ratio is given

by the following formula in which “·” denotes the usual vector dot (or inner) product:

XR
(

J(a), J(b), J(c), J(d)
)

=
[ (b − c) · (b − a) ] [ (d− a) · (b − a) ]

[ (c − a) · (b− a) ] [ (d− d) · (b − a) ]

Using this formula, show that the absolute value of the cross ratio is given by the following
expression:

|c − b| |d − a|
|c − a| |d − b|

8. If A, B, C and D are four distinct collinear points of FP
n (where F is a commutative field)

and (A′, B′C ′D′) is a rearrangement of (A, B, C, D), then by Theorem 12 there are at most
six possible values for XR(A′, B′, C ′, D′) as (A′, B′, C ′, D′) runs through all rearrangements.
Usually there are exactly six different values for all the possible rearragements, and this exercise
analyzes the exceptional cases when there are fewer than six possibilities. By interchanging the
roles of (A, B, C, D) if necessary, we can assume that XR(A,B,C,D) = r is equal to one of the
other five expressions in Theorem 12.

(i) Suppose that 1 + 1 6= 0 in F and XR(A,B,C,D) = r is equal to one of the expressions
1/r, 1 − r or r/(r − 1). Prove that r belongs to the set {−1, 2, 1

2} ⊂ F and that the values of
the cross ratios XR(A′, B′, C ′, D′) for the various rearrangements are precisely the elements of
{−1, 2, 1

2}. — Explain why there are three elements in this set if 1 + 1 + 1 6= 0 in F but only
one if 1 + 1 + 1 = 0 in F.

(ii) Suppose that F is the complex numbers C and that r is equal to either 1/(1 − r) or (r −
1)/r. Prove that r belongs to the set { 1

21 + i
√

3, 1
2(1 − i

√
3, } ⊂ C and that the values of

the cross ratios XR(A′, B′, C ′, D′) for the various rearrangements are precisely the elements of

{ 1
21 + i

√
3, 1

2 (1 − i
√

3, }. — Explain why r6 = 1 but rm 6= 1 for 1 ≤ m ≤ 5. [Hint: Show

that r2 − r + 1 = 0 implies r3 = −1 by multiplying both sides by (r + 1), and then use this
to explain why r6 = 1. In particular, it follows that the possibilities in this case arise if and
only if there is some element r ∈ F such that r6 = 1 but no smaller positive integral power of
r is equal to 1. Such elements exist in Zp if p is a prime of the form 6k + 1 — for example, if
p = 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, or 97.]

Definitions. In Case (i) of the preceding exercise, there is a rearrange-
ment (A′, B′C ′D′) of (A, B, C, D) such that XR(A′, B′, C ′, D′) = −1. Or-
dered quadruples of collinear points satisfying this condition are called harmonic

quadruples, and they are discussed further in Section V.4, Exercise VI.3.8 and
Exercise VII.2.3. In Case (ii), the quadruple is said to form an equianharmonic

set (the next to last word should be decomposed as equi/an/harmonic). The
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latter are related to topics in the theory of functions of a complex variable which
go far beyond the scope of these notes, and we shall not attempt to give any
contexts in which such sets arise.

9. Let F be a field in which 1+1 6= 0 and 1+1+1 6= 0, and let A, B, C and D be four distinct
collinear points in FP

n.

(i) Suppose that XR(A,B,C,D) = −1. Determine all the rearrangements (A′, B′, C ′, D′) of
(A, B, C, D), for which XR(A′, B′, C ′, D′) is equal to −1, 2, and 1

2 respectively.

(ii) Suppose that XR(A,B,C,D) = r, where r satisfies the quadratic equation x2 − x + 1 = 0.
Explain why 1 − r is a second root of the equation such that r 6= 1 − r, and using Theorem 12
determine all the rearrangements (A′, B′, C ′, D′) of (A, B, C, D), for which XR(A′, B′, C ′, D′)
is equal to r and (1 − r) respectively.

10. Let n ≥ 1, let A be an invertible (n + 1) × (n + 1) matrix over F, and let TA be the
geometric symmetry of FP

n ∼= S1(F
n+1,1) defined by the equation

TA(x) = A · ξ · F

where ξ is a set of homogeneous coordinates for x and the dot indicates matrix multiplication.
Suppose that x1, x2, x3, x4 are collinear points such that the first three are distinct and
x4 6= x1. Prove that TA preserves cross ratios; more formally, prove that

(x1, , x2, x3, x4) =
(

TA(x1), TA(x2), TA(x3), TA(x4)
)

.

11. Let F be a field, and let g : FP
1 → FP

1 be the 1–1 correspondence such that g oJ(x) = x−1

if 0 6= x ∈ F, and G interchanges the zero point J(0) and the point at infinity ∞(FP
1) with

homogeneous coordinates given by the transpose of T(1 0). Prove that there is an invertible
2 × 2 matrix A such that g = TA, where the right hand side is defined as in the preceding
exercise. [Hint: The result extends to linear fractional transformations defined by

g oJ(x) =
ax+ b

cx+ d
(where c and ad − bc 6= 0)

if x 6= −d/c, while g interchanges −d/c and ∞(FP
1).]
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3. Theorems of Desargues and Pappus

We begin with a new proof of Theorem IV.5 (Desargues’ Theorem) for coordinate planes within
the framework of coordinate geometry. Among other things, it illustrates some of the ideas
that will appear throughout the rest of this chapter. For most of this section, F will denote an
arbitrary skew-fields, and as in the beginning of Section V.1 we shall distinguish between left
and right vector spaces.

Theorem V.18. A coordinate projective plane FP
2 is Desarguian.

Proof. Let {A, B, C} and {A′, B′, C ′} be two triples of noncollinear points, and let X be a
point which lies on all three of the lines AA′, BB′ and CC ′. Choose homogeneous coordinates
α, β, γ, α′, β′, γ′ for A,B,C,A′, B′, C ′ and ξ for X such that

α′ = ξ + α · a, β ′ = ξ + β · b, γ ′ = ξ + γ · c.
Since β′ − γ′ = β · b − γ · c, it follows that the point D ∈ BC ∩ B ′C ′ has homogeneous
coordinates β ′−γ′. Similarly, the points E ∈ AC ∩A′C ′ and F ∈ AB∩A′B′ have homogeneous
coordinates α′ − γ′ and α′ − β′ respectively. The sum of these three homogeneous coordinates
is equal to zero, and therefore it follows that the points they represent — which are D, E and
F — must be collinear.�

Another fundamental result of projective geometry was first stated and proved by Pappus of
Alexandria in a Euclidean context.

Pappus’ Theorem.2 Let {A1, A2, A3} and {B1, B2, B3} be two coplanar triples of non-

collinear points in the real projective plane or 3-space. Assume the two lines and six points are

distinct. Then the cross intersection points

X ∈ A2B3 ∩ A3B2

Y ∈ A1B3 ∩ A3B1

Z ∈ A1B2 ∩ A2B1

are collinear.

2This is sometimes called the Pappus Hexagon Theorem to distinguish it from the theorems on centroids
of surfaces and solids of revolution that were proven by Pappus and rediscovered independently by P. Guldin
(1577–1643). A more detailed discussion of Guldin’s life and work is available at the following online site:
http:/www.faculty.fairfield.edu/jmac/sj/scientists/guldin.htm . For reasons discussed in the final section
of Chapter VII, the Theorem of Pappus stated in this section is sometimes called Pascal’s Theorem, and this is
especially true for mathematical articles and books written in French or German.
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Figure V.2

Theorem V.19. Let F be a skew-field. Then Pappus’ Theorem is valid in FP
n (where n ≥ 2) if

and only if F is commutative.

Proof. At most one of the six points {A1, A2, A3, B1, B2, B3} lies on both lines. In
particular, there exist distinct numbers j, k ∈ {1, 2, 3} such that Aj, Ak, Bj, Bk do not lie on
both lines. If we re-index the points using a suitable reordering of {1, 2, 3} (explicitly, send j to
1, k to 2, and the remaining number to 3), we find that the renamed points A1, A2, B1, B2

do not lie on both lines. We shall use this revised indexing henceforth. Since the six points
are coplanar, by Theorem 6 we may choose homogeneous coordinates αi and βj for the points
so that β2 = α1 + α2 + β1. Furthermore, by Theorem 7 we may write α3 = α1 + α2 · a
and β3 = β1 + β2 · b. Since Z ∈ A1B2 ∩ A2B1, we know there are scalars x, y, u, v such that
homogeneous coordinates ζ for Z are given by

ζ = α1 · x + β2 · y = β1 · u + α2 · v = α1 (x+ y) + α2 · y + β1 · y .
Equating coefficients, we see that x+ y = 0 and y = u = v. Hence homogeneous coordinates for
Z are given by β1 + α2. Similarly, homogeneous coordinates η for Y are given as follows:

η = α1 · x + β3 · y = α1 (x+ by) + β1 (y + by) + α2 (by) =

α3 · u + β1 · v = α1 · u + α2 · au + β1 · v .
Equating coefficients as before, we find that homogeneous coordinates for Y are given by

η = α1 + α2 · a + β1 (1 + b−1a) .

Still another calculation along the same lines shows that homogeneous coordinates ξ for X are
given by

ξ = α1 + α2 (1 + b−1 − ab−1) + β1 (1 + b−1) .

Assume now that F is commutative. Then ab−1 = b−1a, and hence

η − ξ = α2 (a− 1 − b−1 + ab−1) + β1 (a+ b−1a− 1 − b−1)

is a scalar multiple of α2 + β1. Since the latter vector is a set of homogeneous coordinates for
Z, the conclusion Z ∈ XY is immediate.�
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Conversely, assume that the Pappus’ Theorem is always valid in FP
n. It suffices to prove that

ab = ba for all a, b ∈ F which are not equal to 0 or 1. Let A1, A2, B1, B2 be four coplanar points,
no three of which are collinear, and choose homogeneous coordinates such that β2 = α1+α2+β1.
Let A3 ∈ A1A2 and B3 ∈ B1B2 be chosen so that we have homogeneous coordinates of the form
α3 = α1 + α2 · a and β3 = β1 + β2 · b−1.

Since Z ∈ XY , there exist x, y ∈ F such that

α2 + β1 = η · x + ξ · y .
By the calculations in the preceding half of the proof, the right hand side is equal to

α1 (x+ y) + α2 · z + β1 · w
where z and w are readily computable elements of F. If we equate coefficients we find that
x+ y = 0 and hence α2 + β1 = (η − ξ)x. On the other hand, previous calculations show that

(η − ξ)x = α2 (a− 1 − b− ab)x + β1 (a+ ba− 1 − b)x .

By construction, the coefficients of α2 and β1 in the above construction are equal to 1. Therefore
x is nonzero and

a − 1 − b − ab = a + ba − 1 − b

from which ab = ba follows.�

Since there exist skew-fields that are not fields (e.g., the quaternions given in Example 3 at the
beginning of Appendix A), Theorem 19 yields the following consequence:

For each n ≥ 2 there exist Desarguian projective n-spaces in which Pappus’

Theorem is not valid.

Appendix C contains additional information on such noncommutative skew-fields and their im-
plications for projective geometry. The logical relationship between the statements of Desargues’
Theorem and Pappus’ Theorem for projective spaces is discussed later in this section will be
discussed following the proof of the next result, which shows that Pappus’ Theorem is effectively
invariant under duality.

Theorem V.20. If Pappus’ Theorem is true in a projective plane, then the dual of Pappus’
Theorem is also true in that plane.

Proof. Suppose we are given two triples of concurrent lines {α1, α2, α3} and {β1, β2, β3}
with distinct points of concurrency that we shall call A and B respectively. Let Ci,j denote the
common point of αi and βj . To prove the planar dual of Pappas’ Theorem, we must show that
the lines

C1,3C3,1, C2,3C3,2, C1,2C2,1

are concurrent (see the figure below):
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Figure V.3

Now {A, C3,1, C3,2} and {B, C2,3, C1,3} are two triples of collinear points not on the same
line, and hence the three points

X ∈ C3,1C2,3 ∩ C3,2C2,3

C2,1 ∈ AC2,3 ∩ BC3,1 = α2 ∩ β1

C1,2 ∈ AC1,3 ∩ BC3,2 = α1 ∩ β2

are collinear by Pappus’ Theorem. Hence X ∈ C1,2C2,1. By the definition of X, it now follows
that X lies on all three of the lines C1,3C3,1, C2,3C3,2, and C1,2C2,1.�

A relationship between the validities of Desargues’ Theorem and Pappus’ Theorem was first
formulated by G. Hessenberg (1874–1925). However, his proof was incomplete, and the first
correct argument was published by A. Cronheim (1922–2005); the paper containing Cronheim’s
proof is listed int the bibliography.
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Theorem V.21. Let (P,L) be a projective plane in which Pappus’ Theorem is valid. Then (P,L)
is Desarguian.

The original idea of the proof of Theorem 21 is fairly elementary, but the complete argument is
a tedious exercise in the use of such elementary techniques. Details appear on pages 64–66 of
the book by Bumcrot listed in the bibliography.

We have already noted that Pappus’ Theorem is not necessarily valid in a Desarguian projective
plane. However, the following result is true:

Theorem V.22. Let P be a FINITE Desarguian projective plane. Then Pappus’ Theorem is
valid in P .

The main step in the proof of Theorem 22 is an algebraic result of J. H. M. Wedderburn.3 Proofs
appear on pages 375–376 of M. Hall’s book on group theory and in the final chapter of the book,
Topics in Algebra, by I. Herstein (more detailed information appears in the bibliography).

Theorem of Wedderburn. Every finite skew-field is commutative.�

Proof of Theorem 22. (assuming Wedderburn’s Theorem) By Theorem IV.17 we know
that P is isomorphic to FP

2 for some skew-field F. Since FP
2 is finite, so is F, and since F is

commutative by Wedderburn’s Theorem, Pappus’ Theorem is valid by Theorem 19.�

STRENGTHENED RESULT. The theory of finite fields4 implies that the number of elements
in a finite field is pr, where p is prime and r is a positive integer and also that all finite fields
with pr elements are isomorphic. Combining this with the preceding theorem and a count of
the number of elements in FP

n if F has q = pr, one can prove the following result:

Complement to Theorem 22. The number of elements in a finite Desarguian projective

n-plane is equal to 1+ q+ · · · + qn where q = pr for some r, and two finite Desarguian n-spaces

with the same numbers of elements are isomorphic.�

A purely algebraic proof of this result is described in the exercises.

Note on the proofs of Theorem 22 and its complement . Since the statements of the result and
its complement only involve synthetic and geometric concepts, it is natural to ask if there is
a more direct proof that does not require such substantial algebraic input. However, no other
proofs are known.

EXERCISES

1. Fill in the omitted details of the calculations for ξ and η in Theorem 19.

3Joseph H. M. Wedderburn (1882–1948) is particularly known for some fundamental results on the
structure of certain important types of abstract algebraic systems. As noted in the article by K. H. Parshall
in the bibliography, there is a case for attributing the cited result jointly to Wedderburn and L. E. Dickson
(1874–1954).

4See the books by Herstein or Hungerford.
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2. Given three collinear points {A, B, C} and three other collinear points on a different lines,
how many different 1–1 ordered correspondences involving the two sets of points are possible?

3. In Exercise 2, assume all points belong to FP
2, where F is a field. Each correspondence

in Exercise 2 determines a line given by Pappus’ Theorem. Draw a figure illustrating the lines
arising from the two given unordered triples of collinear points. Formulate and prove a statement
about these lines.

4. Prove the Complement to Theorem 22. [Hint: If F has q elements, show that the number
of nonzero elements of F

n+1 is equal to the product of the number of 1-dimensional subspaces
times the number of nonzero elements in F. Both of the latter are easy to compute. Solve the
resulting equation to obtain the number of elements in FP

n. If two finite fields have different
numbers of elements, use the formula to show that their projective n-spaces also have different
number of elements because 1 + q + · · · + qn is a strictly increasing function of q.]
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4. Complete quadrilaterals and harmonic sets

In the exercises for the preceding section, we defined the concept of a harmonic quadruple of
collinear points. Since the concept plays an important role in this section, we shall repeat the
definition and mention a few alternative phrases that are frequently used.

Definition. Let A, B, C, D be a set of four collinear points in FP
n, where F is a skew-field

such that 1 + 1 6= 0 in F. We shall say that the ordered quadruple (A,B,C,D) is a harmonic

quadruple if XR(A, B, C, D) = − 1. Frequently we shall also say that the points A and B
separate the points C and D harmonically ,5 or that the ordered quadruple (A,B,C,D) forms a

harmonic set (sometimes, with an abuse of language, one also says that the four points form a
harmonic set, but Theorem 12 shows that one must be careful about the ordering of the points
whenever this wording is used).

Here is the definition of the other basic concept in this section.

Definition. Let A, B, C, D be a set of four coplanar points in a projective incidence space
such that no three are collinear. The complete quadrilateral determined by these four points,
written �ABCD, is the union of the six lines joining these four points:

�ABCD = AB ∪ BC ∪ CD ∪ DA ∪ AC ∪ BD

Each line is called a side, and the points

X ∈ AD ∩ BC
Y ∈ AB ∩ CD
Z ∈ AC ∩ BD

are called the diagonal points of the complete quadrilateral.
 
 

 

Figure V.4

Note that if the original four points form the vertices of an affine parallelogram in F
n where

n ≥ 2 and 1 + 1 6= 0 in F, then by Theorem II.26 the first two diagonal points are ideal points
but the third is not. On the other hand, if we have a field F such that 1 + 1 = 0 in F, then

5This does not depend upon the order of {A, B} or {C, D} because XR(A, B, C, D) = − 1 and Theorem
12 imply XR(B, A, C, D), XR(A, B, D, C) and XR(B, A, D, C) are all equal to −1. In fact, the definition is
symmetric in the two pairs of points because Theorem 12 implies XR(A, B, C, D) = XR(C, D, A, B).
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by Exercise II.4.8 then all three diagonal points are ideal points. The following result, whose
significance was observed by G. Fano,6 is a generalization of these simple observations about
parallelograms.

Theorem V.23. Let n ≥ 2, let F be a skew-field and let A, B, C, D be a set of four coplanar
points in FP

n such that no three are collinear.

(i) If 1 + 1 6= 0 in F, then the diagonal points of the complete quadrilateral �ABCD are
noncollinear.

(ii) If 1+1 = 0 in F, then the diagonal points of the complete quadrilateral �ABCD are collinear.

Proof. As usual start by choosing homogeneous coordinates α, β, γ, δ for A, B, C, D such
that δ = α+ β + γ. There exist scalars x, y, u, v such that homogeneous coordinates for X are
given by

β · x + γ · y = α · u + δ · v = α (u+ v) + β · v + γ · v .
Thus we must have x = y = v and u + v = 0, so that ξ = β + γ is a set of homogeneous
coordinates for X. Similarly, homogeneous coordinates for Y and Z are given by

η0 = α · x + β · y = γ · u + δ · v = α · v + β · v + γ (u+ v)

and

ζ0 = α · x′ + γ · y′ = β · u′ + δ · v′ = α · v′ + β (u′ + v′) + γ · v′

respectively, where u, v, u′, v′ are appropriate scalars. In these equations we have x = y = v
and x′ = y′ = v′, so that Y and Z have homogeneous coordinates η = α+ β and ζ = α + γ
respectively. The vectors ξ, η and ζ are linearly independent if 1 + 1 6= 0 in F and linearly
dependent if 1+ 1 = 0 in F, and therefore the points X, Y and Z are noncollinear if are linearly
independent if 1 + 1 6= 0 in F and collinear if 1 + 1 = 0 in F.�

HYPOTHESIS. Throughout the rest of this section we assume F is a commutative field; in most
but not all cases, we shall also assume that 1 + 1 6= 0 in F, but for each result or discussion we
shall state explicitly if we making such an assumption.

AFFINE INTERPRETATIONS OF HARMONIC SETS. Given that we have devoted so much
attention to affine geometry in these notes, it is natural to ask just what harmonic quadruples
look like in affine (and, of course, Euclidean) geometry. Here is one basic result which shows that
harmonic quadruples often correspond to familiar concepts in “ordinary” geometry. Additional
examples are given in the exercises.

Theorem V.24. Let F be a field in which 1 + 1 6= 0, let a, b, cbe three distinct points
in F

n, where n ≥ 1, and let P∞ be the ideal point on the projective line J(a)J(b). Then
(

J(a), J(b), J(c), J(P∞)
)

if and only if c is the midpoint of a and b.

6Gino Fano (1871–1952) is recognized for his contributions to the foundations of geometry and to algebraic
geometry; an important class of objects in the latter subject is named after him, the projective plane over Z2 is
frequently called the Fano plane, and the noncollinearity conclusion in Theorem 23 below is often called Fano’s

axiom.
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Proof. According to Theorem 17, if c = ta + (1 − t)b, then

(

J(a), J(b), J(c), J(P∞)
)

= − 1 − t

t
.

It is a straightforward algebraic exercise to verify that the right hand side is equal to −1 if and
only if t = 1

2 .�

In view of the preceding theorem, the next result may be interpreted as a generalization of the
familiar theorem, “The diagonals of a parallelogram bisect each other” (see Theorem II.26).

Theorem V.25. Let �ABCD be a complete quadrilateral in FP
n, and let X, Y ,Z be its

diagonal points as in the definition. Let W ∈ XY ∩BD and let V ∈ AC ∩XY . Then we have
XR(B,D,W,Z) = XR(X,Y,W, V ) = −1.

 
 

 

Figure V.5

Proof. Since X ∈ AB, Y ∈ AD, W ∈ AW and V ∈ AZ, clearly the two cross ratios agree.
Choose homogeneous coordinates so that δ = α+ β + γ (as usual α, β, γ, δ are homogeneous
coordinates for A, B, C, D respectively). We have already seen that homogeneous coordinates
ξ, η, ζ for X, Y, Z are given by ξ = α + β, η = β + γ, and ζ = α + γ. To find homogeneous
coordinates ω for W , note that ξ+η = α+2β+γ = β+δ. Thus ω = α+2β+γ−ξ+η = β+δ.
However, the formulas above imply that

ζ = α + γ = −β + δ

and therefore the desired cross ratio formula XR(B,D,W,Z) = −1 follows.�

REMARK. One can use the conclusion of the preceding result to give a purely synthetic definition
of harmonic quadruples for arbitrary projective planes. Details appear in many of the references
in the bibliography.

Definition. Let L be a line in a projective plane, and let Xi (where 1 ≤ i ≤ 6) be six
different points on L. The points Xi are said to form a quadrangular set if there is a complete
quadrilateral in the plane whose six sides intersect L in the points Xi.
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The next result was first shown by Desargues.

Theorem V.26. Let F be a field. Then any five points in a quadrangular set uniquely determine
the sixth.

We should note that the theorem is also true if F is a skew-field; the commutativity assumption
allows us to simplify the algebra in the proof.

Proof. Let L be the given line, and let �ABCD be a complete quadrilateral. Define
X1, X2, X3, X4, X5, X6 to be the intersections of L with AB, AC, BC, BD, AD, CD
respectively. It suffices to prove that X6 is uniquely determined by the points Xi for i ≤ 5. The
other five cases follow by interchanging the roles of A, B, C and D.

Choose homogeneous coordinates as usual so that δ = α+β+γ, and let λ be a set of homogeneous
coordinates for L. Define a = λ · α, b = λ · β, c = λ · γ, and d = λ · δ. By construction, we
have d = a + b + c. Using Theorem 5, we obtain homogeneous coordinates for the points Xi

as follows:
ξ1 = λ · (α× β) = (λ · β)α − (λ · α)β = bα − aβ

ξ2 = cα − aγ
ξ3 = cβ − bγ

ξ4 = (a+ c)β − b(α+ γ)
ξ5 = (b+ c)α − a(β + γ)
ξ6 = (a+ b)γ − c(α+ δ)

The preceding equations immediately imply that

ξ4 = ξ3 − ξ1 , ξ5 = ξ1 + ξ2 , ξ6 = ξ3 − ξ2

for the above choices of ξi. Furthermore, we have cξ1 − bξ2 = aξ3, and hence we may write the
equations above as follows:

ξ3 =
c

a
ξ1 − b

a
ξ2 , ξ4 =

c− a

a
ξ1 − b

a
ξ2 , ξ6 =

c

a
ξ1 − b+ a

a
ξ2 .

By definition, the above equations imply the following cross ratio properties:

XR(X1, X2, X5, X3) = − c

b

XR(X1, X2, X5, X4) = − c− a

b

XR(X1, X2, X5, X6) = − c

a+ b
If the first cross ratio is denoted by r and the second by s, then the third is equal to

r

s− r + 1
.

Thus the third cross ratio only depends upon the points Xi for i ≤ 5; in particular, if

{X1, X2, X3, X4, X5, Y }
is an arbitrary quadrangular set, then XR(X1, X2, X5, Y ) = XR(X1, X2, X5, X6). By Theorem
10, this implies that Y = X6.�
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Harmonic quadruples and von Staudt’s Theorem

The importance of harmonic quadruples in projective geometry is reflected by the following
remarkable result of K. von Staudt.7

Theorem V.27. Let ϕ : RP
1 → RP

1 be a 1− 1 onto map which preserves harmonic quadruples;
specifically, for all distinct collinear ordered quadruples (a,b, c,d) we have XR(a,b, c,d) = −1
if and only if XR (ϕ(a), ϕ(b), ϕ(c), ϕ(d) ) = −1. Then there is an invertible 2 × 2 matrix A
over R such that ϕ corresponds to S1(A) under the standard identification of RP

1 with S1(R
2,1),

and for all distinct collinear ordered quadruples (a,b, c,d) we have

XR(a,b, c,d) = XR (ϕ(a), ϕ(b), ϕ(c), ϕ(d) ) .

The second part of the conclusion follows from the first (see Exercise V.2.10). One very accessible
proof of the first conclusion of the theorem is the following online document:

http://www-m10.ma.tum.de/∼richter/Vorlesungen/ProjectiveGeometrie/Kapitel/Chap5.pdf

Note that von Staudt’s result is only stated for the case F = R. The corresponding result for
more general fields in which 1 + 1 6= 0 is discussed in Section VI.3 following Theorem VI.11 (see
the subheading Collineations of FP

1).

EXERCISES

1. In RP
2, show that the pair of points whose homogeneous coordinates satisfy

x2
1 − 4x1x2 − 3x2

2 = x3 = 0

separate harmonically the pair whose coordinates satisfy

x2
1 + 2x1x2 − x2

2 = x3 = 0 .

2. Prove that a complete quadrilateral is completely determined by one vertex and its diagonal
points.

3. State the plane dual theorem to the result established in Theorem 26.

4. In the Euclidean plane R
2, let a, b, c be noncollinear points, and let the lines bisecting

∠bac and its supplement meet bc in the points e and d of RP
2 respectively. Prove that

XR(b, c,d, e) = −1.

7Karl G. C. von Staudt (1798–1867) is best known for his contributions to projective geometry and his
work on a fundamentally important sequence in number theory called the Bernoulli numbers. In his work on
projective geometry, von Staudt’s viewpoint was highly synthetic, and his best known writings provide a purely
synthetic approach to the subject.
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Figure V.6

[Hint: Explain why it suffices to consider the triple of points a, b, c′ where c′ satisfies
c′ − a = t(c− a) for some t > 0 and |c′ − a| = |b− a|. Why is ae the perpendicular bisector of
b and c′, and why is bc′||ad? If e′ is the point where ae meets bc′ and j is the ideal point on
the line bc′, what are XR(b, c′, e′, j) and XR(b, c′, j, e′)?]8

5. Let F be a field in which 1 + 1 6= 0, let A 6= B in FP
n, where n ≥ 1, and let α and β be

homogeneous coordinates for A and B. For 1 = 1, 2, 3, 4 let Xi have homogeneous coordinates
xiα+ β, and assume that XR(X1, X2, X3, X4) = −1. Prove that

2

x4 − x3
=

1

x1 − x2
+

1

x1 − x4
.

6. Let F be as in the previous exercise, and let a, b, c, d ∈ F
2 be distinct points with

coordinates (0, 0), (b, 0), (c, 0) and (d, 0) respectively. Assume that XR(a,b, c,d) = −1. Prove
that

1

b
=

1

2
·
(

1

c
+

1

d

)

.

[Hint: Apply the preceding exercise, taking A and B to be the points U and V whose homo-
geneous coordinates are T(1 0 0) and T(0 0 1) respectively.]

REMARK. The right hand side of the equation above is called the harmonic

mean of c and d. The harmonic mean was well-known to ancient Greek math-
ematicians; the name itself9 was first used by Archytas of Tarentum (c. 428 B.
C. E. – c. 350 B. C. E.), but the concept had been known since the time of the
Pythagoreans.

7. Let F be the real numbers R, let a, b, c, d ∈ R
2 be distinct points with coordinates

(0, 0), (b, 0), (c, 0) and (d, 0) respectively, and assume that b, c and d are all positive. Prove that
XR(a,b, c,d) is positive if either b is less than or greater than both c and d, but XR(a,b, c,d) is
negative if either 0 < c < b < d or 0 < d < b < c. — In other words, the cross ratio is negative
if and only if the points 0 and b separate the points c and d in the sense that one of the latter
lies on the bounded open interval defined by 0 < x < b and the other lies on the unbounded
interval defined by x > b. More will be said about this concept of separation in the final section
of Chapter VI. [Hint: Use the same methods as in the preceding exercise to express the cross
ratio in terms of the coordinates of the four points.]

8See Moise, Prenowitz and Jordan, or the online site mentioned in the Preface for mathematically sound
treatments of the Euclidean geometry needed for this exercise.

9More correctly, the corresponding name in Classical Greek.



5. INTERPRETATION OF ADDITION AND MULTIPLICATION 107

5. Interpretation of addition and multiplication

Theorem IV.15 states that if an n-dimensional projective incidence space is isomorphic to FP
n

for some skew-field F, then the latter is unique up to algebraic isomorphism. In particular, if E

is a skew-field such that EP
n is isomorphic to FP

n, then E is algebraically isomorphic to F. The
reason for this is that addition and multiplication in the underlying skew-field have synthetic
interpretations in terms of certain geometric constructions which are motivated by ordinary
Euclidean geometry. If the two coordinate projective spaces as above are isomorphic, this means
that the algebraic operations in each are characterized by the same synthetic constructions, and
therefore the algebraic operations in the two underlying skew-fields must be isomorphic.

We shall take the preceding discussion further in Chapter VI, where we shall use the synthetic
interpretations of addition and multiplication to give an complete description of all geometrical
(incidence space) automorphisms of FP

n, where F is a field and n ≥ 2.

In order to simplify the algebra, we again restrict attention to commutative fields; however, all
the results in this section are equally valid for arbitrary skew-fields (and the result on automor-
phisms in Chapter VI also extend to the noncommutative case).

Euclidean addition of lengths. If L is a line in the Euclidean plane containing the points X1, A
and B such that the lengths of the segments [X1A] and [X1B] have lengths a and b respectively,
then the figure below indicates one method for finding a point C ∈ L such that the segment
[X1C] has length a+ b. 

 

 

L||L′, X1Y ||AZ, Y B||ZC with ideal points X0, E and D respectively.

Figure V.7

This example motivates the following abstract result:

Theorem V.28. Let F be a field, and let n ≥ 2. Let L be a line in FP
n containing a point X0,

let M be another line containing X0, let X1 be another point on L, and let U be a third point on
L = X0X1. Let A and B be points of L− {P0}, and let Y be a point in the plane of L and M
which does not line on either line. Let D be the (unique) intersection point of X1Y ∩M (note
that D 6= X1, for that would imply X1 and X0 both lie on L ∩M), and let

Z ∈ AD ∩X0Y , E ∈ Y B ∩M , C ∈ RE ∩ L .

Then C 6= X0 and XR(X0, X1, U, C) = XR(X0, X1, U,A) + XR(X0, X1, U,B).
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Figure V.8

Proof. Let V be the point whereX0Y meets DU . Then no three of the points {X0, X1, D, V }
are collinear. Choose homogeneous coordinates ξ0, ξ1, δ, ψ for X0, X1, D, V so that ψ = ξ0+
ξ2 + δ. Since Y ∈ DX1 ∩X0V it follows that η = ξ1 + δ, and since U ∈ X0Y ∩DV it follows
that η = ξ1 + δ.

By the definition of cross ratios, there are homogeneous coordinates α and β for A and B
respectively such that α = aξ0 + ξ1 and β = bξ0 + ξ1, where a = XR(X0, X1, U,A) and
b = XR(X0, X1, U,B). Since Z ∈ AD ∩X0Y , there exist x, y, u, v ∈ F such that homogeneous
coordinates for ζ are given by

xα + y · a = uξ0 + vη .

Using the preceding equations, this equation may be expanded to

xaξ0 + xξ1 + yδ = uξ0 + vξ1 + vδ .

Therefore we must have x = v and xa = u, so that ζ = aξ0 + ξ1 + δ. Similarly, D ∈ Y B ∩X0D
implies an equation of the form xη + yβ = uξ0 + δ, which is equivalent to

xξ1 + xδ + ybξ0 + yξ1 = uξ0 + vδ .

Therefore yb = u, x = v and x + y = 0 imply that homogeneous coordinates ε for E are given
by

ε = −bξ0 + δ .

Finally, C ∈ ZE ∩X0X1 implies an equation

xζ + yε = uξ0 + vξ1

which is equivalent to

xaξ0 + xξ1 + xδ − yδ − ybξ0 = uξ0 + vξ1 .

Thus x+ y = 0, xa− yb = u and x = v imply that homogeneous coordinates γ for C are given
by

γ = (a+ b)ξ0 + ξ1 .

In particular, it follows that C 6= X0 and XR(X0, X1, U, C) = a+ b.�
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Euclidean multiplication of lengths. Similarly, if L is a line in the Euclidean plane containing
the points X1, U , A and B such that the lengths of the segments [X1U ], [X1A], and [X1B] have
lengths 1, a and b respectively, then the figure below indicates one method for finding a point
K ∈ L such that the segment [X1K] has length a · b.

 
 

 

Y A||WK and Y U ||BW with ideal points H and G respectively, and X0 is the ideal point

of L.

Figure V.9

Here is the corresponding abstract result:

Theorem V.29. Let L, X0, X1, U, A, B, Y, D satisfy the conditions of the previous theorem,
and let

G ∈ Y U ∩ L , H ∈ Y A ∩ L , W ∈ X1D ∩ BG , K ∈ HW ∩ X0X1 .

Then K 6= X0 and XR(X0, X1, U, C) = XR(X0, X1, U,A) · XR(X0, X1, U,B).

 

 

Figure V.10

Proof. The problem here is to find homogeneous coordinates for G, H, W and K. Unless
otherwise specified, we shall use the same symbols for homogeneous coordinates representing
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L, X0, X1, A, B, Y, D as in the previous argument, and choose homogeneous coordinates for
U of the form ξ0 + ξ1. Since G ∈ Y U ∩X0D, there is an equation of the form

xη + y(ξ0 + ξ1) = uξ0 + vδ

which is equivalent to
x(ξ1 + δ) + y(ξ0 + ξ1) = uξ0 + vδ .

Therefore y = u, x + y = 0, and x = v imply that homogeneous coordinates χ for G are given
by

χ = ξ0 − δ .

Since H ∈ Y A ∩X0D, there is an equation of the form

xξ0 + yα = uξ0 + vδ

which is equivalent to
x(ξ0 + δ) = y(aξ0 + ξ1) = uξ0 + vδ .

Therefore ya = u, x+ y = 0, and x = v imply that homogeneous coordinates θ for H are given
by

θ = −aξ0 + δ .

Since W ∈ X1U ∩BG, there is an equation

xξ1 + yδ = uβ + vχ

which is equivalent to

xξ1 + yδ = u(bξ0 + ξ1) + v(ξ0 − δ) = (ub+ v)ξ0 + uξ1 − vδ .

Thus ub+ v = 0, −v = y, and u = x imply that homogeneous coordinates ω for W are given by

ω = ξ1 − δ .

Finally, K ∈ HW ∩X0X1 implies an equation of the form

xθ + yω = uξ0 + vξ1

which is equivalent to

uξ0 + vξ1 = x(−aξ0 + δ) + y(ξ − bδ) = −axξ0 + yξ1 − (ax+ by)δ .

Therefore u = −ax, v = y.and x+ by = 0 imply

u = −ax = −a(−by) = aby = abv

and hence homogeneous coordinates κ for K are given by κ = abξ0 + ξ1.�


