
CHAPTER I

SYNTHETIC AND ANALYTIC GEOMETRY

The purpose of this chapter is to review some basic facts from classical deductive geometry and coordinate

geometry from slightly more advanced viewpoints. The latter reflect the approaches taken in subsequent

chapters of these notes.

1. Axioms for Euclidean geometry

In his book, Foundations of Geometry , which was first published in 1900, D. Hilbert (1862–
1943) described a set of axioms for classical Euclidean geometry which met modern standards
for logical completeness and have been extremely influential ever since. In his formulation,
there are six primitive concepts: Points, lines, the notion of one point lying between two others
(betweenness), congruence of segments (same distances between the endpoints) and congruence
of angles (same angular measurement in degrees or radians). The axioms on these undefined
concepts are divided into five classes: Incidence, order, congruence, parallelism and continuity.
One notable feature of this classification is that only one class (congruence) requires the use of
all six primitive concepts. More precisely, the concepts needed for the axiom classes are given
as follows:

Axiom class Concepts required
Incidence Point, line, plane

Order Point, line, plane, betweenness
Congruence All six
Parallelism Point, line, plane
Continuity Point, line, plane, betweenness

Strictly speaking, Hilbert’s treatment of continuity involves congruence of segments, but the
continuity axiom may be formulated without this concept (see Forder, Foundations of Euclidean
Geometry , p. 297).

As indicated in the table above, congruence of segments and congruence of angles are needed
for only one of the axiom classes. Thus it is reasonable to divide the theorems of Euclidean
geometry into two classes — those which require the use of congruence and those which do
not. Of course, the former class is the more important one in classical Euclidean geometry (it is
widely noted that “geometry” literally means “earth measurement”). The main concern of these
notes is with theorems of the latter class. Although relatively few theorems of this type were
known to the classical Greek geometers and their proofs almost always involved congruence in
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2 I. SYNTHETIC AND ANALYTIC GEOMETRY

some way, there is an extensive collection of geometrical theorems having little or nothing to do
with congruence.1

The viewpoint employed to prove such results contrasts sharply with the usual viewpoint of
Euclidean geometry. In the latter subject one generally attempts to prove as much as possible
without recourse to the Euclidean Parallel Postulate, and this axiom is introduced only when
it is unavoidable. However, in dealing with noncongruence theorems, one assumes the parallel
postulate very early in the subject and attempts to prove as much as possible without explicitly
discussing congruence. Unfortunately, the statements and proofs of many such theorems are
often obscured by the need to treat numerous special cases. Projective geometry provides
a mathematical framework for stating and proving many such theorems in a simpler and more
unified fashion.

2. Coordinate interpretation of primitive concepts

As long as algebra and geometry proceeded along separate paths, their advance was

slow and their applications limited. But when these sciences joined company [through

analytic geometry], they drew from each other fresh vitality, and thenceforward marched

on at a rapid pace towards perfection. — J.-L. Lagrange (1736–1813)

Analytic geometry has yielded powerful methods for dealing with geometric problems. One
reason for this is that the primitive concepts of Euclidean geometry have precise numerical
formulations in Cartesian coordinates. A point in 2- or 3-dimensional coordinate space R

2 or R
3

becomes an ordered pair or triple of real numbers. The line joining the points a = (a1, a2, a3)
and b = (b1, b2, b3) becomes the set of all x expressible in vector form as

x = a + t · (b = a)

for some real number t (in R
2 the third coordinate is suppressed). A plane in R

3 is the set of
all x whose coordinates (x1, x2, x3) satisfy a nontrivial linear equation

a1x1 + a2x2 + a3x3 = b

for three real numbers a1, a2 a3 that are not all zero. The point x is between a and b if

x = a + t · (b− a)

where the real number t satisfies 0 < t < 1. Two segments are congruent if and only if the
distances between their endpoints (given by the usual Pythagorean formula) are equal, and two
angles ∠abc and ∠xyz are congruent if their cosines defined by the usual formula

cos ∠uvw =
(u− v) · (w − v)

|u− v| |w − v|
are equal. We note that the cosine function and its inverse can be defined mathematically
without any explicit appeal to geometry by means of the usual power series expansions (for
example, see Appendix F in the book by Ryan or pages 182–184 in the book by Rudin; both
references are listed in the bibliography).

1This discovery did not come from mathematical axiom manipulation for its own sake, but rather from the
geometrical theory of drawing in perspective begun by Renaissance artists and engineers. See the books by
Courant and Robbins, Newman, Kline and Coolidge for more information on the historical origins; some online
references are also given in the comments on the 2007 reprinting of these notes, which appear in the Preface.
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In the context described above, the axioms for Euclidean geometry reflect crucial algebraic
properties of the real number system and the analytic properties of the cosine function and its
inverse.

3. Lines and planes in R
2 and R

3

We have seen that the vector space structures on R
2 and R

3 yield convenient formulations for
some basic concepts of Euclidean geometry, and in this section we shall see that one can use
linear algebra to give a unified description of lines and planes.

Theorem I.1. Let P ⊂ R
3 be a plane, and let x ∈ P . Then

P (x) = { x ∈ R
3 | y = z − x, some z ∈ P }

is a 2-dimensional vector subspace of R
3. Furthermore, if v ∈ P is arbitrary, then P (v) = P (x).

Proof. Suppose P is defined by the equation a1x1 + a2x2 + a3x3 = b. We claim that

P (x) = { y ∈ R
3 | a1y1 + a2y2 + a3y3 = 0 } .

Since the coefficients ai are not all zero, the set P (x) is a 2-dimensional vector subspace of R
3

by Theorem A.10. To prove that P (x) equals the latter set, note that y ∈ P (x) implies

3∑

i=1

aiyi =

3∑

i=1

ai(zi − xi) =

3∑

i=1

aizi −
3∑

i=1

aixi = b− b = 0

and conversely
∑3

i=1 aiyi = 0 implies

0 =

3∑

i=1

aizi −
3∑

i=1

aixi =

3∑

i=1

aizi − b .

This shows that P (x) is the specified vector subspace of R
3.

To see that P (v) = P (x), notice that both are equal to { y ∈ R
3 | ∑3

i=1 aiyi = 0} by the
reasoning of the previous paragraph.�

Here is the corresponding result for lines.

Theorem I.2. Let n = 2 or 3, let L ⊂ R
n be a line, and let x ∈ L. Then

L(x) = { x ∈ R
n | y = z − x, some z ∈ L }

is a 1-dimensional vector subspace of R
n. Furthermore, if v ∈ L is arbitrary, then L(v) = L(x).
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Proof. Suppose P is definable as

{ z ∈ R
n | z = a − t(b− a), some t ∈ R }

where a 6= b. We claim that

L(x) = { z ∈ R
n | z = a − t(b− a), some t ∈ R } .

Since the latter is a 1-dimensional subspace of R
n, this claim implies the first part of the theorem.

The second part also follows because both L(v) and L(x) are then equal to this subspace.

Since x ∈ L, there is a real number s such that x = a+ s(b−a). If y ∈ L(x), write y = z−x,
where z ∈ L; since z ∈ L, there is a real number r such that z = a + r(b− a). If we subtract x
from z we obtain

y = z − x = (r − s)(b − a) .

Thus L(x) is contained in the given subspace. Conversely, if y = t(b− a), set z = x + y. Then

z = x + y = a + s(b − a) + t(b − a) = a + (s+ t)(b − a) .

Thus y ∈ L(x), showing that the given subspace is equal to L(x).�

The following definition will yield a unified reformulation of the theorems above:

Definition. Let V be a vector space over a field F, let S ⊂ V be a nonempty subset, and let
x ∈ V . The translate of S by x, written x + S, is the set

{ x ∈ S | y = x + s, some s ∈ S } .
The fundamental properties of translates are given in the following theorems; the proof of the
first is left as an exercise.

Theorem I.3. If z, x ∈ V and S ⊂ V is nonempty, then z + (x + S) = (z + x) + S.�

Theorem I.4. Let V be a vector space, let W be a vector subspace of V , let x ∈ V , and suppose
y ∈ x + W . Then x + W = y + W .

Proof. If z ∈ y + W , then z = y + u, where u ∈ W . But y = x + v, where v ∈ W , and
hence z = x + u + v, where u + v ∈W . Hence y +W ⊂ x +W .

On the other hand, if z ∈ x +W , then z ∈ x + w, where w ∈ W . Since y = x + v (as above),
it follows that

x + w = (x + v) + (w− v) = y + (w − v) ∈ y + W .

Consequently, we also have x +W ⊂ y +W .�

We shall now reformulate Theorem 1 and Theorem 2.

Theorem I.5. Every plane in R
3 is a translate of a 2-dimensional vector subspace, and every

line in R
2 or R

3 is a translate of a 1-dimensional vector subspace.

Proof. If A is a line or plane with x ∈ A and A(x) is defined as above, then it is easy to verify
that A = x + A(x). �

The converse to Theorem 5 is also true.
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Theorem I.6. Every translate of a 2-dimensional subspace of R
3 is a plane, and every translate

of a 1-dimensional vector subspace of R
2 or R

3 is a line.

Proof. CASE 1. Two-dimensional subspaces. Let b and c form a basis for W , and let
a = c × b (the cross product; see Section 5 of the Appendix). Then y ∈ W if and only if
a · y = 0 by Theorem A.10 and the cross product identities at the beginning of Section 5 of the
Appendix). We claim that z ∈ x ∈W if and only if a · z = a · x.

If z ∈ x +W , write z = x + w, where w ∈W . By distributivity of the dot product we have

a · z = a · (x + w) = (a · x) + (a ·w) = (a · x)

the latter following because a ·w = 0. Conversely, if a · z = (a · x), then

a · (w− x) = (a · z) − (a · x) = 0

and hence z− x ∈W . Since z = x + (z · x), clearly x ∈ z +W .

CASE 2. One-dimensional subspaces. Let w be a nonzero (hence spanning) vector in W , and
let y ∈ x + w. Then the line xy is equal to x +W .�

The theorems above readily yield an alternate characterization of lines in R
2 which is similar to

the characterization of planes in R
3.

Theorem I.7. A subset of R
2 is a line if ane only if there exist a1, a2, b ∈ R such that not both

a1 and a2 are zero and the point x = (x1, x2) lies in the subset if and only if a1x1 + a2x2 = b.

Proof. Suppose that the set S is defined by the equation above. Let W be the set of all
y = (y1, y2) such that a1yx1 + a2y2 = 0. By Theorem A.10 we know that W is a 1-dimensional
subspace of R

2. Thus if y ∈W , the argument proving Theorem 1 shows that S = y +W .

On the other hand, suppose that y + W is a line in R
2, where W is a 1-dimensional vector

subspace of R
2. Let w = (w1, w2) be a nonzero vector in W ; then J(w) = (w2,−w1) is also

nonzero, and z ∈ W if and only if it is perpendicular to J(w) by Theorem A.10. A modified
versionof the proof of Theorem 6, Case 1, shows that x ∈ y +W if and only if

J(w) · x = J(w) · y .

Thus it suffices to take (a1, a2) = J(w) and b = w · y. �

EXERCISES

1. Prove Theorem 3.

2. Verify the assertion S = x + S(x) made in Theorem 5.

3. Let V be a vector space, let W ⊂ V be a vector subspace, and suppose that u and v are
vectors in V . Prove that the sets u +W and v +W are either disjoint or equal.

4. Fill in the details of the proof of Theorem 7.



6 I. SYNTHETIC AND ANALYTIC GEOMETRY

5. Let P be the unique plane through the given triples of points in each of the following
cases. Find an equation defining P , and determine the 2-dimensional vector subspace of which
P is a translate.

(i) (1, 3, 2), (4, 1,−1), (2, 0, 0).

(ii) (1, 1, 0), (1, 0, 1), (0, 1, 1).

(iii) (2,−1, 3), (1, 1, 1), (3, 0, 4).

6. Suppose that we are given two distinct lines L, M in R
3 which meet at the point x0, and

write these lies as L = x0 + V and M = x0 +W , were V and W have bases given by {a } and
{b } respectively. Explain why there is a plane containint L and M [Hint: Why do a and b
span a 2-dimensional vector subspace?]

7. Let {a, b, c } be a basis for R
3, let V be the 1-dimensional vector subspace spanned by a,

and let W be the 1-dimensional vector space spanned by c−b. Prove that the lines V and b+W
have no points in common. [Hint: If such a point exists, then by the preceding exercise the
two lines are coplanar and lie in some plane z+X, where X is a 2-dimensional vector subspace.
Why do 0, a, b, c all lie in X, and why does this imply that z+X = X? Derive a contradiction
from this and the preceding two sentences.]



CHAPTER II

AFFINE GEOMETRY

In the previous chapter we indicated how several basic ideas from geometry have natural interpretations

in terms of vector spaces and linear algebra. This chapter continues the process of formulating basic

geometric concepts in such terms. It begins with standard material, moves on to consider topics not

covered in most courses on classical deductive geometry or analytic geometry, and it concludes by giving

an abstract formulation of the concept of geometrical incidence and closely related issues.

1. Synthetic affine geometry

In this section we shall consider some properties of Euclidean spaces which only depend upon
the axioms of incidence and parallelism

Definition. A three-dimensional incidence space is a triple (S,L,P) consisting of a nonempty
set S (whose elements are called points) and two nonempty disjoint families of proper subsets
of S denoted by L (lines) and P (planes) respectively, which satisfy the following conditions:

(I – 1) Every line (element of L) contains at least two points, and every plane (element of P)
contains at least three points.

(I – 2) If x and y are distinct points of S, then there is a unique line L such that x, y ∈ L.

Notation. The line given by (I –2) is called xy.

(I – 3) If x, y and z are distinct points of S and z 6∈ xy, then there is a unique plane P such that
x, y, z ∈ P .

(I – 4) If a plane P contains the distinct points x and y, then it also contains the line xy.

(I – 5) If P and Q are planes with a nonempty intersection, then P ∩ Q contains at least two
points.

Of course, the standard example in R
3 with lines and planes defined by the formulas in Chapter

I (we shall verify a more general statement later in this chapter). A list of other simple examples
appears in Prenowitz and Jordan, Basic Concepts of Geometry , pp. 141–146.

A few theorems in Euclidean geometry are true for every three-dimensional incidence space. The
proofs of these results provide an easy introduction to the synthetic techniques of these notes.
In the first six results, the triple (S,L,P) denotes a fixed three-dimensional incidence space.

Definition. A set B of points in S is collinear if there is some line L in S such that B ⊂ L,
and it is noncollinear otherwise. A set A of points in S is coplanar if there is some plane P
in S such that A ⊂ P , and it is noncoplanar otherwise. — Frequently we say that the points
x, y, · · · (etc.) are collinear or coplanar if the set with these elements is collinear or coplanar
respectively.

7
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Theorem II.1. Let x, y and z be distinct points of S such that z 6∈ xy. Then {x,y, z } is a
noncollinear set.

Proof. Suppose that L is a line containing the given three points. Since x and y are distinct,
by (I – 2) we know that L = xy. By our assumption on L it follows that z ∈ L; however, this
contradicts the hypothesis z 6∈ xy. Therefore there is no line containing x, y and z.�

Theorem II.2. There is a subset of four noncoplanar points in S.

Proof. Let P be a plane in S. We claim that P contains three noncollinear points. By (I – 1)
we know that P contains three distinct points a, b, c0. If these three points are noncollinear,
let c = c0. If they are collinear, then the line L containing them is a subset of P by (I – 4),
and since L and P are disjoint it follows that L must be a proper subset of P ; therefore there is
some point c ∈ P such that c 6∈ L, and by the preceding result the set {a, b, c } is noncollinear.
Thus in any case we know that P contains three noncollinear points.

Since P is a proper subset of S, there is a point d ∈ S such that d 6∈ P . We claim that
{a, b, c d } is noncoplanar. For if Q were a plane containing all four points, then a, b, c ∈ P
would imply P = Q, which contradicts our basic stipulation that d 6∈ P .�

Theorem II.3. The intersection of two distinct lines in S is either a point or the empty set.

Proof. Suppose that x 6= y but both belong to L ∩M for some lines L and M . By property
(I – 2) we must have L = M . Thus the intersection of distinct lines must consist of at most
one point.�

Theorem II.4. The intersection of two distinct planes in S is either a line or the empty set.

Proof. Suppose that P and Q are distinct planes in S with a nonempty intersection, and let
x ∈ P ∩Q. By (I – 5) there is a second point y ∈ P ∩Q. If L is the line xy, then L ⊂ P and
L ⊂ Q by two applications of (I – 4); hence we have L ⊂ P ∩Q. If there is a point z ∈ P ∩Q
with z 6∈ L, then the points x, y and z are noncollinear but contained in both of the planes
P and Q. By (I – 3) we must have P = Q. On the other hand, by assumption we know
P 6= Q, so we have reached a contradiction. The source of this contradiction is our hypothesis
that P ∩Q strictly contains L, and therefore it follows that P ∩Q = L.�

Theorem II.5. Let L and M be distinct lines, and assume that L ∩M 6= ∅. Then there is a
unique plane P such that L ⊂ P and M ⊂ P .

In less formal terms, given two intersecting lines there is a unique plane containing them.

Proof. Let x ∈ L ∩M be the unique common point (it is unique by Theorem 3). By (I – 2)
there exist points y ∈ L and z ∈ M , each of which is distinct from x. The points x, y and z
are noncollinear because L = xy and z ∈ M − {x} = M − L. By (I – 3) there is a unique
plane P such that x, y, z ∈ P , and by (I – 4) we know that L ⊂ P and M ⊂ P . This proves
the existence of a plane containing both L and M . To see this plane is unique, observe that
every plane Q containing both lines must contain x, y and z. By (I – 3) there is a unique such
plane, and therefore we must have Q = P .�
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Theorem II.6. Given a line L and a point z not on L, there is a unique plane P such that
L ⊂ P and z ∈ P .

Proof. Let x and y be distinct points of L, so that L = xy. We then know that the set
{x, y, z } is noncollinear, and hence there is a unique plane P containing them. By (I – 4)
we know that L ⊂ P and z ∈ P . Conversely, if Q is an arbitrary plane containing L and z,
then Q contains the three noncollinear points x, y and z, and hence by (I – 3) we know that
Q = P .�

Notation. We shall denote the unique plane in the preceding result by Lz.

Of course, all the theorems above are quite simple; their conclusions are probably very clear
intuitively, and their proofs are fairly straightforward arguments. One must add Hilbert’s Ax-
ioms of Order or the Euclidean Parallelism Axiom to obtain something more substantial. Since
our aim is to introduce the parallel postulate at an early point, we might as well do so now (a
thorough treatment of geometric theorems derivable from the Axioms of Incidence and Order
appears in Chapter 12 of Coxeter, Introduction to Geometry ; we shall discuss the Axioms of
Order in Section VI.6 of these notes).

Definition. Two lines in a three-dimensional incidence space S are parallel if they are disjoint
and coplanar (note particularly the second condition). If L and L′ are parallel, we shall write
L||L′ and denote their common plane by LL′.

Note that if L||M thenM ||L because the conditions in the definition of parallelism are symmetric
in the two lines.

Affine three-dimensional incidence spaces

Definition. A three-dimensional incidence space (S,L,P) is an affine three-space if the
following holds:

(EPP) For each line L in S and each point x 6∈ L there is a unique line L′ ⊂ Lx such that
x ∈ L and L∩L′ = ∅ (in other words, there is a unique line L′ which contains x and is parallel
to L).

This property is often called the Euclidean Parallelism Property , the Euclidean Parallel Pos-
tulate or Playfair’s Postulate, and its significance for the axiomatic foundations of geometry
was recognized by Proclus Diadochus (412–485); see the previously cited online reference for
background on these individuals.

A discussion of the origin of the term “affine” appears in Section II.5 of the following online site:

http://math.ucr.edu/∼res/math133/geometrynotes2b.pdf

Many nontrivial results in Euclidean geometry can be proved for arbitrary affine three-spaces.
We shall limit ourselves to two examples here and leave others as exercises. In Theorems 7 and
8 below, the triple (S,L,P) will denote an arbitrary affine three-dimensional incidence space.

Theorem II.7. Two lines which are parallel to a third line are parallel.
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Proof. There are two cases, depending on whether or not all three lines lie in a single plane;
to see that the three lines need not be coplanar in ordinary 3-dimensional coordinate geometry,
consider the three lines in R

3 given by the z-axis and the lines joining (1, 0, 0) and (0, 1, 0) to
(1, 0, 1) and (0, 1, 1) respectively.

THE COPLANAR CASE. Suppose that we have three distinct lines L,M,N in a plane P such
that L||N and M ||N ; we want to show that L||N .

If L is not parallel to N , then there is some point x ∈ L ∩N , and it follows that L and N are
distinct lines through x, each of which is parallel to M . However, this contradicts the Euclidean
Parallel Postulate. Therefore the lines L and N cannot have any points in common.

THE NONCOPLANAR CASE. Let α be the plane containing L and M , and let β be the plane
containing M and N . By the basic assumption in this case we have α 6= β. We need to show
that L ∩N = ∅ but L and N are coplanar.

The lines L and N are disjoint. Assume that the L and N have a common point that we shall
call x. Let γ be the plane determined by x and N (since L||M and x ∈ L, clearly x 6∈ M).
Since x ∈ L ⊂ α and M ⊂ α, Theorem 6 implies that α = γ. A similar argument shows that
β = γ and hence α = β; the latter contradicts our basic stipulation that α 6= β, and therefore it
follows that L and N cannot have any points in common.

 
Figure II.1

The lines L and N are coplanar. Let y ∈ N , and consider the plane Ly. Now L cannot be
contained in β because β 6= α = LM and M ⊂ β. By construction the planes Ly and β have
the point y in common, and therefore we know that Ly meets β in some line K. Since L and K
are coplanar, it will suffice to show that N = K. Since N and K both contain y and all three
lines M , N and K are contained in β, it will suffice to show that K||M .

Suppose the lines are not parallel, and let z ∈ K ∩ M . Since L||M it follows that z 6∈ L.
Furthermore, L ∪K ⊂ Ly implies that z ∈ Ly, and hence y = Lz. Since z ∈M and L and M
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are coplanar, it follows that M ⊂ Lz. Thus M is contained in Ly∩β, and since the latter is the
line K, this shows that M = K. On the other hand, by construction we know that M ∩N = ∅

and K ∩N 6= ∅, so that M and K are obviously distinct. This contradiction implies that K||M
must hold.�

The next result is an analog of the Parallel Postulate for parallel planes.

Theorem II.8. If P is a plane and x 6∈ P , then there is a unique plane Q such that x ∈ Q and
P ∩Q = ∅.

Proof. Let a, b, c ∈ P be the noncollinear points, and consider the lines A′, B′ through x
which are parallel to A = bc and B = ac. Let Q be the plane determined by A′ and B′, so that
x ∈ Q by hypothesis. We claim that P ∩Q = ∅.

Assume the contrary; since x ∈ QA and x 6∈ P , the intersection P ∩Q is a line we shall call L.

 

Figure II.2

Step 1. We shall show that L 6= A, B. The proof that L 6= A and L 6= B are similar, so we
shall only show L 6= A and leave the other part as an exercise. — If L = A, then L ⊂ Q. Since
A′ is the unique line in Q which is parallel to A, there must be a point u ∈ B ′ ∩ A. Consider
the plane B ′c. Since c ∈ A, it follows that A ⊂ B ′c. Hence B ′c is a plane containing A and B.
The only plane which satisfies these conditions is P , and hence B ′ ⊂ P . But x ∈ B ′ and x 6∈ P ,
so we have a contradiction. Therefore we must have L 6= A.

Step 2. We claim that either A′ ∩ L and A ∩ L are both nonempty or else B ′ ∩ L and B ∩ L
are both nonempty. — We shall only show that if either A′ ∩ L is A ∩ L is empty then both
B′ ∩ L and B ∩ L are both nonempty, since the other case follows by reversing the roles of A
and B. Since L and A both lie in the plane P , the condition A ∩ L = ∅ implies A||L. Since
A||A′, by Theorem 7 and Theorem 1 we know that A′||L. Since B 6= A is a line through the
point c ∈ A, either B = L or B ∩L 6= ∅ holds by the Parallel Postulate (in fact, B 6= L by Step
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1). Likewise, B and B ′ are lines through x in the plane Q and L ⊂ Q, so that the A′||L and the
Parallel Postulate imply B ′ ∩ L 6= ∅.

Step 3. There are two cases, depending upon whether A′ ∩ L and A ∩ L are both nonempty
or B′ ∩ L and B ∩ L are both nonempty. Only the latter will be considered, since the former
follows by a similar argument. Let y ∈ B ∩ L and z ∈ B ′ ∩ L; since B ∩B ′ = ∅, if follows that
y 6= z and hence L = yz. Let β be the plane BB ′. Then L ⊂ β since z, y ∈ β. Since L 6= B,
the plane β is the one determined by L and B. But L, B ⊂ P by assumption, and hence β = P .
In other words, B ′ is contained in P . But x ∈ B ′ and x 6∈ P , a contradiction which shows that
the line L cannot exist.�

Following standard terminology, we shall say that the plane Q is parallel to P or that it is the
plane parallel to P which passes through x.

Corresponding definitions for incidence planes and affine planes exist, and analogs of Theorems 1,
2, 3 and 7 hold for these objects. However, incidence planes have far fewer interesting properties
than their three-dimensional counterparts, and affine planes are best studied using the methods
of projective geometry that are developed in later sections of these notes.

EXERCISES

Definition. A line and a plane in a three-dimensional incidence space are parallel if they are
disjoint.

Exercises 1–4 are to be proved for arbitrary 3-dimensional incidence spaces.

1. Suppose that each of two intersecting lines is parallel to a third line. Prove that the three
lines are coplanar.

2. Suppose that the lines L and L′ are coplanar, and there is a line M not in this plane such
that L||M and L′||M . Prove that L||L′.

3. Let P and Q be planes, and assume that each line in P is parallel to a line in Q. Prove
that P is parallel to Q.

4. Suppose that the line L is contained in the plane P , and suppose that L||L′. Prove that
L′||P or L ⊂ P .

In exercises 5–6, assume the incidence space is affine.

5. Let P and Q be parallel planes, and let L be any line which contains a point of Q and is
parallel to a line in P . Prove that L is contained in Q. [Hint: Let M be the line in P , and let
x ∈ L ∩Q. Prove that L = Mx ∩Q.]

6. Two lines are said to be skew lines if they are not coplanar. Suppose that L and M are
skew lines. Prove that there is a unique plane P such that L ⊂ P and P is parallel to M . [Hint:
Let x ∈ L, let M ′ be a line parallel to M which contains x, and consider the plane LM ′.]
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2. Affine subspaces of vector spaces

Let F be a field, and let V be a vector space over F (in fact, everything in this section goes through
if we take F to be a skew-field as described in Section 1 of Appendix A). Motivated by Section
I.3, we define lines and planes in V to be translates of 1- and 2-dimensional vector subspaces of
V . Denote these families of lines and planes by LV and PV respectively. If dimV ≥ 3 we shall
prove that (V,LV ,PV ) satisfies all the conditions in the definition of an affine incidence 3-space
except perhaps for the incidence axiom I – 5, and we shall show that the latter also holds if
dimV = 3.

Theorem II.9. If V , etc. are as above and dimV ≥ 3, then LV and PV are nonempty disjoint
families of proper subsets of V .

Proof. Since dimV ≥ 3 there are 1- and 2-dimensional vector subspaces of V , and therefore
the families LV and PV are both nonempty. If we have Y ∈ LV ∩ PV , then we may write

Y = x + W1 = y + W2

where dimWi = i. By Theorem I.4 we know that y ∈ x+W1 implies the identity x+W1 = y+W1,
and therefore Theorem I.3 implies

W2 = −y + (y + W1) = −y + (y + W2) = W2 .

Since dimW1 6= dimW2 this is impossible. Therefore the families LV and PV must be disjoint.
To see that an element of either family is a proper subset of V , suppose to the contrary that
x +W = V , where dimW = 1 or 2. Since dimW < 3 ≤ dimV , it follows that W is a proper
subset of V ; let v ∈ V be such that v 6∈ W . By our hypothesis, we must have x + v ∈ x +W ,
and thus we also have

v = −x + (x + v) ∈ −x + (x + W ) = W

which contradicts our fundamental condition on x. The contradiction arises from our assumption
that x+W = V , and therefore this must be false; therefore the sets in LV and PV are all proper
subsets of V .�

Theorem II.10. Every line in V contains at least two points, and every plane contains at least
three points.

Proof. Let x+W be a line or plane in V , and let {w1 } or {w1, w2 } be a basis forW depending
upon whether dimW equals 1 or 2. Take the subsets {v, v + w1, } or {v, v + w1, v + w2 } in
these respective cases.�

Theorem II.11. Given two distinct points in V , there is a unique line containing them.

Proof. Let x 6= y be distinct points in V , and let L0 be the 1-dimensional vector subspace
spanned by the nonzero vector y − x. Then L = x + L0 is a line containing x and y. Suppose
now that M is an arbitrary line containing x and y. Write M = z+W where dimW = 1. Then
Theorem I.4 and x ∈M = z +W imply that M = x +W . Furthermore, y ∈M = x +W then
implies that y− x ∈W , and since the latter vector spans L0 it follows that L0 ⊂W . However,
dimL0 = dimW , and therefore L0 = W (see Theorem A.8). Thus the line M = z +W must be
equal to x + L0 = L.�
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Theorem II.12. Given three points in V that are not collinear, there is a unique plane containing
them.

Proof. Let x, y and z be the noncollinear points. If y− x and z− x were linearly dependent,
then there would be a 1-dimensional vector subspace W containing them and hence the original
three points would all lie on the line x+W . Therefore we know that y−x and z−x are linearly
independent, and thus the vector subspace W they span is 2-dimensional. If P = x+W , then
it follows immediately that P is a plane containing x, y and z. To prove uniqueness, suppose that
v +U is an arbitrary plane containing all three points. As before, we must have v +U = x+U
since bfx ∈ v + U , and since we also have y, z ∈ v + U = x + U it also follows as in earlier
arguments that y−x and z−x lie in U . Once again, since the two vectors in question span the
subspace W , it follows that W ⊂ U , and since the dimensions are equal it follows that W = U .
Thus we have v + U = x +W , and hence there is only one plane containing the original three
points.�

Theorem II.13. If P is a plane in V and x, y ∈ P , then the unique line containing x and y is
a subset of P .

Proof. As before we may write P = x + W , where W is a 2-dimensional subspace; we also
know that the unique line joining x and y has the form L = x + L0, where L0 is spanned by
y−x. The condition y ∈ P implies that y−x ∈W , and since W is a vector subspace it follows
that L0 ⊂ W . But this immediately implies that L = x + L0 ⊂ x +W = P , which is what we
wanted to prove.�

Theorem II.14. (Euclidean Parallelism Property) Let L be a line in V , and let y 6∈ L. Then
there is a unique line M such that (i) y ∈M , (ii) L ∩M = ∅, (iii) L and M are coplanar.

Proof. Write L = x+L0 where dimL0 = 1, and consider the line M = y+L0. Then M clearly
satisfies the first condition. To see it satisfies the second condition, suppose to the contrary that
there is some common point z ∈ L ∩M . Then the identities

z ∈ L = x + L0 z ∈ M = y + L0

imply that L = x + L0 = z + L0 = y + L0 = M , which contradicts the basic conditions that
y ∈ M but y 6∈ L. Therefore L ∩ M = ∅. Finally, to see that M also satisfies the third
condition, let W be the subspace spanned by L0 and y−x; the latter vector does not belong to
L0 because y 6∈ L, and therefore W must be a 2-dimensional vector subspace of V . If we now
take P = x +W , it follows immediately that L ⊂ P and also

M = y + L0 x + (y − x) + L0 ⊂ x + W = P

so that L and M are coplanar. Therefore M satisfies all of the three conditions in the theorem.

To complete the proof, we need to show that there is only one line which satisfies all three
conditions in the theorem. — In any case, we know there is only one plane which contains L
and y, and hence it must be the plane P = x+W from the preceding paragraph. Thus if N is a
line satisfying all three conditions in the theorem, it must be contained in P . Suppose then that
N = y+L1 is an arbitrary line in P with the required properties. Since y+L1 ∈ x+W = y+W ,
it follows that L1 ⊂ W . Therefore, if 0 6= u ∈ L1 we can write u = s(y − x) + tv, where v is a
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nonzero vector in L0 and s, t ∈ F. The assumption that L∩N = ∅ implies there are no scalars
p and q such that

x + pv = y + qu

holds. Substituting for u in this equation, we may rewrite it in the form

pv = (y − x) + qu = (1 + sq)(y − x) + qtv

and hence by equating coefficients we cannot find p and q such that p = qt and 1+ sq = 0. Now
if s 6= 0, then these two equations have the solution q = −s−1 and p = −s−1t. Therefore, if
there is no solution then we must have s = 0. The latter in turn implies that u = tv and hence
L1 = L0, so that N = y + L1 = y + L0 = M .�

Theorem II.15. If dimV = 3 and two planes in V have a nonempty intersection, then their
intersection contains a line.

Proof. Let P and Q be planes, and let x ∈ P ∩Q. Write P = x +W and Q = x + U , where
dimW = dimU = 2. Then

P ∩Q = (x +W ) ∩ (x + U)

clearly contains x + (W ∩ U), so it suffices to show that the vector subspace W ∩ U contains a
1-dimensional vector subspace. However, we have

dim(W ∩ U) = dimW − dimU − dim(W + U) = 4 − dim(W + U)

and since dim(W +U) ≤ dimV = 3, the displayed equation immediately implies dim(W ∩U) ≥
4 − 3 = 1. Hence the intersection of the vector subspaces is nonzero, and as such it contains a
nonzero vector z as well as the 1-dimensional subspace spanned by z.�

The preceding results imply that Theorems 7 and 8 from Section 1, and the conclusions of
Exercises 5 and 6 from that section, are all true for the models (V,LV ,PV ) described above
provided dimV = 3. In some contexts it is useful to interpret the conclusions of the theorems
or exercises in temrs of the vector space structure on V . For example, in Theorem 8 if P is the
plane x+W , then the parallel plane Q will be y+W . Another example is discussed in Exercise
5 below.

Generalizing incidence to higher dimensions

The characterization of lines and planes as translates of 1- and 2-dimensional subspaces suggests
a simple method for generalizing incidence structures to dimensions greater than three.1 Namely,
define a k-plane in a vector space V to be a translate of a k-dimensional vector subspace.

The following quotation from Winger, Introduction to Projective Geometry ,2 may help the
reader understand the reasons for formulating the concepts of affine geometry in arbitrary di-
mensions.3

1The explicit mathematical study of higher dimensional geometry began around the middle of the 19th century,
particularly in the work of L. Schläfli (1814–1895). Many ideas in his work were independently discovered by
others with the development of linear algebra during the second half of that century.

2See page 15 of that book.
3Actually, spaces of higher dimensions play an important role in theoretical physics. Einstein’s use of a

four-dimensional space-time is of course well-known, but the use of spaces with dimensions ≥ 4 in physics was at
least implicit during much of the 19th century. In particular, 6-dimensional configuration spaces were implicit in
work on celestial mechanics, and spaces of assorted other dimensions were widely used in classical dynamics.
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The timid may console themselves with the reflection that the geometry of four and higher

dimensions is, if not a necessity, certainly a convenience of language — a translation of

the algebra — and let the philosophers ponder the metaphysical questions involved in

the idea of a point set of higher dimensions.

We shall conclude this section with a characterization of k-planes in V , where V is finite-
dimensional and 1 + 1 6= 0 in F; in particular, the result below applies to the V = R

n. An
extension of this characterization to all fields except the field Z2 with two elements is given in
Exercise 1 below.

Definition. Let V be a vector space over the field F, and let P ⊂ V . We shall say P is a flat
subset of V if for each pair of distinct points x, y ∈ F the line xy is contained in F.

Theorem II.16. Let V be a finite-dimensional vector space over a field F in which 1 + 1 6= 0.
Then a nonempty set P ⊂ V is a flat subset if and only if it is a k-plane for some integer k
satisfying 0 ≤ k ≤ dimV .

Definition. A subset S ⊂ V is said to be an affine subspace if can be written as x+W , where
x ∈ V and W is a vector subspace of V . With this terminology, we can restate the theorem to
say that if 1 + 1 6= 0 in F, then a nonempty subset of V is an affine subspace if and only if it is
a flat subset.

Proof. We split the proof into the “if” and “only if” parts.

Every k-plane is a flat subset. Suppose that W is a k-dimensional vector subspace and x ∈ V .
Let y, z ∈ x + V . Then we may write y = x + u and z = x + v for some distinct vectors
u, v ∈ W . A typical point on the line yz has the form y + t(z − y) for some scalar t, and we
have

y + t(z− y) = x + u + t(v − u) ∈ x + W

which shows that x + W is a flat subset. Note that this implication does not require any
assumption about the nontriviality of 1 + 1.

Every flat subset has the form x + W for some vector subspace W . If we know this, we
also know that k = dimW is less than or equal to dimV . — Suppose that x ∈ P , and let
W = (−x) + P ; we need to show that W is a vector subspace. To see that W is closed under
scalar multiplication, note first that w ∈ W implies x + w ∈ P , so that flatness implies every
point on the line x(x +w) is contained in P . For each scalar t we know that x + tw lies on this
line, and thus each point of this type lies in P = x +W . If we subtract x we see that tw ∈ W
and hence W is closed under scalar multiplication.

To see that W is closed under vector addition, suppose that w1 and w2 are in W . By the
previous paragraph we know that 2w1 and 2w2 also belong to W , so that u1 = x + 2w1 and
u2 = x+2w2 are in P . Our hypothesis on F implies the latter contains an element 1

2 = (1+1)−1,
so by flatness we also know that

1
2 (u1 + u2 ) + 1

2 (u2 − u1 ) ∈ P .

If we now expand and simplify the displayed vector, we see that it is equal to v + w1 + w2.
Therefore it follows that w1 + w2 ∈W , and hence W is a vector subspace of V .�

Not surprisingly, if S is an affine subspace of the finite-dimensional vector space V , then we define
its dimension by dimS = dimW , where W is a vector subspace of V such that S = x + W .
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— This number is well defined because S = x + W = y + U implies y ∈ x + W , so that
y +W = x +W = y + U and hence

W = −y + (y +W ) = −y + (y + U) = U .�

Hyperplanes

One particularly important family of affine subspaces in a finite-dimensional vector space V is
the set of all hyperplanes in V . We shall conclude this section by defining such objects and
proving a crucial fact about them.

Definition. Let n be a positive integer, and let V be an n-dimensional vector space over the
field F. A subsetH ⊂ V is called a hyperplane in V ifH is the translate of an (n−1)-dimensional
subspace. — In particular, if dimV = 3 then a hyperplane is just a plane and if dimV = 2 then
a hyperplane is just a line.

One reason for the importance of hyperplanes is that if k < dimV then every k-plane is an
intersection of finitely many hyperplanes (see Exercise II.5.4).

We have seen that planes in R
3 and lines in R

2 are describable as the sets of all points x which
satisfy a nontrivial first degree equation in the coordinates (x1, x2, x3) or (x1, x2) respectively
(see Theorems I.1, I.5 and I.7). The final result of this section is a generalization of these facts
to arbitrary hyperplanes in F

n, where F is an arbitrary field.

Theorem II.17. In the notation of the previous paragraph, let H be a nonempty subset of F
n.

Then H is a hyperplane if and only if there exist scalars c1, · · · , cn which are not all zero such
that H is the set of all x ∈ F

n whose coordinates x1, · · · , xn satisfy the equation
n∑

i=0

ci xi = b

for some b ∈ F.

Proof. Suppose that H is defined by the equation above. If we choose j such that aj 6= 0 and

let ej be the unit vector whose jth coordinate is 1 and whose other coordinates are zero, then we

have −a−1
j bej ∈ H, and hence the latter is nonempty. Set W equal to (−z) +H, where z ∈ H

is fixed. As in Chapter I, it follows that y ∈W if and only if its coordinates y1, · · · , yn satisfy
the equation

∑
i aiyi = 0. Since the coefficients ai are not all zero, it follows from Theorem

A.10 that W is an (n − 1)-dimensional vector subspace of F
n, and therefore H = x + W is a

hyperplane.�

Conversely, suppose H is a hyperplane and write x + W for a suitable vector x and (n − 1)-
dimensional subspace W . Let {w1, · · · ,wn−1 } be a basis for W , and write these vectors out
in coordinate form:

wi =
(
wi,1, · · · , wi,n

)

If B is the matrix whose rows are the vectors wi, then the rank of B is equal to (n − 1) by
construction. Therefore, by Theorem A.10 the set Y of all y = ( y1, · · · , yn ) which solve the
system ∑

j

yjwi,j = 0
(
1 ≤ i ≤ (n− 1)

)

is a 1-dimensional vector subspace of F
n. Let a be a nonzero (hence spanning) vector in Y .
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We claim that z ∈ W if and only if
∑

i aizi = 0. By construction, W is contained in the
subspace S of vectors whose coordinates satisfy this equation. By Theorem A.10 we know
that dimS = (n − 1), which is equal to dimW by our choice of the latter; therefore Theorem
A.9 implies that W = S, and it follows immediately that H is the set of all z ∈ F

n whose
coordinates z1, · · · , zn satisfy the nontrivial linear equation

∑
i ai zi =

∑
i ai xi (where

x = (x1, · · · , xn ) ∈W is the fixed vector chosen as in the preceding paragraph).�

EXERCISES

1. Prove that Theorem 16 remains true for every field except Z2. Give an example of a flat
subspace of (Z2)

3 which is not a k-plane for some k.

2. Let F be a field. Prove that the lines in F
2 defined by the equations ax+ by + cz = 0 and

a′x+ by+ c′z = 0 (compare Theorem I.7 and Theorem 17 above) are parallel or identical if and
only if ab′ − ba′ = 0.

3. Find the equation of the hyperplane in R
3 passing through the (noncoplanar) points

(1, 0, 1, 0), (0, 1, 0, 1), (0, 1, 1, 0), and (1, 0, 0, 1).

4. Suppose that x1 +W1 and x2 +W2 are k1- and k2-planes in a vector space V such that
x1+W1 ∩ x2+W2 6= ∅. Let z be a common point of these subsets. Prove that their intersection
is equal to z +W1 ∩ z +W2, and generalize this result to arbitrary finite intersections.

5. Let V be a 3-dimensional vector space over F, and suppose we are given the configuration
of Exercise II.1.6 (L and M are skew lines, and P is a plane containing L but parallel to M).
Suppose that the skew lines are given by x +W and y + U . Prove that the plane P is equal to
x + (U +W ) [Hint: Show that the latter contains L and is disjoint from M .].

6. Suppose that dimV = n and H = x +W is a hyperplane in V . Suppose that y ∈ V but
y 6∈ H. Prove that H ′ = y +W is the unique hyperplane K such that y ∈ K and H ∩K = ∅.
[Hints: If z ∈ H ∩H ′ then N = x +W = z + W = y + W = H ′. If K = y + U where U is
some (n − 1)-dimensional vector subspace different from W , explain why dimW ∩ U = n − 2.
Choose a basis A of (n − 2) vectors for this intersection, and let u0 ∈ U, w0 ∈ W such that
u0, w0 6∈ U ∩W . Show that A ∪ {u0, w0} is a basis for V , write y − x in terms of this basis,
and use this equation to find a vector which lies in H ∩K = (x +W ) ∩ (y + U).]
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3. Affine bases

We shall need analogs of linear independence and spanning that apply to arbitrary k-planes and
not just k-dimensional vector subspaces. The starting points are two basic observations.

Theorem II.18. Suppose that S is a k-plane in a vector space V over the field F. Given
a1, · · · ,ar ∈ S, let t1, · · · , tr ∈ S be such that

∑
j tj = 1. Then

∑
j tjaj ∈ S.

Proof. Write S = x + W , where x ∈ S and W is a k-dimensional vector subspace, and for
each i write ai = x + wi where wi ∈ F. Then

∑

j

tjaj =
∑

j

tj(x + wj) =
∑

j

tjx +
∑

j

tjwj = x +
∑

j

tjwj

where the latter holds because
∑

j tj = 1. Since W is a vector subspace, we know that∑
j tjwj ∈W , and therefore it follows that

∑
j tjaj ∈W .�

Theorem II.19. If V is as above and T ⊂ V is an arbitrary subset, define the affine hull of T
by

H(T ) = { x ∈ V | x =
∑

j

tjwj, where vi ∈ T for all t and
∑

j

tj = 1 }

(note that the sum is finite, but T need not be finite). Then H(T ) is an affine subspace of V .

Sometimes we shall also say that H(T ) is the affine span of T , and we shall say that T affinely
spans an affine subspace S if S = H(T ).

Proof. Suppose that x, y ∈ H(T ), and write

x =
∑

i

siui =
∑

j

tjvj

where ui ∈ T and vj ∈ T for all i and j, and the coefficients satisfy
∑

i si =
∑

j tj = 1. We

need to show that x + c(y − x) ∈ H(T ). But

x + c(y − x) =
∑

i

siui + c ·


∑

j

tjvj −
∑

i

siui


 =

(1− c) ·
∑

i

siui + c ·
∑

j

tjvj =
∑

i

si (1− c)ui +
∑

j

tj cvj .

We have no a priori way of knowing whether any of the vectors ui are equal to any of the
vectors vj , but in any case we can combine like terms to rewrite the last expression as

∑
q rqwq,

where the vectors wq run through all the vectors ui and vj , and the coefficients rq are given
accordingly; by construction, we then have
∑

q

rq =
∑

i

si (1− c) +
∑

j

tj c = (1− c) ·
∑

i

si + c ·
∑

j

tj = (1− c) · 1 + c · 1 = 1

and therefore it follows that the point x + c(y − x) belongs to H(T ).�
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Thus a linear combination of points in an affine subspace will also lie in the subspace provided
the coefficients add up to 1, and by Theorem 19 this is the most general type of linear combination
one can expect to lie in S.

Definition. A vector v is an affine combination of the vectors x0, · · · ,xn if we have
x =

∑
j tjxj, where

∑
j tj = 1. Thus the affine hull H(T ) of a set T is the set of all (finite)

affine combinations of vectors in T .

AFFINE VERSUS LINEAR COMBINATIONS. If a vector y is a linear combination of the vectors
v1 < · · · , vn, then it is automatically an affine combination of 0, v1, · · · , vn, for if y =

∑
i tixi

then

y =


 1 −

∑

j

tj


 · 0 +

∑

i

tixi .

Definition. Let V be a vector space over a field F. and let X ⊂ V be the set {x0, · · · ,xn}. We
shall say that X is affinely dependent if one element of X is expressible as an affine combination
of the others and affinely independent otherwise. By convention, one point subsets are affinely
independent.

The next result gives the fundamental relationship between affine dependence and linear de-
pendence (and, by taking negations, it also gives the fundamental relationship between affine
independence and linear independence).

Theorem II.20. In the setting above, the finite set X = {x0, · · · ,xn} ⊂ V is affinely dependent
if and only if the set X ′ = {x1−x0, · · · ,xn−x0} is linearly dependent. Likewise, the finite set
X = {x0, · · · ,xn} ⊂ V is affinely independent if and only if the set X ′ = {x1−x0, · · · ,xn−x0}
is linearly independent.

Proof. Since affine dependence and affine independence are the negations of each other
and similarly for linear dependence and linear independence, it will suffice to prove the first
conclusion in the theorem.

Proof that X is affinely dependent if X ′ is linearly dependent. By linear dependence there is
some k > 0 such that

xk − x0 =
∑

i6=0,k

ci (xi − x0)

and therefore we also have

xk = x0 +
∑

i6=0,k

ci xi −
∑

i6=0,k

ci x0 =


 1 −

∑

i6=0,k

ci


 x0 +

∑

i6=0,k

ci xi .

Therefore xk is also an affine combination of all the xj such that j 6= k.

Proof that X ′ is linearly dependent if X is affinely dependent. By assumption there is some k
such that

xk =
∑

j 6=k

cj xj
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where
∑

j 6=k cj = 1. Therefore we also have

xk − x0 =


∑

j 6=k

cj xj


 − x0 =

∑

j 6=k

cj(xj − x0) .

Note that we can take the summation on the right hand side to run over all j such that j 6= k, 0
because x0 − x0 = 0.

There are now two cases depending on whether k > 0 or k = 0. In the first case, we have
obtained an expression for xk − x0 in terms of the other vectors in X ′, and therefore X ′ is
linearly dependent. Suppose now that k = 0, so that the preceding equation reduces to

0 =
∑

j>0

cj(xj − x0) .

Since
∑

j>0 cj = 1 it follows that cm 6= 0 for some m > 0, and this now implies

xm − x0 =
∑

j 6=m,0

−cj
cm

(xj − x0)

which shows that X ′ is linearly dependent.�

One important characterization of linear independence for a set Y is that an arbitrary vector
has at most one expression as a linear combination of the vectors in Y . There is a similar
characterization of affine independence.

Theorem II.21. A (finite) set X of vectors in a given vector space V is affinely independent if
and only if every vector in V has at most one expression as an affine combination of vectors
in X.

Proof. Suppose X is affinely independent and that

y =
∑

j

tjvj =
∑

j

sjvj

where vj runs through the vectors in V and
∑

j

tj =
∑

j

sj = 1 .

Then we have 
∑

j

tjvj


 − v0 =


∑

j

sjvj


 − v0

which in turn implies

∑

j

tjvj


 −


∑

j

tj


v0 =


∑

j

sjvj


 −


∑

j

sj


v0

so that we have ∑

j>0

tj(vj − v0) =
∑

j

sj(vj − v0) .
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Since the vectors vj−v0 (where j > 0) is linearly independent, it follows that tj = sj for all j > 0.
Once we know this, we can also conclude that t0 = 1−∑j>0 tj is equal to 1−∑j>0 sj = s0,
and therefore all the corresponding coefficients in the two expressions are equal.�

Conversely, suppose X satisfies the uniqueness condition for affine combinations, and suppose
that we have ∑

j>0

cj(vj − v0) = 0 .

We then need to show that cj = 0 for all j. But the equation above implies that

v0 =


∑

j>0

cj(vj − v0)


 + v0

and if we simplify the right hand side we obtain the equation

v0 =


1 −

∑

j>0

cj


 v0 +

∑

j>0

cjvj .

The coefficients on both sides add up to 1, so by the uniqueness assumption we must have cj = 0
for all j > 0 ; but this implies that the vectors vj −v0 (where j > 0) are linearly independent.�

Definition. If S is an affine subspace of the finite-dimensional vector space V and T ⊂ S is a
finite subset, then T is said to be an affine basis for S if T is affinely independent and affinely
spans T .

There is a fundamental analog of the preceding results which relates affine bases of affine sub-
spaces and vector space bases of vector subspaces.

Theorem II.22. Let V be a finite-dimensional vector space, let S be an affine subspace, and
suppose that S = z + W for a suitable vector z and vector subspace V . Then the finite set
X = {x0, · · · ,xm} ⊂ S is an affine basis for S if and only if the set X ′ = {x1−x0, · · · ,xn−x0}
is linear basis for W .

Proof. First of all, since x0 ∈ S we may write S = x0 +W and forget about the vector z.

Suppose that X = {x0, · · · ,xm} is an affine basis for S, and let y ∈W . Since x0+y ∈ x0+W =
S, there exist s0, · · · , sm ∈ F such that

∑
i si = 1 and x0 + y =

∑
i sixi. Subtracting x0 from

both sides and using the equation
∑

i si = 1, we see that

y =
∑

i>0

si(xi − x0)

and hence X ′ spans W . Since X ′ is linearly independent by Theorem 20, it follows that X ′ is a
basis for W .�

Conversely, suppose that X ′ = {x1−x0, · · · ,xn−x0} is linear basis for W . Since X ′ is linearly
independent, by Theorem 20 we also know that X is affinely independent. To see that X affinely
spans S, let u ∈ S, and write u = x0 + v, where v ∈ S. Since X ′ spans W we know that

u = x0 +
∑

i>0

si(xi − x0)
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for appropriate scalars si, and if we set s0 = 1−∑i>0 si, then we may rewrite the right hand side
of the preceding equation as

∑
i≥0 sixi, where by construction we have

∑
i≥0 si = 1. Therefore

X affinely spans S, and it follows that X must be an affine basis for X,�

Definition. Suppose that we are in the setting of the theorem and X is an affine basis for S,
so that each y ∈ S can be uniquely written as an affine combination

∑
i tixi, where

∑
i ti = 1.

Then the unique coefficients ti are called the barycentric coordinates of y with respect to X.
The physical motivation for this name is simple: Suppose that F is the real numbers and we
place weights wi > 0 at the vectors vi in S such that the total weight is w units. Let ti = wi/w
be the normalized weight at vi; then

∑
i tixi is the center of gravity for the resulting physical

system (a version of this is true even if one allows some of the coefficients ti to be negative).

In analogy for linear bases of vector subspaces, the number of elements in an affine basis for an
affine subspace S depends on S itself. However, as illustrated by the final result of this section,
there is a crucial difference in the formula relating the dimension of S to the number of elements
in an affine basis.

Theorem II.23. If V is a finite-dimensional vector space and S is an affine subspace, then S
has an affine basis. Furthermore, if we write S = y+W for suitable y and W , then every affine
basis for S has exactly dimW + 1 elements.

Proof. If X = {x0, · · · ,xm} ⊂ S is an affine basis for S = y + W = x0 + W , then
X ′ = {x1 − x0, · · · ,xn − x0} is a linear basis for W by Theorem 22, and conversely. Therefore
the existence of an affine basis for S follows from Theorem 22 and the existence of a linear
basis for W . Furthermore, since every linear basis for W contains exactly dimW elements, by
Theorem 22 we know that every affine basis for S contains exactly dimW + 1 elements.�

EXERCISES

In the exercises below, assume that all vectors lie in a fixed finite-dimensional
vector space V over a field F.

1. Let a, b, c ∈ V (a vector space over some field) be noncollinear and for i = 1, 2, 3 let
xi = tia + uib + vic, where ti + ui + vi = 1. Prove that the points x1, x2, x3 are collinear if
and only if ∣∣∣∣∣∣

t1 u1 v1
t2 u2 v2
t3 u3 v3

∣∣∣∣∣∣
= 0

where the left hand side is a 3× 3 determinant.

2. Prove the Theorem of Menelaus:4 Let a, b, c ∈ V (a vector space over some field) be
noncollinear, and suppose we have points p ∈ bc, q ∈ ac, and r ∈ ab. Write these three vectors
as

p = b + t(c− b) = tc + (1− t)b
q = a + u(c− a) = uc + (1− u)a
r = a + v(b− a) = vb + (1− v)a

4Menelaus of Alexandria (c. 70 A. D–c. 130 A. D.) worked in geometry and astronomy, and he is
particularly given credit for making numerous contributions to spherical geometry and trigonometry.
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where t, u, v are appropriate scalars. Then p, q and r are collinear if and only if

t

1− t ·
u

1− u ·
v

1− v = −1 .

3. Prove the Theorem of Ceva:5 In the setting of the preceding exercise, the lines ap, bq
and cr are concurrent (there is a point which lies on all three lines) if and only if

t

1− t ·
u

1− u ·
v

1− v = +1 .

4. Let a, b, c ∈ V (as above) be noncollinear, and suppose we have points y ∈ ba and
x ∈ bc which are distinct from a, b, c and satisfy these three vectors as

x = b + t(a− b) = ta + (1− t)b
y = b + u(c − a) = uc + (1− u)b

where t, u are appropriate scalars (neither of which is 0 or 1). Prove that the lines ay and cx
have a point in common if and only if ut 6= 1. [Hint: Explain why the lines have no points in
common if and only if y − a and x − c are linearly dependent. Write both of these vectors as
linear combinations of a−b and c−b, and show that if z and w are linearly independent, then
pz + qw and rz + sw are linearly dependent if and only if sp = rq. Finally, compare the two
conclusions in the preceding sentence.]

5. Let V be a finite-dimensional vector space over the field F, let W ⊂ V be a vector subspace,
suppose that dimW = k, and let X = {x1, · · · ,xm} be a finite subset of W . Prove that W is a
basis for W in the sense of linear algebra if and only if X∪{0} is an affine basis for W = 0+W
if the latter is viewed as a k-plane.

6. In the setting of Exercises 2 and 3, suppose that the lines ap, bq and cr are concurrent
with t = 1

2 and v = 1−u. Express the common point g of these three lines as a linear combination
of a and d with the coefficients expressed in terms of u.

5Giovanni Ceva (1647–1734) is known for the result bearing his name, his rediscovery of Menelaus’ Theorem,
and his work on hydraulics.
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4. Affine bases

In this section we shall generalize certain classical theorems of Euclidean geometry to affine
planes over fields in which 1 + 1 6= 0. Similar material is often presented in many mathematics
courses as proofs of geometric theorems using vectors. In fact, the uses of vectors in geometry go
far beyond yielding alternate proofs for some basic results in classical Greek geometry; they are
often the method of choice for studying all sorts of geometrical problems ranging from purely
theoretical questions to carrying out the computations needed to create high quality computer
graphics. We shall illustrate the uses of vector algebra in geometry further by proving some
nonclassical theorems that figure significantly in the next two chapters.

Let F be a field in which 1 + 1 6= 0, and set 1
2 equal to (1 + 1)−1. Given a vector space V over

F and two distinct vectors a, b ∈ V , the midpoint of a and b is the vector 1
2(a + b).

Theorem II.24. Let V and F as above, and let a, b, c be noncollinear points in V . Then the
lines joining x = midpoint(a,b) and y = midpoint(a, c) is parallel to bc.

In ordinary Euclidean geometry one also knows that the length of the segment joining x to y
is half the length of the segment joining b to c (the length of the segment is just the distance
between the endpoints). We do not include such a conclusion because our setting does not
include a method for defining distances (in particular, an arbitrary field has no a priori notion
of distance).

 

Figure II.3

Proof, Let W be the subspace spanned by c − b; it follows that bc = b +W . On the other
hand, the line joining the midpoints is given by 1

2(b + c) +U , where U is the subspace spanned
by

1
2 (a + c) − 1

2 (a + b) = 1
2(c− b) .

Since there is a vector w such that W is spanned by w and U is spanned by 1
2w, clearly W = U ,

and therefore the line joining the midpoints is parallel to bc by the construction employed to
prove Theorem 14.�

Definition. Let V and F as above, and let a, b, c be noncollinear points in V . The affine
triangle ∆abc is given by ab ∪ ac ∪ bc, and the medians of this affine triangle are the lines
joining a to midpoint(b, c), b to midpoint(a, c), and c to midpoint(a,b).

Theorem II.25. Let V , F, a, b, c be as above. Then the medians of the affine triangle ∆abc
are concurrent (pass through a single point) if 1+1+1 6= 0 and parallel in pairs if 1+1+1 = 0.
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Figure II.4

Proof. First case. Suppose that 1 + 1 + 1 6= 0, and let 1
3 = (1 + 1 + 1)−1. Assume that the

point x lies on the line joining a to 1
2(b + c) and also on the line joining b to 1

2 (a + c). Then
there exist s, t ∈ F such that

sa + (1− s) 1
2(b + c) = x = tb + (1− t) 1

2(a + c) .

Since a, b and c are affinely independent in both expansions for x the coefficients of a, b and
c add up to 1, we may equate the barycentric coordinates in the two expansions for x. In
particular, this implies s = 1

2(1− t) and t = 1
2(1 − s). If we solve these equations, we find that

s = t = 1
3 , so that

x = 1
3(a + b + c) .

A routine computation shows that this point does lie on both lines.

In a similar fashion one can show that the lines joining a to 1
2 (b + c) and c to 1

2 (a + b) also

meet at the point 1
3(a + b + c), and therefore we conclude that the latter point lies on all three

medians.�

Second case. Suppose that 1 + 1 + 1 = 0; in this case it follows that 1
2 = −1. The line joining

a to 1
2(b + c) is then given by a +W , where W is spanned by

1
2(b + c) − a = − (a + b + c) .

Similarly computations show that the other two medians are given by b +W and c + W . To
complete the proof, we need to show that no two of these lines are equal.

However, if, say, we had b +W = c +W then it would follow that c, 1
2(a + b), b, and 1

2 (a + c)
would all be collinear. Since the line joining the second and third of these points contains a by
construction, it would then follow that a ∈ bc, contradicting our noncollinearity assumption.
Thus b +W 6= c +W ; similar considerations show that a +W 6= c +W and a +W 6= b +W ,
and therefore the three medians are distinct (and by the preceding paragraph are each parallel
to each other).�

HYPOTHESIS FOR THE REMAINDER OF THIS SECTION. For the rest of this section, the
vector space V is assumed to be two-dimensional.

Definition. Let a, b, c, d ∈ V be four ordered points, no three of which are collinear. If
ab||cd and ad||bc, we shall call the union

ab ∪ bc ∪ cd ∪ da

the affine parallelogram determined by a, b, c and d, and we shall write it �abcd. The
diagonals of the parallelogram are the lines ac and bd.



4. AFFINE BASES 27

Theorem II.26. Suppose that a, b, c, d ∈ V as above are the vertices of an affine parallelogram.
Then the diagonals ad and bc have a point in common and this point is equal to midpoint(a,d)
and midpoint(b, c).

If we take F = R and V = R
2, this result reduces to the classical geometric result that the

diagonals of a parallelogram bisect each other.

Proof. The classical parallelogram law for vector addition states that

(c− a) = (d− a) + (b− a)

(see the accompanying figure).

 
Figure II.5

In fact, it is trivial to verify that d + b − a lies on both the parallel to ad through b and the
parallel to ab and c, and hence this point must be c. Therefore the common point of ac and
bd satisfies the equations

tb + (1− t)d = sc + (1− s)a = s(d + b− a) + (1− s)a = sd + sb + (1− 2s)a .

Since a, b and d are affinely independent, if we equate barycentric coordinates we find that
s = t = 1

2 . But this implies that the two lines meet at a point which is equal to both midpoint(a.c)
and midpoint(b,d).�

We include the following two theorems because they help motivate the construction of projective
space in Chapter III.

Theorem II.27. Let v, a, b, c be four points, no three of which are collinear (but coplanar).
Let a′ ∈ va, b′ ∈ vb, and c′ ∈ vc be distinct from a, b, c such that ab||a′b′ and ac||a′c′. Then
bc||b′c′.

 

Figure II.6
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Proof. Since a′ ∈ va and b′ ∈ vb, we may write a′ − v + s(a− v) and b′ − v + t(b − v) for
suitable scalars s and t. Since ab||a′b′, it follows that b′−a′ = k(b− a) for some scalar k. But

k(b−v) − k(a− v) = k(b− a) = b′− a′ = (b′−v) − (a′− v) = t(b−v) − s(a− v) .

Since b − v and a − v are linearly independent, it follows that s = t = k. For similar reasons
we also have c′ − v = t(c− v).

To prove bc||bc′, it suffices to note that

c′ − b′ = (c′ − v) − (b′ − v) = t(c− v) − t(b− v) = t(c− b)

by the preceding paragraph, and hence bc||b′c′ follows.�

Here is a similar result with slightly different hypotheses:

Theorem II.28. Let v, a, b, c be four points, no three of which are collinear (but coplanar).
Let a′ ∈ va, b′ ∈ vb, and c′ ∈ vc be distinct from a, b, c such that ab||a′b′ but ac and a′c′

meet in some point x. Then bc and b′c′ also meet in some point y and we have xy||ab.

 

Figure II.7

Proof. As in Theorem 27 we may write a′ − v′ = t(a− v) and b′ − v′ = t(b − v); however,
c′ − v′ = s(c − v) for some s 6= t (otherwise ac||a′c′). Expressions for the point x may be
computed starting with the equation

x = ra + (1− r)c = qa′ + (1− q)c′

which immediately implies that

x−v = r(a−v) + (1−r)(c−v) = q(a′−v) + (1−q)(c′−v) = qt(a−v) + (1−q)s(c−v) .

Since a− v and c− v are linearly independent, we find that r = qt and 1− r = (1− q)s. These
equations determine r completely as a function of s and t:

r(s, t) =
t(1− s)
s− t

A similar calculation shows that any common point to bc and b′c′ has the form

r(s, t)b +
(
1− r(s, t)

)
c

and a reversal of the previous argument shows that this point is common to bc and b ′c′.
Therefore

y − x = r(s, t) (b− a)

which shows that xy||ab.�
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There is a third result of a similar type; its proof is left as an exercise (we should note that all
these results will be improved upon later).

Theorem II.29. In the notation of the theorems, assume that all three pairs of lines {ab, a ′b′ },
{ac, a′c′ }, and {bc, b′c′ } all have points of intersection. Then the three intersection points
are collinear.

EXERCISES

Definition. Let a, b, c, d ∈ V be four ordered points, no three of which are collinear (with
no parallelism assumptions). The union

ab ∪ bc ∪ cd ∪ da

is called the affine quadrilateral determined by = a, b, c and d, and as before we shall write it
�abcd. The diagonals of the quadrilateral are the lines ac and bd. The sides of the quadrilateral
are four lines whose union forms the affine quadrilateral;

In the exercises below, assume that all vectors lie in the vector space F
2, where

F is a field in which 1 + 1 6= 0.

1. Prove that an affine quadrilateral is a parallelogram if and only if its diagonals bisect each
other (in the sense of Theorem 26).

2. Suppose we are given an affine parallelogram. Prove that a line joining the midpoints of
a pair of parallel sides contains the intersection point of the diagonals.

 

Figure II.8

3. In the figure above, assume we are given a parallelogram �abcd such that

e = midpoint(a,b)

and 1 + 1 + 1 6= 0 in F. Prove that

g = 1
3c + 2

3a = 1
3c + 2

3e .

Definition. An affine quadrilateral �abcd is said to be an affine trapezoid if either ab||cd
or bc||ad but not both (and generally the points are labeled so that the first is true). The two
parallel sides are called the bases.
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4. Suppose we are given affine trapezoid �abcd as above with bases ab and cd. Prove that
the line joining midpoint(a,d) and midpoint(b, c) is parallel to the bases.

5. In the same setting as in the previous exercise, prove that the line joining midpoint(a, c)
and midpoint(b,d) is parallel to the bases.

6. In the same setting as in the previous exercises, prove that the line joining midpoint(a,d)
and midpoint(b, c) is equal to the line joining midpoint(a, c) and midpoint(b,d).

7. Prove Theorem 29. [Hint: This can be done using the Theorem of Menelaus.]

In the next exercise, assume that all vectors lie in a vector space V over a field
F in which 1 + 1 = 0; the most basic example is the field Z2 which has exactly
two elements.

8. Suppose that 1 + 1 = 0 in F, and aside from this we are in the setting of Theorem
II.26: Specifically, let a, b, c, d ∈ V be four noncollinear points such that the first three are
noncollinear the four points are the vertices an affine parallelogram. Prove that in this case the
diagonal lines ad and bc are parallel. Is the converse also true? Give reasons for your answer.
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5. Generalized geometrical incidence

Our geometry is an abstract geometry. The reasoning could be followed by a disembodied

spirit who had no understanding of a physical point, just as a man blind from birth could

understand the Electromagnetic Theory of Light. — H. G. Forder (1889–1981)

Although we have not yet defined a geometrical incidence space of arbitrary dimension, it is clear
that the families of k-planes in F

n should define an n-dimensional incidence space structure on
R

n. Given this, it is not difficult to guess what the correct definitions should be.

Definition. A geometrical incidence space is a triple (S,Π, d) consisting of a set S, a family
of subsets Π the geometrical subspaces), and a function d from Π to the positive integers (the
dimension) satisfying the following conditions:

(G-1) : If x0 · · · , xn are distinct points of S such that no P ∈ Π with d(P ) < n contains
them all, then there is a unique P ∈ Π such that d(P ) = n and xi ∈ P for all i.

Notation. We denote the geometrical subspace P in the preceding statement by x0 · · · xn. The
condition on the xi is expressed in the statement that the set {x0 · · · , xn } is (geometrically)
independent.

(G-2) : If P ∈ Π and {x0 · · · , xm } is a set of geometrically independent points in P ,
then the geometrical subspace x0 · · · xm is contained in P .

(G-3) : If P ∈ Π, then P contains at least d(P ) + 1 points.

If P ∈ Π and d(P ) = k, then we shall say that P is a k-plane; the set of all k-planes is denoted
by Πk. By convention, a 1-plane is often called a line and a 2-plane is often simply called a
plane. Note that the defining conditions do not give any a priori information about whether or
not there are any k-planes in S (however, if S contains at least two elements, one can prove that
Π1 must be nonempty).

For most of the examples that we shall consider, the whole space S is one of the geometrical
subspaces. If this is the case and dimS = n, then we shall say that the system (S,Π, d) is an
abstract n-dimensional geometrical incidence space. When n = 2 we shall also say the system
is an abstract incidence plane.

If we are given a geometrical incidence space and the explicit data Π and d are either clear
from the context or are not really needed in a discussion, we shall often simply say that “S is a
geometrical incidence space.”

EXAMPLE 1. A three-dimensional incidence space (as defined above) is a geometrical incidence
space if we take Π1 = L, Π2 = P, and Π3 = {S}.

EXAMPLE 2. The minimal geometrical indicidence structures: Let Π be the family of all finite
subsets of a set S with at least two elements, and for each such subset Q let d(Q) = #(Q)− 1,
where #(Q) is the number of elements in Q. The figure below illustrates the special case in
which S has three elements {a, b, c} and d(S) = 2.
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Figure II.9

EXAMPLE 3. An important class of examples mentioned at the beginning of this section: Let
V be an n-dimensional vector space over a field F (where n > 0), and define the affine incidence
structure on V such that for each positive integer k the set Πk is the set of k-planes considered
in earlier sections of this chapter. The properties (G-1)–(G-3) may be verified as follows:

Proof of (G-1). If a set of vectors {v0, · · · ,vk } is not geometrically independent, then the
set is also affinely dependent, for if {v0, · · · ,vk } is contained in a q-plane y + W for some
q < k, then we have y +W = x0 +W and the k vectors v1 − v0, · · · ,vk − v0 ∈ W must be
linearly dependent because dimW < k. Hence the original vectors are affinely dependent as
claimed. Taking negations, we see that if {v0, · · · ,vk } is geometrically independent, then the
set is also affinely independent.

Let Q be the affine span of v0, · · · ,vk; then Q = bfx0 + W where W is the linear span of
v1 − v0, · · · ,vk − v0, and W is k-dimensional because these vectors are linearly independent.
Therefore Q is a k-plane containing the vectors vi. Conversely, if Q′ is an arbitrary k-plane
containing the vectors vi, then we may write Q′ = v0 + U where U is a vector subspace of
dimension k which contains the difference vectors v1 − v0, · · · ,vk − v0; it follows that U
contains the k-dimensional vector subspace W described above, and since dimU = dimW it
follows that W = U , so that = Q = Q′.�

Proof of (G-2). Since a k-plane is closed under forming affine combinations, if v0, · · · ,vm is
contained in P then the affine span of v0, · · · ,vm is also contained in P .�

Proof of (G-3). Given a k-plane P , express it as v0 +W , where W is a k-dimensional vector
subspace, and let v0, · · · ,vk be an affine basis for W . Then the set

{v0, v0 + v1, · · · ,vk + v1 }
forms an affine basis for P by Theorem 22. Hence P contains at least (k + 1) points.�

We have not yet described an analog of the axiom implying that two planes in 3-space intersect
in a line if they are not disjoint. Before formulating an appropriate generalization of this,6 we
derive some consequences of (G-1)–(G-3):

Theorem II.30. Let x0, · · · , xm be geometrically independent points in a geometrical inci-
dence space S, and suppose y 6∈ {x0, · · · , xm}. Then the set {x0, · · · , xm, y} is geometrically
independent.

6The definition follows the proof of Theorem 35 below.
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Proof. If the points are not geometrically independent then for some k ≤ m there is a k-plane
P which contains all of them. Since {x0, · · · , xm} is geometrically independent, it follows that
d(P ) ≥ m, so that d(P ) = m and P = x0 · · · xm. But this contradicts the hypothesis.�

Theorem II.31. Let P be a k-plane in the geometrical incidence space S. Then there is a set
of independent points {x0, · · · , xm } such that P = x0 · · · xm.

Proof. Let F be the family of finite independent subsets of P . No element in this family
contains more than m + 1 elements, for every subset with more points will be geometrically
dependent. Let k be the largest integer for which some element of F has k+ 1 elements; by the
preceding sentence, we must have k ≤ m. By (G-1) we have k = m.

Assume the contrary, so that k < m. Let {x0, · · · , xk } ∈ F . Then the k-plane Q = x0 · · · xk

is contained in F , and k < m implies that Q is a proper subset of P . Let xk+1 be a point
which is in P but not in Q. Then Theorem 30 implies that {x0, · · · , xk, y} is geometrically
independent. But this contradicts the defining condition for k, which is that there are no
geometrically independent subsets of P with k+ 2 elements. Therefore we must have k = m.�

STANDARD CONVENTIONS. Given a geometrical incidence space (S,Π, d), we shall often say
that the empty set is a geometrical subspace whose dimension is −1, each one point subset of S is
a geometrical subspace whose dimension is zero, and subsets of both these types are geometrically
independent. — Properties G-1) – (G-3) of a geometrical incidence space remain valid if we
extend the definition of geometrical subspace using these conventions, and the latter allow us to
state the next result more simply.

Theorem II.32. Every finite subset X of the geometrical incidence space S contains a maximal
independent subset Y = {y0, · · · , yk}. Furthermore, X is contained in y0 · · · yk, and the latter
is the unique minimal geometrical subspace containing X.

Proof. Let Y ⊂ X be an independent subset with a maximum number of elements, let Q be
the k-plane determined by Y , and let w ∈ X be an arbitrary element not in Y . Since y 6∈ Q
would imply that Y ∪{y} would be independent, it follows that y ∈ Q. Thus X ⊂ Q as claimed.
Suppose that Q′ is another geometrical subspace containing X; then Q ⊂ Q′ by (G-2), and
hence every geometrical subspace that contains X must also contain Q.�

When we work with vector subspaces of a vector space, it is often useful to deal with their
intersections and sums. The next two results show that similar constructions hold for geometrical
subspaces:

Theorem II.33. The intersection of a nonempty family of geometrical subspaces of S is a
geometrical subspace (with the conventions for 0- and (−1)-dimensional subspaces preceding
Theorem 32).

Proof. Clearly it suffices to consider the case where the intersection contains at least two
points. Let {Pα | α ∈ A} be the family of subspaces, and let F be the set of all finite independent
subsets of ∩α Pα. As before, the number of elements in a member of F is at most d(Pα) + 1
for all α. Thus there is a member of F with a maximal number of elements; call this subset
{x0, · · · , xk}. By (G-2) we know that x0 · · · xk is contained in each Pα and hence in ∩α Pα. If
it were a proper subset and y is a point in the intersection which does not belong to x0 · · · xk,
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then {x0 · · · xk, y} would be an independent subset of the intersection with more elements than
{x0, · · · , xk}. This contradiction means that x0 · · · xk = ∩α Pα.�

Although the union of two geometrical subspaces P and Q is usually not a geometrical subspace,
the next result shows that there is always a minimal geometrical subspace containing both P
and Q; this is analogous to the concept of sum for vector subspaces of a vector space.

Theorem II.34. If P and Q are geometrical subspaces of the geometrical incidence space S,
then there is a unique minimal geometrical subspace containing them both.

Proof. By Theorem 31 we may write P = x0 · · · xm and Q = y0 · · · yn. Let A =
{x0, · · · , xm, y0, · · · , yn}, and let T be the smallest subspace containing A (which exists by
Theorem 32). Then P,Q ⊂ T , and if T ′ is an arbitrary geometrical subspace containing P and
Q then it also contains A, so that T ′ must contain T as well.�

The subspace given in the preceding result is called the join of P and Q, and it is denoted by
P ? Q. Motivation for this definition is given by Exercise III.4.17 and Appendix B.

Theorem II.35. If P and Q are geometrical subspaces of S, then d(P ? Q) ≤ d(P ) + d(Q) −
d(P ∩Q).

It is easy to find examples of geometrical subspaces in R
n (even for n = 2 or 3) in which one

has strict inequality. For example, suppose that L and M are parallel lines in R
3; then the

left hand side is equal to 2 but the right hand side is equal to 3 (recall that the empty set is
(−1)-dimensional). Similarly, one has strict inequality in R

3 if P is a plane and Q is a line or
plane which is parallel to P .

Proof. Let P ∩Q = x0 · · · xm. By a generalization of the argument proving Theorem 31 (see
Exercise 1 below), there exist independent points y0, · · · , yp ∈ P and z0, · · · , zq ∈ Q such that

P = x0 · · · xmy0 · · · yp , Q = x0 · · · xmz0 · · · zq .
Let X = {x0, · · · , xm, y1, · · · , yp, z1, · · · , zq, and let T be the unique smallest geometrical
subspace containing X. It is immediate that P ⊂ T and Q ⊂ T , so that P ? Q ⊂ T . On the
other hand, if a geometric subspace B contains P ? Q, then it automatically contains X and
hence automatically contains T . Therefore we have T = P ? Q.

It follows from Theorem 32 that d(P ? Q) = dimS ≤ #(X) + 1, and therefore we have

dim(P ? Q) ≤ m + 1 + p + q = (m+ p+ 1) + (m+ q + 1) − (m+ 1) =

d(P ) + d(Q) − d(P ∩Q)

which is what we wanted to prove.�

The following definition contains an abstract version of the 3-dimensional incidence assumption
about two planes intersecting in a line or not at all.

Definition. A geometrical incidence space is regular if the following holds:

(G-4) : If P and Q are geometrical subspaces such that P ∩Q 6= ∅, then

d(P ? Q) = d(P ) + d(Q) − d(P ∩Q) .
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EXAMPLE 1. Ordinary 3-dimensional incidences as defined in Section II.1 are regular. The
only nontrivial case of the formula arises when P and Q are distinct planes, so that P ?Q = S.

EXAMPLE 2. The minimal examples at the beginning of this section are regular. The formula
in this case follows immediately from the standard inclusion-exclusion identity for counting the
elements in finite sets:

#(P ∪Q) = #(P ) + #(PQ) − #(P ∩Q) .

EXAMPLE 3. Here is an example which is not regular. Let F be a field, take the standard
notions of lines and planes for F

4, and let d(F4) = 3. Then the planes V and W spanned by
{e1, e2} and {e3, e4} have exactly one point in common.

Logical indpendence of the regularity condition. The preceding example shows that it is not
possible to prove the assumption in the definition of regularity from the defining assumptions
for a geometrical incidence space. — For if it were possible to prove the regularity condition
from the definition, then it would NOT be possible to construct an example of a geometrical
incidence space that did not satisfy the regularity condition.

The preceding remark illustrates the mathematical approach to concluding that one statement
(say Q) cannot be derived as a logical consequence of other statements (say P1, · · · ,Pn): It is
only necessary to produce and example of an object which satisfies P1, · · · ,Pn but does not
satisfy Q.

EXAMPLE 4. The incidence structure associated to a finite-dimensional vector space V over a
field F is regular. To prove this, we first establish the following.

Theorem II.36. Let P and Q be affine subspaces of the incidence space structure associated to
a vector space V , and assume P ∩Q 6= ∅. Write P = x +W and Q = x +U where x ∈ P ∩Q.
Then P ? Q = x + (W1 +W2).

REMARK. Since P ∩Q = x + (W1 ∩W2) is readily established (see Exercise II.2.4), Theorem
36 and the dimension formula for vector subspaces (Theorem A.9) imply the regularity of V .�

Proof. The inclusion P ?Q ⊂ x+(W1 +W2) is clear since the right hand side is a geometrical
subspace containing P and Q. To see the reverse inclusion, first observe that P ?Q = x+U for
some vector subspace U ; since P, Q ⊂ x+U it follows that W1, W2 ⊂ U and henceW1+W2 ⊂ U .
The latter yields x + (W1 +W2) ⊂ P ? Q, and therefore the two subsets are equal. �

Finally, we introduce an assumption reflecting the Euclidean Parallel Postulate.

Definition. Two lines in a geometrical incidence space are parallel if they are coplanar but
disjoint. A regular incidence space is said to be affine if given a line L and a point x 6∈ L, then
there is a unique line M such that x ∈M and M is parallel to L. — If S is an affine incidence
space and d(S) = n, then we say that it is an affine n-space. If n = 2, it is also called an affine
plane.

One can use the argument proving Theorem 14 to verify that the affine incidence space associated
to a vector space is affine in the sense defined above.
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Equivalent mathematical structures

Our discussion of geometrical incidence fits closely with the main themes of these notes, but
the formulation is definitely nonstandard. Normally such incidence structures are viewed in
equivalent but more abstract terms. One approach involves specifying a sequence of dependence
relations on finite subsets of a given set S; in this formulation, there is a class of such subsets
that are called independent and satisfy a few suitable properties. As one might expect, a finite
subset of k+1 points is said to be independent if and only if there is no k-dimensional subspace
containing them; the resulting structure is called a matroid. Details of abstract dependence
theory and matroids are described in the paper by H. Whitney listed in the bibliography, and a
more recent account of matroid theory is given in the following online reference:

http://home.gwu.edu/∼jbonin/survey.ps

The matroid approach to independence leads naturally to another interpretation in terms of
partially ordering relations on sets. Every matroid has a family of subsets which satisfy the
conditions for a geometrical incidence space, and the associated ordered family of subsets satisfies
the conditions for a partially ordered set to be a geometric lattice. A classic reference for the
theory of lattices is the book by G. Birkhoff (Lattice Theory) cited in the bibliography.

EXERCISES

1. Let P be a geometrical subspace of S, and suppose that {x0, · · · , xk} is an independent
subset of P . Prove that there is a (possibly empty) set of points xk+1, · · · , xm ∈ P such that
{x0, · · · , xm} is independent and P = x0 · · · xm. [Hint: Imitate the proof of Theorem 31
using the family G ⊂ F of all subsets containing {x0, · · · , xk}.]

2. Prove that a subset of an independent set of points in a geometrical incidence space is
independent.

3. (i) Let (S,Π, d) be a geometrical incidence space, let T ⊂ S be a geometrical subspace,
and let ΠT be the set of all geometrical subspaces in Π which are contained in T . Prove that
(S,ΠT , dT ) is a geometrical incidence space, where dT is the restriction or T .

(ii) Prove that a geometrical subspace of a regular geometrical incidence space is again regular.
Is the analog true for affine spaces? Give reasons for your answer.

4. Let S be a geometrical incidence space with d(S) = n. A hyperplane in S is an (n − 1)-
plane. Prove that for every k < n, every k-plane in S is an intersection of (n − k) distinct
hyperplanes. [Hint: If T is a k-plane and T = x0 · · · xk, choose y1, · · · , yn−k such that
{x0 · · · xk, y1, · · · , yn−k} is independent. Let Pi be the hyperplane determined by all these
points except yj .]

5. Prove that the join construction on geometrical subspaces of a geometrical incidence
space satisfies the associativity condition (P ? Q) ? R = P ? (Q ? R) for geometrical subspaces
P. Q, R ⊂ S. [Hint: Show that both of the subspaces in the equation are equal to the smallest
geometrical subspace containing P ∪Q ∪R.]

6. Show that the Euclidean parallelism property is not a logical consequence of the defining
conditions for a regular n-dimensional geometrical incidence space. [Hint: Look at the so-called
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trivial examples from the previous section in which Π is the collection of all finite subsets and
if P is finite then d(P ) = #(P )− 1. Why do standard counting formulas imply that every pair
of coplanar lines in this system will have a common point?]

Remark. For affine planes and the examples considered in the previous section, the following modi-

fication of the Euclidean Parallelism Property is valid: Given a line L and a point x 6∈ L, then there is

at most one line M such that x ∈M and M is parallel to L. It is also not possible to prove this from

the conditions defining a regular incidence space, and the following Beltrami-Klein incidence plane is an

example: Let P be the set of all points in R2 which are interior to the unit circle; this set is defined by

the inequality x2 + y2 < 1 (see the figure below). The lines in P are taken to be the open chords of the

unit circle with equation x2 + y2 = 1, or equivalently all nonempty intersections of ordinary lines in

R2 with P . As the figure suggests, this example has the following property: Given a line L and a point

x 6∈ L, then there are at least two lines M such that x ∈ M and M is parallel to L. — In fact, there

are infinitely many such lines.

 

Figure II.10

The plane is the shaded region inside the circle, with the boundary excluded. The open

chord L has no points in common with the open chords determined by M and N .

7. (Further examples as above) Define a finitely supportable convex body in R
n to be a

nonempty set D defined by finitely many strict inequalities fi(x) > 0, where each fi is a linear
polynomial in the coordinates of x. Let ΠD denote the set of all nonempty intersections P ∩D,
where P is a geometrical subspace of R

n, and set the dimension dD(P ∩D equal to d(P ). Prove
that this structure makes D into a regular geometrical incidence n-space. [Hint: Try to do this
first for n = 2, then for n = 3.]

8. Assume we are in the setting of the preceding exercise.

(i) Let D be the open square in R
2 defined by x > 0, y > 0, −x > −1 and −y > −1 (hence the

coordinates lie between 0 and 1). Prove that D has the parallelism properties that were stated
but not proved for the Beltrami-Klein plane described above.

(ii) Let D be the upper half plane in R
2 defined by y > 0. Prove that for some lines L and

external points x there is a unique parallel to L through x, but for others there are infinitely
many such parallels.
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6. Isomorphisms and automorphisms

Although the mathematical concepts of isomorphism and automorphism are stated abstractly,
they reflect basic concepts that arise very quickly in elementary geometry. Congruent triangles
are fundamental examples of isomorphic objects: The statement ∆ABC ∼= ∆DEF means that
the obvious 1–1 correspondence of vertices from {A,B,C} to {D,E, F} preserves the basic
structural measurements, so that the distances between the vertices satisfy

d(A,B) = d(D,E), d(B,C) = d(E,F ), d(A,C) = d(D,F )

and the (degree or radian) measurements of the vertex angles satisfy similar equations:

measure(∠ABC) = measure(∠DEF )
measure(∠ACB) = measure(∠DFE)
measure(∠CAB) = measure(∠FDE)

Suppose now that we have an isosceles triangle ∆ABC in which d(A,B) = d(A,C). In such cases
one has a natural symmetry of the triangle with respect to the line joining A to the midpoint
of B and C, and one aspect of this symmetry is a nontrivial congruence of the isosceles triangle
with itself; specifically, ∆ABC ∼= ∆ACB. In mathematics, an isomorphism from an object to
itself is called an automorphism. The identity map from the object to itself is a trivial example
of an automorphism, and the isosceles triangle example indicates that some structures may have
other automorphisms.

The word “isomorphic” means ”identical shape” or “same form,” and in mathematics it means
that one has a rule for passing between two objects that preserves all the mathematical structure
that is essential in a given context. In particular, if two objects are isomorphic, a statement
about the structure of the first object is true if and only if the corresponding statement about
the second object is true. Such principles can be extremely useful, especially when one of the
objects is relatively easy to work with and the other is less so.

The precise mathematical definitions of isomorphisms and automorphisms vary, and the details
depend upon the sort of objects being considered. Also, there may be several different notions
of isomorphism or automorphism, depending upon the amount of structure that remains un-
changed. For example, if we are working with triangles, it is often useful to consider triangles
that might not be congruent but are similar; in other words, one still has a 1–1 correspondence
correspondence of vertices from {A,B,C} to {D,E, F} as before such that the angle measure
equations are satisfied, but now we only know that there is a positive number r (the ratio of
similitude) such that

d(A,B) = r · d(D,E), d(B,C) = r · d(E,F ), d(A,C) = r · d(D,F ) .

Of course, congruence is the special case of similarity for which r = 1.

Here is the appropriate definition for geometrical incidence spaces:

Definition. Let (S,Π, d) and (S ′,Π′, d′) be geometrical incidence spaces. An isomorphism
of geometrical incidence spaces from (S,Π, d) to (S ′,Π′, d′) is a 1–1 correspondence f : S → S ′

such that if P ⊂ S, then P ∈ Π if and only if its image f [P ] belongs to Π′, and in this case
d(P ) = d′( f [P ] ). In other words, P is a k-plane in S if and only if f [P ] is a k-plane in S ′.7

7As noted in the Prerequisites, we use f [P ] to denote the image of P under the mapping f .
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It is standard to write A ∼= B when two mathematical systems are isomorphic, and we shall do
so throughout these notes.

The first theorem of this section implies that isomorphism of geometrical incidence spaces is an
equivalence relation.

Theorem II.37. (i) If f : S → S ′ is an isomorphism of geometrical incidence spaces, then so is
its inverse f−1 : S′ → S.

(ii) If f : S → S ′ and g : S′ → S′′ are isomorphisms of geometrical incidence spaces, then so is
their composite g of : S → S′′.

Proof. (i) If f is 1–1 and onto, then it has an inverse map f−1 which is also 1–1 and onto.
If Q ⊂ S is a k-plane, then the identity Q = f

[
f−1[Q]

]
implies that f−1[Q] is a k-plane in S.

Similarly, if f−1[Q] is a k-plane in S then so is Q = f
[
f−1[Q]

]
.

(ii) If f and g are 1–1 onto, then so is g of . If P ⊂ S is a k-plane, then so is f [P ] because f is an
isomorphism of geometrical incidence spaces, and since g is also an isomorphism of geometrical
incidence spaces then

g of [P ] = g
[
f [P ]

]

is also a k-plane. Conversely, if the latter is a k-plane, then so is f [P ] since g is an isomorphism of
geometrical incidence spaces, and therefore P is too because f is an isomorphism of geometrical
incidence spaces.�

The next result illustrates earlier assertions that isomorphisms preserve the basic properties of
mathematical structures like abstract geometrical incidence spaces.

Theorem II.38. Let f : S → S ′ is an isomorphism of geometrical incidence spaces, and let
X = {x0, · · · xm } be a finite subset of S. Then X is a geometrically independent subset of S
if and only if f [X] is a geometrically independent subset of X ′.

Proof. Suppose that X is independent, and assume that f [X] is not. Then there is some
k-plane Q ⊂ S ′ such that d(P ) < q and f [X] ⊂ Q. Let P = f−1[Q]. By the definition of
isomorphism, it follows that P is also a k-plane, where k < q, and X = f−1

[
f [X]

]
is contained

in P . Therefore X is not independent, which contradicts our choice of X. Thus it follows
that f [X] is geometrically independent if X is. The converse statement follows by applying the
preceding argument to the inverse isomorphism f−1.�

If G is a family of geometrical incidence spaces, then a classifying family for G is a subfamily
C such that each object in G is isomorphic to a unique space in C. The standard coordinate
affine spaces F

n (where F is some field) comes relatively closed to being a classifying family for
n-dimensional affine incidence spaces for n ≥ 3. It is only necessary to add standard coordinate
affine n-spaces over skew-fields (see the second paragraph of Appendix A). The only difference
between fields and skew-fields is that multiplication is not necessarily commutative in the latter;
the standard nontrivial example is given by the quaternions, which are discussed in Appendix
A. If F is a skew-field, let F

n be the right vector space of ordered n-tuples as defined in Appendix
A. As indicated there, all of the linear algebra used to prove that F

n is an affine n-space goes
through if F is a skew-field. In particular, the right vector space F

n is an affine n-space. The
classification of n-dimensional affine spaces (where n ≥ 3) is then expressible as follows:
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Theorem II.39. Let (S, etc.) be an affine n-space, where n ≥ 3. Then there is a skew-field F

such that S is isomorphic to F
n as a geometrical incidence space. Furthermore, if E ind F are

skew-fields such that S is isomorphic to E
n and F

n, then E and F are algebraically isomorphic.

The proof of this result involves several concepts we have not yet introduced and is postponed
to Remark 3 on following the proof of Theorem IV.19. Specifically, it will be a fairly simple ap-
plication of the projective coordinatization theorem (Theorem IV.18) to the synthetic projective
extension of S (which is defined in the Addendum to Chapter 3).

Automorphisms and symmetry

A standard dictionary definition of the word symmetry is “regularity in form and arrangement,”
and the significance of automorphisms in mathematics is that they often yield important patterns
of regularity in a mathematical system. This is apparent in our previous example involving
isosceles triangles. Of course, the amount of regularity can vary, and an equilateral triangle
has a more regular structure than, say, an isosceles right triangle; generally speaking, the more
regular an object is, the more automorphisms it has.

Definition. An automorphism of a geometrical incidence space (S,Π, d) and (S ′,Π′, d′) is a
1–1 onto map from S to itself which is an isomorphism of geometrical incidence spaces. — The
identity map of a mathematical object is normally an example of an automorphism, and it is a
routine exercise to check that for each geometrical incidence space (S,Π, d), the identity map of
S defines an automorphism of (S,Π, d).

The following result is an immediate consequence of Theorem 38 and the preceding sentence.

Theorem II.40. The set of all automorphisms of a geometrical incidence space (S,Π, d) forms
a group with respect to composition of mappings.�

Notation. This group is called the geometric symmetry group of (S,Π, d) and is denoted by
ΣΣΣ(S,Π, d).

EXAMPLE 1. Let (S,Π, d) be the affine incidence space associated to a vector space V . If T is an
invertible linear self-map of V , then T also defines an incidence space automorphism. This is true
because the condition Kernel(T ) = {0} implies that T maps each k-dimensional vector subspace
W to another subspace T [W ] of the same dimension (see Theorem A.14.(iv) ). Furthermore, if
S is an arbitrary subset and x ∈ V , then it is easy to check that T [x + S] = T (x) + T [S] (this
is left to the reader as an exercise). .

EXAMPLE 2. If V is as above and x ∈ V , define the mapping Tx : V → V (translation by x)
to be the mapping Tx(v) = x + v. Then Tx is clearly 1–1 and onto. Furthermore, it defines a
geometrical space automorphism because Tx[y +W ] = (x + y) +W shows that P is a k-plane
in V if and only if Tx[P ] is (again, filling in the details is left to the reader).�

The preceding observations show that affine incidence spaces associated to vector spaces gener-
ally have many geometric symmetries. Define the affine group of V — denoted by Aff(V ) — to
be all symmetries expressible as a composite T oS, where T is a translation and S is an invertible
linear transformation. We shall say that the elements of Aff(V ) are affine transformations. The
terminology suggests that the affine transformations form a subgroup, and we shall verify this
in the next result.
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Theorem II.41. The set Aff(V ) is a subgroup of the group of all geometric symmetries of V .
It contains the groups of linear automorphisms and translations as subgroups.

Proof. First of all, the identity map is a linear transformation and it is also translation by
0, so clearly the identity belongs to Aff(V ). If A is an arbitrary affine transformation, then for
each x ∈ V we have A(x) = S(x) + y, where y ∈ V and S is an invertible transformation. If A ′

is another such transformation, write A′(x) = S′(x) + y′ similarly. Then we have

A′ oA(x) = A′
(
S(x) + y

)
=

S′
(
(S(x) + y)

)
+ y′ = S′S(x) +

(
S′(y) + y′ )

showing that A′ oA is also affine; hence Aff(V ) is closed under multiplication. To see that this
family is closed under taking inverses, let A be as above, and consider the transformation

B(x) = S−1(x) − S−1(y) .

By the above formula, B oA and A oB are both equal to the identity, so that A−1 is the affine
transformation B. The second statement in the theorem follows from Examples 1 and 2 above.�

In general, Aff(V ) is not the full group of geometric symmetries. For example, if F = C (the
complex numbers), the cooreinatewise conjugation map

χ : C
n −→ C

n

taking (z1, · · · , zn) to (z1, · · · , zn) is a geometrical symmetry of C
n which does not lie in

Aff (Cn).8 However, if F is the integers mod p (where p is prime, the rational numbers, or the
real numbers, then Aff(V ) does turn out to be the entire group of geometric symmetries of F

n.

Historical note. Although the concept of geometric symmetry was not formulated explicitly
until the early 19th century, special symmetries of R

n (for at least n = 2, 3) known as rigid
motions or isometries are implicit in classical Greek geometry, particularly in attempts at “proof
by superposition” (a rigid motion is defined to be a 1–1 correspondence T from R

n to itself that
preserves distances (i.e., d(x,y) = d

(
T (x), T (y)

)
for all x,y ∈ R

n — such maps also preserve

angles).9 More precisely, superposition phrases of the form, “Place figure A so that points B
coincide with points C,” may be interpreted as saying, “Find a rigid motion of Rn that maps
points B to points C.” Indeed, it seems that the inability of classical geometry to justify the
notion of superposition resulted from the lack of a precise definition for rigid motions.

EXERCISES

1. Give a detailed verification of the assertion T [x + S] = T (x) + T [S] which appears in
Example 1 above.

2. If V and W are vector spaces over a field F, a map T : V → W is called affine if it has the
form T (v) = S(v) + w0, where S is linear and w0 ∈W . Prove that

T
(
tx + (1− t)y

)
= tT (x) + (1− t)T (y)

for all x,y ∈ V and t ∈ F.

8See Exercise V.2.5 for a full explanation.
9The fact that rigid motions are geometrical symmetries follows because they all lie in the group Aff(V )

defined previously. A proof is given in the Addendum to Appendix A.
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3. Suppose that {v0, · · · ,vn } and {w0, · · · ,wn } are affine bases for the vector space V .
Prove that there is a unique T ∈ Aff(V ) such that T (vi) = wi for i = 0, · · · , n. [Hint: The
sets {v1−v0, · · · ,vn−v0 } and {w1−w0, · · · ,wn−w0 } are bases. Apply Theorem A.13(v).]

4. Suppose F 6= Z2 is a field, V is a vector space over F, and T : V → V is a 1–1 onto map
satisfying the condition in Exercise 2:

T
(
tx + (1− t)y

)
= tT (x) + (1− t)T (y)

Prove that T is an affine transformation. [Hint: Set S(v) = T (v)−T (0) and prove S is linear.
Observe that S maps 0 to itself. — If the problem seems too hard as stated, try to prove if for
fields in which 1 + 1 6= 0.]

5. Let f : (S,Π, d) → (S ′,Π′, d′) be an isomorphism of geometrical incidence spaces, and
let P and Q be nonempty geometrical subspaces of S in the extended sense (i.e., we include
the possibility that either consists of one point). If “?” is the join construction described in
the notes, prove that f [P ? Q] = f [P ] ? f [Q]. [Hint: recall that the join of two geometrical
subspaces is the unique smallest geometrical subspace containing both of them.]

6. Let f : (S,Π, d)→ (S ′,Π′, d′) be an isomorphism of geometrical incidence spaces.

(i) Prove that (S,Π, d) is regular if and only if (S ′,Π′, d′) is.

(ii) Prove that (S,Π, d) is an affine n-space if and only if (S ′,Π′, d′) is.

(iii) Let m > 2 be an integer. Prove that every line in (S,Π, d) contains exactly m points if and
only if the same is true for (S ′,Π′, d′). Explain why a similar conclusion holds if we substitute
“infinitely many” for “exactly m” in the statement.

7. Let V be a vector space over a field of characteristic zero (i.e., no iterated finite sum
1 + · · · + 1 is equal to zero), and let T ∈ Aff(V ) be an element such that some finite power
T n = T o · · · oT is the identity. Prove that there is some point x ∈ V such that T (x) = x
(i.e., a fixed point). [Hints: Let v ∈ V be arbitrary, and consider the vector

1

n

n−1∑

i=0

T i(v) .

Note that the transformation T may have more than one fixed point; for example, if we take
the reflection map T on R

2 which sends (x, y) to (x,−y), then T 2 is the identity and T sends
every point on the x-axis to itself.



CHAPTER III

CONSTRUCTION OF PROJECTIVE SPACE

In this chapter we describe the classical process of adding points at infinity to an affine plane or a

3-dimensional affine space. The objects obtained in this manner are called projective planes or pro-

jective spaces, and predictably they are one of the main objects of attention in projective geometry.

1. Ideal points and lines

Extending the space ... [is a] fruitful method for extracting understandable results from

the bewildering chaos of special cases. — J. Dieudonné (1906–1992)

In calculus — particularly in the study of limits — it is frequently convenient to add one or two
numbers at infinity to the real number system.1 Among the reasons for this are the following:

(i) It allows one to formulate otherwise complicated notions more understandable (for
example, infinite limits).

(ii) It emphasizes the similarities between the infinite limit concept and the ordinary limit
concept.

(iii) It allows one to perform formal manipulations with limits much more easily.

For example, suppose we add a single point at infinity (called∞ as usual) to the real numbers. If
f is a real-valued rational function of the form f(t) = p(t)/q(t), where p and q are polynomials
with no common factors and q is not identically zero, then strictly speaking f is not definable at
the roots of q. However, an inspection of the graph of f suggests defining its value at these points
to be ∞, and if this is done the function is also continuous at the roots of q (in an appropriate
sense). Proceeding further along these lines, one can even define f(∞) in such a way that f is
continuous at ∞; the limit value may be a finite number or ∞, depending upon whether or not
the degree of p is less than or equal to the degree of q (in which case the limit value is finite) or
the degree of p is greater than the degree of q (in which case the limit value is infinite).

The discussion above illustrates the ideas presented in the following quotation from previously
cited the book by R. Winger.2

1Of course, if this is done then one must also recognize that the numbers at infinity do not necessarily have
all the useful properties of ordinary real numbers. The existence of such difficulties has been recognized since
ancient times, and in particular this is implicit in the celebrated paradoxes which are attributed to Zeno of Elea
(c. 490 B.C.E. – c. 425 B.C.E.).

2Winger, Introduction to Projective Geometry , pp. 31–32.
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Such exceptions are not uncommon in mathematics but they can frequently be avoided
by aid of appropriate expedients. Often it suffices to modify definitions or merely adopt
contentions of language. But sometimes new postulates or assumptions are required.
This in algebra we might say that the quadratic equation x2−2ax+a2 = 0 has only one
root a. For the sake of uniformity however it is customary to say that the equation has
two equal roots. Here a change of language is all that is needed. On the other hand if
the equation x2 + x + 1 = 0 is to have any root it is necessary to extend the domain of
numbers to include the imaginary numbers. With these conventions — that a repeated
root counts for two and that imaginary roots are to be accepted equally with real — we
can say every quadratic equation has two roots.

Again we might say that a circle cuts a line of its plane in two points, one point

or no point. But with the proper modifications we can make the geometry conform

to the algebra. Thus a tangent is considered as meeting the curve in “two coincident

points.” But in order that the statement shall be true universally it is necessary to

introduce a new class of points, the “imaginaries.” Imaginary points correspond to the

imaginary numbers of algebra [i.e., their coordinates are given by complex numbers]. If

in solving the equations of line and circle the roots turn out to be imaginary, the points

of intersection are said to be imaginary. “No point” is now replaced by “two imaginary

points” when without exception sl a line cuts a circle in two points — real and distinct,

coincident or imaginary. The new statement not only serves every purpose of the old

but is really more descriptive of the true relation of line and circle.

The preceding quotation illustrates that “imaginary numbers” in algebra have geometric analogs
which can be viewed as “imaginary points.” Similarly, the previously discussed algebraic
and analytic notions of “numbers at infinity” have geometric analogs which can be
viewed as “points at infinity,” and these play a fundamental role in projective geometry.

One intuitive motivation for considering such points at infinity arose in connection with the
mathematical theory of perspective drawing which was developed in the 15th and 16th centuries.
In modern and informal terms, the goal of this theory is to describe the photographic images of
physical objects on a planar surface such as a projection screen, and artist’s canvas, or a sheet
of paper. Everyday experience with viewing photographs shows that some properties of objects
are faithfully reflected by a photographic image while others are not. For example, distances
often change drastically and two physical objects with the same measurements usually project
to images with quite different measurements. On the other hand, the photographic images of a
physical line will be contained in a line on the image plane.

We shall be particularly interested in a curious phenomenon involving parallel lines.3 If one
sees enough examples, it becomes apparent that the images of parallel lines are not necessarily
parallel, and if the images are not parallel then the images of all lines parallel to the two given
lines appear to meet at some point on the horizon; furthermore, all these horizon points lie
appear to lie on a single line which defines the horizon (see Figure III.14 below). It is possible to
give a mathematical explanation for these empirical observations, but we shall not do so here.
A more detailed discussion appears in Section IV.2 of the online reference

http://math.ucr.edu/∼res/math133/geometrynotes4a.pdf
that was cited in the Preface.

3This was known in ancient times and is mentioned in the work of Marcus Vitruvius Pollio (c. 80 B. C. E.
– 25 B. C. E.) titled De Architectura.

4Source: http://www.math.nus.edu.sg/aslaksen/projects/perspective/alberti.htm
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Figure III.1

Such pictures lead to speculation whether we should think of lines as having points at infinity ,
such that every line has exactly one such point, two parallel lines have the same point at infinity,
and the points at infinity for lines on a given plane all lie on a line at infinity . These ideas emerged
near the beginning of the 17th century, and in particular they were developed and extended in
the writings of G. Desargues (1591–1661) and J. Kepler (1571–1630).

The main purpose of this section is to provide a mathematical setting for Desargues’ and Kepler’s
intuitive ideas. In particular, the following continuation of the previous quotation contains the
main motivation for the construction of projective space (and much of projective geometry):

To say that two parallel lines do not meet is like saying that certain lines have no point

of intersection with a circle. There we found that the exception could be removed by

introducing imaginary intersections. In an exactly analogous fashion we may introduce

a second new class of points into geometry, points at infinity , which will serve for the

“intersections of parallel lines.”

The formal process for adding points at infinity to the Euclidean plane is best described as
follows:

Definition. Let (P,L) be an affine plane, and let L be a line in P . The L-direction in P (or
the direction of P ) consists of L and all lines parallel to L.

Note. We are using the notation for incidence plane described in Section II.1 rather than
the more general notation in Section II.5. The translation is straightforward: If (P,L) is one
description and (P,Π, d) is the other, then d(P ) = 2, Π = L ∪ {P} and d = 1 on L.

Theorem III.1. Two directions in P are either disjoint or identical.

Proof. Consider the binary relation ∼ on lines defined by L ∼ M if and only if L = M or
L||M . By Theorem II.7 this is an equivalence relation. The L-direction is merely the equivalence
class of L with respect to this relation and will be denoted by [L].�

Definition. If P is an affine plane, the projective extension pf P , denoted by P ∧∧∧, consists of
P together with all directions in P . An element of P∧∧∧ is an ordinary point if it is a point in P
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and an ideal point if it is a direction in P . It follows that a point in is either ordinary or ideal
but not both.5

If L is a line in P , then its projective extension to P∧∧∧ consists of all points of L together with
the direction [L], and it is denoted by L∧∧∧. The ideal line in P∧∧∧ consists of all ideal points in P∧∧∧

and is denoted by L∞ (the line of points at infinity or the line at infinity).

EXAMPLES INVOLVING USES OF POINTS AT INFINITY. The most immediate reason for
introducing points at infinity is that they can be used to simplify some of the statements which
appeared in earlier chapters. For example, the statement

The lines L, M and N are either concurrent (pass through a single point) or are
parallel in pairs.

in the conclusion of Theorem II.25 translates to

The projective extensions of the lines L, M and N contain a common point (i.e.,
the extended lines L∧∧∧, M∧∧∧ and N∧∧∧ are concurrent).

Furthermore, the statement

There is a point C which lies on line AB or else there are two lines L, and M
such that L||AB and M ||AB,

which is the conclusions of Theorem II.28 and II.29, translates to

There are three lines AB, L and M such that either (i) L and M meet at a point
C ∈ AB, or else the lines L and M are both parallel to and their common point
at infinity lies on the projective extension of AB (i.e., if the projective extensions
of L and M meet at the point C, then C lies on the projective extension of the
line AB).

Since the hypotheses of Theorems II.27–29 are very similar (the only difference being parallelism
assumptions about these lines) the second translated statement illustrates a corresponding sim-
ilarity in the conclusions that one might suspect (or at least hope for). In fact, the conclusion of
Theorem II.27 (that one has three pairs of parallel lines) fits into the same general pattern, for
in this case the conclusion reduces to the collinearity of the directions A∧∧∧, B∧∧∧ and C∧∧∧, where
these directions contain the pairs {L, L′ }, {M, M ′ }, and {N, N ′ } respectively.

One conceivable objection to ideal points or points at infinity is the impossibility of visualizing
such entities. The mathematical answer to such objection is contained in the following quotation
from an article by O. Veblen (1880–1960):6

Ordinary points are just as much idealized as are the points at infinity. No one has ever

seen an actual point [with no physical width, length or thickness] or realized it by an

experiment of any sort. Like the point at infinity it is an ideal creation which is useful

for some of the purposes of science.

5A rigorous proof of this fact requires some technical propositions from set theory. The details of this
justification are not important for the rest of these notes, but for the sake of completeness here is the proof:
Suppose that x = [L] for suitable x and L. Then there is a line M such that x ∈ M and L is parallel to
M or equal to M . This would imply that x ∈ M and [M ] = [L] = x, so we would have objects a and b

such that a ∈ b and b ∈ a; the standard mathematical foundations for set theory contain an assumption which
implies that such situations never arise. For further information, see Proposition 4.2 in the following online notes:
http://math.ucr.edu/∼res/math144/setsnotes3.pdf

6Encyclopædia Britannica, 14th Edition (1956),Vol. 18, p.173 (article on Projective Geometry)
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Here is a slightly different response:7

[With the introduction of points at infinity,] The propositions of projective geometry
acquire a simplicity and a generality that they could not otherwise have. Moreover,
the elements at infinity give to projective geometry a degree of unification that greatly
facilitates the thinking in this domain and offers a suggestive imagery that is very helpful
... On the other hand, projective geometry stands ready to abandon these ... whenever
that seems desirable, and to express the corresponding propositions in terms of direction
of a line ... to the great benefit of ... geometry. ...

The extra point which projective geometry claims to add to the Euclidean [or affine] line

is [merely] the way in which projective geometry accounts for the property of a straight

line which Euclidean [or affine] geometry recognizes as the “direction” of the line. The

difference between the Euclidean [or affine] line and the projective line is purely verbal.

The geometric content is the same. ... Such a change in nomenclature does not constitute

an [actual] increase in the geometric content.

To summarize the preceding quotations, sometimes it is convenient to work in a setting where
one has points at infinity, and in other cases it is more convenient to work in a setting which does
not include such objects. This is very closely reflects the standard usage for numbers at infinity.
They are introduced when they are useful — with proper attention paid to the differences
between them and ordinary numbers — and not introduced when it is more convenient to work
without them.

EXERCISES

In the exercises below, assume that P is an affine plane and that x∧∧∧ (where x = P
or a line in P ) is defined as in the notes.

1. Prove that every pair of lines in P∧∧∧ (as defined above) has a common point in P∧∧∧. [Hint:
There are three cases, depending upon whether one has extensions of two ordinary lines that have
a common point in P , extensions of two ordinary lines that are parallel in P , or the extension
of one line together with the line at infinity.]

2. Suppose that L1, L2, L3, M1, M2, M3 are six distinct lines in an affine plane P . Write out
explicitly what it means (in affine terms) for the three points determined by L∧∧∧

i ∩M∧∧∧
i (where

i = 1, 2, 3) to be collinear in P∧∧∧. Assume that the three intersection points are distinct.

3. Suppose that x1, x2, x3, y1, y2, y3 are six distinct points in an affine plane P . Write out
explicitly what it means (in affine terms) for the three extended lines (xiyi)

∧∧∧ (where i = 1, 2, 3)
to be concurrent in P∧∧∧. Assume that the three ordinary lines xiyi are distinct.

4. Prove that every line in P∧∧∧ contains at least three points. There are two cases, depending
upon whether the line is the extension of an ordinary line or the line at infinity, and the latter
requires more work than the former.

7N. Altshiller Court (1881–1968), Mathematics in Fun and in Earnest , pp. 110, 112
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2. Homogeneous coordinates

If F is a field and F2 is the coordinate affine plane described in Chapter II, then the construction
in the previous section can of course be applied to F

2. The purpose of this section is to introduce
coordinates for the projective extension (F2)∧∧∧ that are consistent with the usual coordinates
for ordinary points. Since every point in F

2 is specified by two scalars (the first and second
coordinates), we shall not be able to describe a point entirely in terms of two coordinates.
Instead, it will be necessary to use three coordinates to specify a point in (F2)∧∧∧, with the
understanding that different triples of scalars may represent the same point. This can
be inconvenient sometimes, but it is an issue that already arises in elementary analytic geometry;
specifically, when we try to specify a point in the ordinary plane R

2 by polar coordinates, it is
always necessary to remember that (r, θ), (−r, θ + π) and (r, θ + 2π) represent the same point
in R

2 if r 6= 0 (and of course all pairs of the form (0, theta) represent the origin!).

To be more specific about the meaning of compatibility, we would like our coordinates for (F2)∧∧∧

to have the following properties:

(i) The ordinary coordinates for a point (x, y) ∈ F
2 should be easily retrievable from the

systems of coordinates we shall introduce on (F2)∧∧∧, and vice versa.

(ii) If we are given a line L in F
2 defined by an equation of the form ax+ by+ c = 0 where

a and b are not both zero, the coefficients a and b should be easily retrievable from the
coordinates of the associated point at infinity L∧∧∧, and vice versa.

Of course, in the second part the coefficients a, b , c are not uniquely defined, and any nonzero
multiple of these equations yields an equivalent equation for the line. This sort of ambiguity
up to multiplication by some common nonzero factor is the key idea behind the definition of
homogeneous coordinates for points in (F2)∧∧∧.

Suppose first that L is a line through 0 in F
2. Then points on this line have the form (tx1, tx2),

where x = (x1, x2) is a fixed nonzero vector. With some imagination, one might speculate about
trying to define the coordinates for the point at infinity on L by something like (∞x1, ∞x2) or
equivalently by ( x1

0
,
x2

0

)
.

Of course, we cannot näıvely do this in a logically sound manner (for example, if F = R then
1/0 = 2/0 = ∞ and 0/0 is indeterminate), but we can express the concept using an ordered
triple

(v1, v2, 0)

which is meant to suggest that we would divide the first two coordinates by zero if this made
sense. As already noted, if we use such notation then we must also be ready to agree that every
ordered triple of the form (tv1, tv2, 0), where t 6= 0, is also a valid description fot the original line
L. We can formalize this by saying that every such triple is a set of homogeneous coordinates
for the point at infinity L∧∧∧.

For the sake of uniformity, we would also like to describe coordinates for ordinary points as
ordered triples (y1, y2, y3) such that if t 6= 0 and (y1, y2, y3) is a valid set of coordinates for a
point, then so is (ty1, ty2, ty3). We do this by agreeing that if x ∈ F

2, then every ordered triple
of the form (tx1, tx2, t), where t 6= 0, is a set of homogeneous coordinates for x.
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The next result states that the preceding definitions of homogeneous coordinates for points
of (F2)∧∧∧ have the desired compatibility properties and that every ordered triple (y1, y2, y3) 6=
(0, 0, 0) is a valid set of coordinates for some point in (F2)∧∧∧.

Theorem III.2. Every nonzero element of F
3 is a set of homogeneous coordinates for some

point in (F2)∧∧∧. Two nonzero elements are homogeneous coordinates for the same point if and
only if each is a nonzero multiple of the other.

Proof. Let (y1, y2, y3) 6= (0, 0, 0) in F
3. If y3 6= 0 then (y1, y2, y3) is a set of homogeneous

coordinates for the ordinary point (
y1

y3
,
y2

y3

)
.

On the other hand, if y3 = 0 then either y1 6= 0 or y2 6= 0 and the point has the form (y1, y2, 0);
the latter is a set of homogeneous coordinates for the point at infinity on the line joining the
two distinct ordinary points 0 and (y1, y2); these points are distinct because at least one of the
yi is nonzero.

By definition, if t 6= 0 then (y1, y2, y3) and (ty1, ty2, ty3) are sets of homogeneous coordinates
for the same point, so it is only necessary to prove the converse statement. Therefore suppose
that (x1, x2, x3) and (y1, y2, y3) are homogeneous coordinates which represent the same point.
There are two cases, depending upon whether or not this point is an ordinary point or an ideal
point.

Suppose the point under consideration is the ordinary point (z1, z2) ∈ F
2. Then there exist

nonzero constants a and b such that

(x1, x2, x3) = (az1, , az2, a) (y1, y2, y3) = (bz1, , bz2, b) .

It follows immediately that (y1, y2, y3) = ba−1 (x1, x2, x3).

Suppose now that the point under consideration is an ideal point, and choose v ∈ F
2 so that

v 6= 0 and the ideal point is contained in the line 0v (the existence of such a line is guaranteed
by the Euclidean Parallelism Property, which holds in F

2). Let v = (v1, v2), so that the ideal
point has homogeneous coordinates (v1, v2, 0). In this case there exist nonzero constants a and
b such that

(x1, x2, x3) = (av1, , av2, 0) (y1, y2, y3) = (bv1, , bv2, 0) .

It follows immediately that y3 = x3 = 0 and hence the vectors x = (x1, x2) and y = (y1, y2)
satisfy x = av and y = bv; the latter implies that y = ba−1x and hence again in this case we
conclude that (x1, x2, x3) and (y1, y2, y3) are nonzero multiples of each other.�

Theorem III.3. There is a 1− 1 correspondence between the points of the projective extension
(F2)∧∧∧ and the 1-dimensional vector subspaces of F

3 such that a point x in the former corresponds
to a 1-dimensional subspace V if and only if the set of all possible homogeneous coordinates for
x is the set of nonzero vectors in V .

Proof. Given x ∈ (F2)∧∧∧, let V (x) denote the vector space spanned by all the homogeneous
coordinates for x. By the preceding result, we know that V (x) is a 1-dimensional vector subspace
because it contains a nonzero vector and every pair of nonzero vectors in V (x) are nonzero scalar
multiples of each other. Theorem 2 also implies that the correspondence sending x to V (x) is
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onto (every 1-dimensional vector space is spanned by some nonzero vector). Thus it remains to
show that the correspondence is 1–1.

Suppose that x and y are such that V (x) = V (y). There are three possible cases, depending
upon whether both points are ordinary points, both points are ideal points, or one point is
ordinary and the other is ideal.

CASE 1. Suppose both points are ordinary. Let v = (v1, v2) where v = x or y. If V (x) = V (y),
then we know that (x1, x2, 1) and (y1, y2, 1) span the same 1-dimensional subspace and hence
are nonzero multiples of each other. However, if c is a nonzero scalar such that (x1, x2, 1) =
c (y1, y2, 1), then it follows immediately that c = 1, which implies that bfx = y.

CASE 2. Suppose both points are ideal. Suppose that the points in question are the ideal
points on the lines joining the origin in F

2 to the nonzero points u = (u1, u2) and v = (v1, v2).
It then follows that the vectors (u1, u2, 0) and (v1, v2, 0) span the same 1-dimensional subspace
and hence are nonzero multiples of each other. But this implies that u and v are also nonzero
multiples of each other, which in turn means that the lines joining 0 to u and v are equal and
hence have the same ideal point. Therefore the map taking x to V (x) is 1–1 on the set of ideal
points.

CASE 3. Suppose one point is ordinary and the other is ideal. If the ordinary point has
homogeneous coordinates given by (x1, x2, 1) and the ideal point has homogeneous coordinates
given by (y1, y2, 0), then once again these two vectors must be nonzero multiples of each other.
Since the third coordinate of the first vector is equal to 1, this is impossible, and thus we see that
ordinary points and ideal points cannot determine the same 1-dimensional subspace of F

3.�

EXERCISES

1. Suppose that the line in F
2 is defined by the equation

ax + by = c

where not both of a and b are zero. Show that homogeneous coordinates for the point L∧∧∧ are
given by (−b, a, 0). [Hint: What is the equation of the line through (0, 0) which is parallel to
L?]

2. Suppose that F = R (the real numbers), and x = (x1, x2) ∈ R
2 is nonzero. Let (y1, y2, y3)

be a set of homogeneous coordinates for x such that y2
1 + y2

2 = 1. Prove that |y3| is the
reciprocal of the distance from x to the origin. [Hint: Start by explaining why x2

1 + x2
2 > 0.]

Note. Exercise 2 reflects one reason why ideal points are also known as points
at infinity . Their last coordinates always vanish, so a formal candidate for their
difference to the origin would be the reciprocal of 0, which we often think of as
∞, at least informally.
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3. Equations of lines

In Theorem I.7 we noted that lines in F
2 are precisely the subsets defined by linear equations of

the form ax + by + c = 0, where a and b are not both zero. An analogous characterization
for lines in (F2)∧∧∧ will be given in this section.

Theorem III.4. Let L be a line in F
2 defined by the equation ax + by + c = 0 as above,

and let L∧∧∧ be the extension of L to a line in (F2)∧∧∧. Then L∧∧∧ consists of all points x which are
representable by homogeneous coordinates (u1, u2, u3) satisfying

a u1 + b u2 + c u3 = 0 .

Remark. If one set of homogeneous coordinates for a point x satisfies the equation above, then
so does every other set, for every other set has the form (ku1, ku2, ku3) for some k 6= 0 and
hence a u1 + b u2 + c u3 = 0 implies

a(ku1) + b(ku2) + c(ku3) = k(a u1 + b u2 + c u3) = k · 0 = 0 .

Proof. If (x, y) is an ordinary point if (F2)∧∧∧, then it belongs to L and has homogeneous
coordinates (x, y, 1). Therefore every ordinary point of L has homogeneous coordinates which
satisfy the homogeneous linear equation in three variables that is displayed in the theorem.
Furthermore, by Exercise 1 for the preceding section, the ideal point of (F2)∧∧∧ has homogeneous
coordinates given by (−b, a, 0), and hence the ideal point also has homogeneous coordinates
which satisfy the homogeneous linear equation a u1 + b u2 + c u3 = 0.�

Conversely, suppose that (x, y) is an ordinary point not on the line L. Then (x, y) has homo-
geneous coordinates (x, y, 1), and these coordinates do not satisfy the equation a u1 + b u2 +
c u3 = 0. By the remark preceding the proof, it follows that an ordinary point lies on L
(equivalently, (F2)∧∧∧) if and only if it has homogeneous coordinates which satisfy the equation
a u1 + b u2 + c u3 = 0.

Finally suppose z is an ideal point whose homogeneous coordinates satisfy a z1 +b z2 +c z3 = 0.
Since z is an ideal point, we also know that z3 = 0. Therefore we must have a z1 + b z2 = 0.
However, the solution space for this nontrivial equation is 1-dimensional by Theorem A.10, and
hence the nonzero vector (z1, z2) must be a nonzero multiple of (−b, a). Therefore Exercise 1
of the preceding section implies that z must be the ideal point of (F2)∧∧∧, and this completes the
proof of the theorem.�

There is a similar characterization of the line at infinity.

Theorem III.5. A point of (F2)∧∧∧ is an ideal point if and only if it has homogeneous coordinates
which satisfy the equation u3 = 0.

Proof. Suppose that we are given an ideal point. By construction it has homogeneous
coordinates which satisfy u3 = 0. Conversely, if we are given an ordinary point x, then as noted
before we know that x has homogeneous coordinates of the form (x1, x2, 1), and hence every
set of homogeneous coordinates (u1, u2, u3) must satisfy u3 6= 0. Thus the ideal points are
characterized by the vanishing of the third homogeneous coordinate.�
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The previous two theorems yield the desired characterization of lines in (F2)∧∧∧.

Theorem III.6. A set of points X in (F2)∧∧∧ is line if and only if there exist a, b, c ∈ F not
all zero such that y ∈ L if and only if y has homogeneous coordinates (y1, y2, y3) satisfying
a y1 + b y2 + c y3 = 0 .

Proof. By the preceding two results, every line in (F2)∧∧∧ is defined by a nontrivial linear
homogeneous equation of the type described. Conversely, suppose that (a, b, c) 6= (0, 0, 0). If
we have a = b = 0, then the linear homogeneous equation is equivalent to the equation y3 = 0,
which defines the line at infinity. On the other hand, if at least one of {a, b} is nonzero, then by
Theorem 4 we know that the equation defines the extension L∧∧∧ of the line L in F

2 with equation
ax+ by + c = 0.�

EXERCISES

1. Find the equations of the lines joining points in (R2)∧∧∧ with the following homogeneous
coordinates:

(i) (1, 3, 0) and (0, 5,−1)

(ii) (2, 5,−3) and (3,−2, 0)

(iii) (2, 1, 0) and (−1, 1, 0)

(iv) (4,−6, 3) and (4,−6, 1)

2. Find the homogeneous coordinates of the intersection points of the following lines in (R2)∧∧∧:

(i) x1 + x3 = 0 and 2x1 + 3x2 + x3 = 0.

(ii) 2x1 + 3x2 − 4x3 = 0 and x1 − x2 + 3x3 = 0.

(iii) 2x1 + x2 = 0 and −x1 + x2 = 0.

(iv) 4x1 − 6x2 + 3x3 = 0 and 4x1 − 6x2 + x3 = 0.
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4. Higher-dimensional generalizations

In Chapter II we generalized the geometrical properties of coordinate affine planes and 3-spaces
to arbitrary dimensions. The purpose of this section is to show that preceding construction
for adding ideal points to F

2 can be extended to the affine spaces associated to arbitrary n-
dimensional vector spaces over a given field F, where n is an arbitrary positive integer.

NOTATION. The projective extension (F2)∧∧∧ that was defined and studied in the preceding three
sections will be called the coordinate projective plane over F and will be denoted by the symbol
FP

2; this conforms to standard mathematical terminology.

The results of the preceding two sections imply the following two basic properties of FP
2:

(1) The points of FP
2 correspond to one-dimensional vector subspaces of F

3.

(2) The points of FP
2 correspond to two-dimensional vector subspaces of F

3, and a point
x lies on a line L if and only if the one-dimensional subspace V associated to x is
contained in the two-dimensional subspace W associated to L.

The first of these is just a restatement of Theorem 3. The second statement follows because
a subset of F

3 is a 2-dimensional vector subspace if and only if it is the set of solutions to a
nontrivial linear homogeneous equation in three variables; this is essentially a special case of the
characterization of )n−1)-dimensional vector subspaces of an n-dimensional vector space in the
exercises for Section 4 of the Appendix.

Motivated by this identification, if V is a finite-dimensional left or right8 vector space over a
skew-field F, we shall define the projective space with coefficients in a nonzero vector space
V as follows: Its points are the elements of the set S1(V ) of 1-dimensional vector subspaces of
V . Note that if W is a nonzero vector subspace of V , then S1(W ) is contained in S1(V ). The
geometric subspaces of S1(V ) are given by all subsets of the form S1(W ), where W is a vector
subspace of dimension ≥ 2 and the geometric dimension of S1(W ) is equal to dimW −1. — The
shift of dimensions is consistent with our previous construction of homogeneous coordinates for
FP

2; in particular, if dimV = n, then the dimension of S1(V ) is equal to n− 1.

If we adopt the conventions of Section II.5 for geometrical subspaces of dimension 0 and −1 (one
point subsets are zero-dimensional and the empty set is (−1)-dimensional, then the equation

d (S1(W ) ) = dimW − 1

also holds in these extended cases because dimX = 1 implies cS1(X) = {X } and also

cS1 ( {0} ) = ∅

(since the zero subspace has no 1-dimensional subspaces).

NOTATION. If x ∈ S1(V ), then symbols like x̃ will denote nonzero vectors in V which belong to
the 1-dimensional subspace x, and such a vector x̃ will be called a set of homogeneous coordinates
for x.

If V = F
n+1, then S1(V ) will be callled the standard (coordinate) projective n-space over F and

it is usually denoted by FP
n. As with affine spaces, the projective spaces whose geometrical

8The geometric significance of doing everything for both left and right vector spaces will be apparent in
Chapter V, but if one is only interested in cases where F is a field then the distinction is unnecessary.
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usefulness is most evident are the projective spaces over the real numbers R; these are the so-
called real projective spaces, and in some cases they are also simply called projective spaces of
n dimensions. The corresponding objects over the complex numbers C (the complex projective
spaces) are nearly as important; the Fundamental Theorem of Algebra suggests one reason for
this (however, there are also others). Other types of projective spaces are useful in various
contexts which are beyond the scope of these notes.

Theorem III.7. If V is an n-dimensional vector space (where n ≥ 3), then S1(V ) is a regu-
lar (n − 1)-dimensional geometrical incidence space with respect to the notions of geometrical
subspace and dimension that are defined above.

Proof. We shall first verify the conditions (G-1)–(G-3) in order, and in the next theorem we
shall prove a strengthened version of (G-4) in the next theorem.

PROOF OF (G-1). Let X0, · · · , Xk be 1-dimensional subspaces of V that are not contained in
any subspace S1(W ) of dimension less than k; i.e., there is no vector subspace W ⊂ V such that
dimW ≤ k and Xi ⊂ W for all i. By the sum formula for dimensions of vector subspaces, we
know that dim(X0+ · · · +Xk) ≤ k+1; furthermore, if strict inequality holds, then X0+ · · · +Xk

is a vector space of dimension ≤ k containing each Xi, and hence we know that all the subspaces
Xi belong to some geometric subspace S1(W ) of dimension less than k. Since we are assuming
this does not happen, it follows that dim(X0 + · · · +Xk) = k+ 1, and accordingly the k-plane

S1(X0 + · · · +Xk)

contains all the 1-dimensional subspacesXi. To prove the uniqueness part of (G-1), suppose that
S1(W ) is a k-plane such that Xi ⊂W for all i. It follows immediately that X0 + · · · +Xk ⊂ W
and

k + 1 = dim(X0 + · · · +Xk) ≤ dimW = k + 1

and hence (X0 + · · · +Xk) = W by Theorem A.8 so that S1(X0 + · · · +Xk) is the unique
k-plane containing all the Xi.�

PROOF OF (G-2). Suppose that Xi ∈ S1(W ) for 0 ≤ i ≤ m, and assume that the set
{X0, · · · , Xm } is independent. By the previous proof, the unique m-plane containing the Xi is
S1(X0 + · · · +Xm); since Xi ⊂W by our hypotheses, it follows that (X0 + · · · +Xm) ⊂ W ,
and therefore we also have S1(X0 + · · · +Xm) ⊂ S1(W ).�

PROOF OF (G-3). Suppose that S1(W ) is a k-plane, so that dimW = k+1. Let w0, · · · ,wk

be a basis for W , and let for each i such that 0 ≤ i ≤ k let Xi be the 1-dimensional vector
subspace spanned by wi. Then {X0, · · · , Xk } is a set of k + 1 distinct points in S1(W ).�

The next result will show that a strengthened form of (G-4) holds for S1(V ).

Theorem III.8. If P and Q are geometrical subspaces of S1(V ) then

d(P ) + d(Q) = d(P ? Q) + d(P ∩Q) .

The difference between this statement and (G-4) is that the latter assumes P ∩Q 6= ∅, but the
theorem contains no such assumption.

Proof. We shall first derive the following equations:
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(i) S1(W1 ∩ W2) = S1(W1) ∩ S1(W2)

(ii) S1(W1 + W2) = S1(W1) ? S1(W2)

Derivation of (i). X is a 1-dimensional subspace of W1∩W2 if and only if X is a 1-dimensional
subspace of both W1 and W2.

Derivation of (ii). If W is a vector subspace of U , then S1(W ) ⊂ S1(U). therefore
S1(Wi) ⊂ S1(W1 + W2) for i = 1, 2. Therefore we also have S1(W1 +W2) ⊂ S1(W1)?S1(W2).
To prove the reverse inclusion, choose U such that S1(U) = S1(W1) ? S1(W2). Then Wi ⊂ U
for I = 1, 2 follows immediately, so that W1 +W − 2 ⊂ U . Consequently we have

S1(W1 + W2) ⊂ S1(U) ⊂ S1(W1 + W2)

which immediately yields S1(W1 +W2) = S1(U) = S1(W1 +W2).

To prove the theorem, note that

d (S1(W1) ? S1(W2) ) = d (S1(W1 + W2) ) =

dim(W1 +W2) − 1 = dimW1 + dimW2 − dimW1 ∩W2 − 1 =

(dimW1 − 1) + (dimW2 − 1) − (dim(W1 ∩W2) − 1) =

d (S1(W1) ) + d (S1(W2) ) − d (S1(W1 ∩W2) ) .�

EXAMPLE 1. If S1(V ) is 2-dimensional, then Theorem 9 states that every two lines in S1(V )
have a common point because d(L1 ? L2) ≤ 2 = d (S1(V ) ) implies

d(L1 ∩ L2) = d(L1) + d(L2) − d(L1 ? L2) ≥ 1 + 1 − 2 = 0 .

EXAMPLE 2. Similarly, if S1(V ) is 3-dimensional, then every pair of planes has a line in
common because d(P1 ? P2) ≤ 3 = d (S1(V ) ) implies

d(P1 ∩ P2) = d(P1) + d(P2) − d(P1 ? P2) ≥ 2 + 2 − 3 = 1 .

The next result will play a significant role in Chapter IV.

Theorem III.9. If V as above is at least 2-dimensional, then every line in S1(V ) contains at
least three points.

Proof. Let W be a 2-dimensional subspace of V , and let w1 and w2 form a basis for W . Then
S1(W ) contains the three distinct points Span(w1), Span(w2), and Span(w1 + w2).�

Projective extension of the affine space V

Given an n-dimensional vector space V over a field F, we shall now construct a projective
extension of the affine space structure on V which generalizes the previous construction of FP

2

from 2. The central object in this construction is a 1–1 mapping JV from V to P(V ) = S1(V ×F)
which sends v ∈ V to the 1-dimensional vector subspace of V × F spanned by (v, 1). Notice
that V × F is a vector space with addition and scalar multiplication defined coordinatewise. As
in the previous construction, a point is said to be ordinary if it lies in the image of JV , and the
remaining points, which are represented by homogeneous coordinates of the form (v, 0), where
v 6= 0, are called ideal points. Once again, the ideal point with homogeneous coordinates (v, 0)
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is the point at infinity on the line joining 0 to v. We may summarize the preceding discussion
as follows:

Theorem III.10. A point in P(V ) = S1(V × F) is either ordinary or ideal but not both.�

Finally, we include an analog of Theorem II.17:

Theorem III.11. A set H ⊂ FP
n is an (n−1)-plane if and only if there exist a1, · · · , an+1 ∈ F

not all zero such that x ∈ H if and only if there exist homogeneous coordinates (x0, · · · , xn)
for x such that

∑
i aixi = 0.

Proof. The theorem follows because a subset of F
n+1 is an n-dimensional vector subspace if

and only if it is the set of all points which solve a nontrivial linear homogeneous equation of the
type described in the theorem (compare Theorem A.10).�

Several additional and important properties of the 1–1 mapping

JV : V −→ P(V ) = S1(V × F)

are developed in the exercises, and the latter are particularly worthy of attention.

EXERCISES

1. Translate the following statements about F
3 into the language of ideal points.

(a) Through a given point there is a unique plane parallel to a given plane.

(b) Two lines which are parallel to a third line are parallel to each other.

(c) If a line is parallel to each of two intersecting planes it is parallel to their line of intersection,
and conversely.

(d) If a line L is parallel to a plane P any plane containing L cuts P in a line parallel to L.

(e) Through a given line one plane, and only one, can be passed parallel to a given skew line.

(f) Through a given point one plane, and only one, can be passed that is parallel to each of two
skew lines.

(g) All the lines through a point and parallel to a given plane lie on a plane parallel to the first
plane.

(h) If a plane contains one of two parallel lines but not the other, it is parallel to the other line.

(i) The intersection of a plane with two parallel planes is a pair of parallel lines.

2. Let V be a vector space over F of dimension ≥ 3, let x0, · · · ,xm be distinct points in
S1(V ), and for each i let x̃i be a set of homogeneous coordinates for xi. Prove that the set
{x0, · · · ,xm } ⊂ S1(V ) is geometrically independent if and only if the set { x̃0, · · · , x̃m } ⊂ V
is linearly independent.

3. Determine which of the following vectors in R
3 correspond to homogeneous coordinates of

collinear points in RP
2:

(i) (5, 2, 4) (5, -2, 1) (15, 2, 9)
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(ii) (3, 1, -2) (8, -3, 4) (5, -2, 6)

(iii) (1, 5, 1) (1, 1, -1) (3, 4, 1)

(iv) (1, 2, 3) (3, 0, 3) (-2. 3, -1)

4. Determine which of the following vectors in R ∗ 4 correspond to homogeneous coordinates
of collinear or coplanar points in RP

3:

(i) (1, 2, 1, 3) (2, 1, 3, 3) (1, 0, 3, 0) (2, 1, 1, 5)

(ii) (1, 1, 2, 1) (0, 1, 1, 2) (-1, 1, 2, 0) (2, 0, 0, -3)

(iii) (1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)

(iv) (1, 2, 1, 0) (1, 0, -1, -1) (0, 2, 2, 1) (1, 2, 0, -1)

5. Let F be a field with q elements (for example, if p is a prime then the field Zp has p
elements). Prove that FP

n has 1 + q + · · · + qn points. [Hint: Let π : F
n+1 − 0 → FP

n be
the map taking a nonzero vector to the point for which it is a set of homogeneous coordinates.
Explain why there are (q−1) possible choices of homogeneous coordinates for every point. Using
simple counting considerations, show that the number k of points in FP

n times the number of
choices for homogeneous coordinates is equal to the number of nonzero elements in F

n+1, which
is qn+1 − 1. This yields an equation for k; solve this equation.]

6. For each of the pairs of planes in R
3 given below, the intersection is a line L in R

3. Find
homogeneous coordinates for the ideal point of L.

(i) 3x + 3y + z = 2 and 3x − 2y = −13

(i) 1x + 2y + 3z = 4 and 2x + 7y + z = 8

7. Prove Theorem 11.

HYPOTHESIS AND NOTATION. For the rest of these exercises, assume that V
is a finite-dimensional (left or right) vector space over F. If x ∈ V is nonzero, we
shall denote the 1-dimensional subspace spanned by x by F · x or more simply
by Fx.

8. Using Theorem 9, answer the following questions and prove that your answer is correct:

(i) In S1(V ), what is the intersection of a line with a hyperplane that does not contain it?

(ii) In S1(V ), what is the smallest number of hyperplanes that do not contain a common point?

9. Prove that the projective extension map

JV : V −→ P(V ) = S1(V × F)

is 1–1 but not onto.

10. Let Q be a k-plane in V (where k ≤ dimV ). Prove that J [Q] is contained in a unique
k-plane Q′ ⊂ P(V ). [Hint: If {x0, · · · ,xk } is an affine basis for Q, let W be the affine span
of the vectors (xi, 1) and consider P(W ).]

11. In the preceding exercise, prove that the ideal points of P(W ) form a (k − 1)-plane in
P(V × F). In particular, every line contains a unique ideal point and every plane contains a
unique line of ideal points.
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12. (Partial converse to Exercise 10). Let W be a (k+ 1)-dimensional subspace of V ×F such
that

dimW − dim
(
W ∩ (V × {0}

)
= 1 .

Prove that J−1
[
P(W )

]
is a k-plane of V .

13. Let V and W be vector spaces over F, and let T : V →W be a linear transformation that
is one-to-one.

(i) Let v 6= 0 in V . Show that the mapping S1(T ) : S1(V ) → S1(W ) taking F · v to F · T (v) is
well-defined (i.e., if v and x are nonzero vectors that are nonzero multiples of each other than
so are their images under T ).

(ii) If S : W → X is also a linear transformation, show that S1(S oT ) = S1(S) oS1(T ). Also
show that if T is an identity mapping then so is S1(T ).

(iii) If T is invertible, prove that S1(T ) is also invertible and that S1(T )−1 = S1

(
T−1

)
.

14. Suppose that V is an n-dimensional vector space and let {x1, · · · ,xn } and {y1, · · · ,yn }
be geometrically independent subsets of S1(V ). Find an invertible linear transformation T such
that S1(T ) maps xi to yi for 1 ≤ i ≤ n.

15. Let T0 be an element of the affine group Aff(V ). Prove that there is an invertible linear
transformation T : V × F→ V × F such that

S1(T ) oJV = JV
oT0 .

[Hint: Let {v1, · · · ,vn } be a linear basis for V and choose T so that T (vi, 0) = (T0(vi), 0 )
for all i and T (0, 1) = (0, 1). Show that T (x, 1) = (ϕ(x), 1) for all x ∈ V using the expansion
of x as an affine combination of the basis vectors {v1, · · · ,vn } and the zero vector.]

16. Suppose that T : V ×F→ V ×F is an invertible linear transformation which maps V ×{0}
to itself. Prove that S1(T ) maps JV [V ] to itself and the induced self-map of V is in Aff(V ).

17. Let S and T be geometrical subspaces of S1(V ). Prove that the join S ? T is the set of all
points z such that z ∈ S ∪ T or z ∈ xy, where x ∈ S and y ∈ T . In other words, the join S ? T
is the set of all points on lines joining points of S and T . [Hint: If S = S1(W ) and T = S1(U),
then S ? T = S1(W + U).]

Note. A corresponding description of the join in affine geometry is given in
Appendix B.
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Addendum. Synthetic construction of projective space

The preceding three sections of this chapter described the analytic approach to generalizing
the synthetic construction of Section III.1. In this addendum to Section III.4 we shall discuss
the synthetic approach to construction of a projective space from an affine space. Since some
of the arguments are lengthy and we shall not use this material subsequently except in a few
peripheral exercises and remarks, many of the details have been omitted; the latter are generally
straightforward (but often tedious), and thus they are left to the reader.

We shall need the following results on affine incidence spaces of arbitrary dimension. The proofs
are quite similar to their 3-dimensional special cases in Section II.1.

Theorem III.12. Suppose that L, M and N are lines in an affine incidence n-space (n ≥ 2)
and L 6= N . If L||M and M ||N , then L||N .�

Theorem III.13. Let S be an an affine n-space let H be a hyperplane in S, and let x be a point
of S which does not lie in H. Then there is a unique hyperplane H ′ in S such that x ∈ H ′ and
H ∩H ′ = ∅ (in other words, a parallel hyperplane to H which passes through x).�

Motivated by the 2-dimensional case, define a direction in an affine n-space S to be an equivalence
class of parallel lines, and set S∧∧∧ equal to S together with all the directions in S. Denote the
set of all directions by S∞. We define tso types of geometrical subspaces of S∧∧∧ as follows:

(A) Extensions of subspaces of S. If P is a geometrical subspace of S, set P ∧∧∧ equal to
P together with all directions L∧∧∧ containing a representative L0 which lies in P . The
dimension of P∧∧∧ is defined to be equal to the dimension of P .

(B) Ideal geometrical subspaces or subspaces at infinity. If P is a geometrical subspace
of S, then its set of ideal points P∞ = P∧∧∧ ∩ S∞ is a geometrical subspace whose
dimension is equal to d(P )− 1. [In particular, S∞ is a hyperplane in S, and it is called
the ideal hyperplane or the hyperplane (of points) at infinity.

We shall take the above as the definition of the synthetic projective extension S∧∧∧ of an affine
n-space S, and XS : S → S∧∧∧ will denote the inclusion of S in its projective extension.

The following result expresses the equivalences between the synthetic and analytic approaches
to projective extensions of coordinate affine spaces.

Theorem III.14. Let V be a finite-dimensional vector space over F such that dimV ≥ 2. Then
there is a 1− 1 correspondence

hV : V ∧∧∧ −→ S1(V × F)

with the following properties:

(i) JV = hV
oXV

(ii) A subset Q ⊂ V ∧∧∧ is a k-plane in V ∧∧∧ if and only if hV [Q] is a k-plane in S1(V × F).
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Proof. We shall break the argument down into a sequence of steps.

STEP 1. Construction of a 1− 1 correspondence between V ∧∧∧ and S1(V × F).

If v ∈ V and X(v) = v′, define hV (v′) = F · (v, 1); this construction is well-defined since the
mapping XV is 1–1. Given an ideal point L∧∧∧ associated to some line L, let u 6= 0 span the
unique 1-dimensional vector subspace of V which is parallel or equal to L, and let

hV

(
L∧∧∧
)

= F · (u, 0) .

This is well-defined because L||M implies that 0u is parallel or equal to M (by Theorem 13),
and the right hand side of the formula remains the same if we replace u by any other nonzero
point u′ of 0u (since u′ and u are nonzero multiples of each other). By definition we have
JV = hV

oXV .

We shall now show that hV is 1–1. (a) If a, b ∈ V , are distinct vectors, then XV (a) 6= XV (b).
If the images of these points under hV are equal, then we have

JX(a) = hV
oXV (a) = hV

oXV (b) = JV (b)

which is a contradiction because JV is known to be 1–1. Therefore the map hV is 1–1 on the
image of XV . (b) Suppose now that L∧∧∧ and M∧∧∧ are ideal points such that

hV

(
L∧∧∧
)

= hV

(
M∧∧∧

)
.

This means that there is a single line 0u in V which is parallel or equal to each of L and M .
which in turn means that L∧∧∧ = M∧∧∧. (c) Suppose now that we have an ordinary point XV (a)
and an ideal point L∧∧∧ which have the same image under hV . If this is true then F ·(a, 1) is equal
to F · (u, 0), where u is given as before. Since every nonzero vector in the first subspace has a
nonzero last coordinate and every vector in the second subspace has a zero last coordinate, it
is clear that the two subspaces cannot be equal, and therefore an ordinary point and an ideal
point cannot have the same images under hV . — This completes the proof that hV is 1–1.

We shall now show that hV is onto. Let 0 6= (v, c) ∈ V × F. If c 6= 0, then we have

F · (v, c) = F · (c−1 v, 1) = JV (c−1v) = hV
oXXV (c−1v) .

On the other hand, if c = 0 then v 6= 0 and

F · (v, 0) = hV

(
(0v)∧∧∧

)
.

STEP 2. Under the above correspondence, a subset Q ⊂ V ∧∧∧ is a hyperplane if hV [Q] is a
hyperplane in S1(V × F). — We shall only sketch the argument, leaving verification of the
details to the reader.

This uses a result from the Exercises for Section 4 of Appendix A: If X is m-dimensional vector
space over F, then Y ⊂ X is an (m − 1)-dimensional vector subspaces if and only if there is a
nonzero linear transformation (or functional) g : X → F such that x ∈ Y if and only if g(x) = 0.
— The linear functional g is not unique, for if Y is the zero set for g and c is a nonzero constant,
then Y is also the zero set for c · g.

By the previously mentioned exercises and the discussion following Theorem A.12, every linear
functional on V × F has the form g(v, t) = g0(v) + a · t, where g0 is a linear functional on V
and a ∈ F. — Extensions of ordinary hyperplanes in V are defined by expressions of this form
for which g0 6= 0, and the ideal hyperplane in V is defined by linear functionals of this form in
which g0 = 0 and b 6= 0.
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Suppose we are given a hyperplane H∧∧∧ in V ∧∧∧ which is the extension of a hyperplane H in V .
Then H is defined by an equation of the form f(v) = b for some nonzero linear functional f
and scalar b, and hV [H∧∧∧ ] is equal to S1(W ), where W is the zero set of the linear functional
g(v, t) = f(v)− b · t. Since we also know that hV maps the ideal hyperplane in V ∧∧∧ to the zero
set of the functional g(v, t) = t, it follows that the image of a hyperplane in V ∧∧∧ is a hyperplane
in S1(V × F).�

Conversely, suppose that S1(W ) is a hyperplane in S1(V ×F), and suppose that the n-dimensional
vector subspace W is defined by the nonzero linear functional. Write g(v, t) = g0(v) + a · t
as above, where either g0 6= 0 or a 6= 0. In the first of these cases S1(W ) is the image of
the extended ordinary hyperplane defined by the equation g0(v) = −a, and in the second case
S1(W ) is the image of the ideal hyperplane.

STEP 3. Let k be an integer satisfying 1 ≤ k ≤ n−2. In both V ∧∧∧ and FP
n, a k-dimensional ge-

ometrical subspace Q is the intersection of an (k+1)-dimensional subspace Q ′ with a hyperplane
H not containing it.

The proofs of these statements are variants of Exercise II.5.3 which shows that every geometrical
subspace is an intersection of hyperplanes. There is an analogous result for vector subspaces
of an m-dimensional vector spaces: Every k-dimensional subspace is an intersection of (m− k)
distinct hyperplanes. Once again, the argument breaks down into various cases.

STEP 4. By downward induction on k such that 1 ≤ k ≤ (n−1), one shows that Q is a k-plane
in both V ∧∧∧ if and only if hV [Q] is a k-plane in FP

n.

Once again, we shall only sketch the argument: The case k = (n− 1) is covered by Step 2, and
the recursive step — showing that the validity of the result for (k + 1) implies its validity for k
— follows from the description of k-planes in Step 3.�

Abstract projective extensions

Definition. Let S be a geometrical incidence space of dimension n ≥ 3. An abstract projective
extension of S is a 1–1 map ϕ : S → FP

n, where F is some skew-field, such that if Q is a k-plane
in S then there is a unique k-plane Q′ ⊂ FP

n such that Q = ϕ−1[Q′].

The results of this chapter prove the existence of projective extensions for the coordinate affine
n-spaces (in fact, for all affine n-spaces by Theorem II.38). On the other hand, it is not difficult
to see that projective extensions exist for many other geometrical incidence spaces (e.g., this
holds for the examples in Exercises II.5.7 and II.5.8). In fact, if one has a 3-dimensional (regular)
geometrical incidence space which also has a notion of betweenness satisfying Hilbert’s Axioms
of Order, then the existence of an abstract projective extension (with a suitable analog of
betweenness) is given by results due to A. N. Whitehead.9 Extremely general, and purely
incidence-theoretic, conditions for the existence of projective extensions have been established

9See Chapter III of the book, The Axioms of Descriptive Geometry, in the bibliography. — Alfred North
Whitehead (1861–1947) was an extremely well-known philosopher who worked extensively on the logical founda-
tions of mathematics during the period from the late 1880s until about 1913, at which time he shifted his attention
to other areas of philosophy. Whitehead is particularly known for his study of the foundations of mathematics
with Bertrand Russell (1872–1970), which is largely contained in a massive and ambitious three volume work
called Principia Mathematica.
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by S. Gorn.10 A discussion of the classical Non-Euclidean geometries using their projective
extensions appears in Chapters 12 and 13 of the book by Fishback listed in the bibliography.

THE 2-DIMENSIONAL CASE. Clearly there is no problem in formulating a definition of abstract
projective extension for incidence planes, and the constructions of this chapter shows that every
affine coordinate incidence plane admits a projective extension. In fact, if one defines an abstract
notion of projective plane as in Section IV.1 below, then the constructions of Section III.1 show
that for every abstract affine plane P there admits a map ϕ : P → P ∗ such that P ∗ is an
abstract projective plane and (as before) if L is a line in P then there is a unique line L ′ ⊂ FP

n

such that L = ϕ−1[L′]. However, two major differences are that (i) in contrast to the situation
in higher dimensions, we cannot always take P ∗ to be a coordinate projective plane FP

2, (ii) the
proofs of the results of Whitehead and Gorn on projective extensions for non-affine incidence
structures do not extend to the 2-dimensional case. We shall discuss these points further in the
next chapter.

EXERCISES

1. Assuming that S is an affine n-space, prove that S∧∧∧ is a regular geometrical incidence space,
and in fact the dimensions of subspaces satisfy the strong form of the regularity condition

d(T1 ? T2) = d(T1) + d(T2) − d(T1 ∩ T2)

for all geometrical subspaces T1 and T2.

2. Suppose that f : S → S ′ is a geometric symmetry of an affine n-space. Prove that f extends
to a unique geometric symmetry f∧∧∧ of S∧∧∧. [Hint: If L||L′, then f [L]||f [L′]; verify this and use
it to define f∧∧∧.]

3. In the notation of the preceding exercise, prove that (idS)∧∧∧ is the identity on S∧∧∧ and if
g : S → S is another symmetry then (g of)∧∧∧ = g∧∧∧ of∧∧∧. Finally, show that

(f−1)∧∧∧ =
(
f∧∧∧
)−1

.

[Hint: In each desired identity, explain why both sides of the equation extend the same geometric
symmetry of S.]

4. Prove Theorems 13 and 14, and fill in the details for the proof of Theorem 15.

10A reference to the original 1940 research article appears in the bibliography. — Saul Gorn (1913–1992)
began his professional career as a mathematician, but his interests moved to computer science with the emergence
of that subject during the 1940s, and he played a significant role in the establishment of computer science
as an independent branch of the mathematical sciences. As a researcher, he is best known for his theory of
mechanical languages based upon work of twentieth century philosophers like L. Wittgenstein (1889–1951) on
human linguistics.



CHAPTER IV

SYNTHETIC PROJECTIVE GEOMETRY

The purpose of this chapter is to begin the study of projective spaces, mainly from the synthetic point

of view but with considerable attention to coordinate projective geometry.

1. Axioms for projective geometry

The basic incidence properties of coordinate projective spaces are expressible as follows:

Definition. A geometrical incidence space (S,Π, d) is projective if the following hold:

(P-1) : Every line contains at least three points.

(P-2) : If P and Q are geometrical subspaces of S then

d(P ? Q) = d(P ) + d(Q) − d(P ∩Q) .

In particular, (P-2) is a strong version of the regularity condition (G-4) introduced in Section
II.5. The above properties were established for FP

n (n ≥ 2) in Theorems III.10 and III.9
respectively. It is useful to assume condition (P-1) for several reasons; for example, lines in
Euclidean geometry have infinitely many points, and (P-1) implies a high degree of regularity
on the incidence structure that is not present in general (compare Exercise 2 below and Theorem
IV.11). — In this connection, note that Example 2 in Section II.5 satisfies (P-2) and every line
in this example contains exactly two points.

Elementary properties of projective spaces

The following is a simple consequence of the definitions.

Theorem IV.1. If S is a geometrical subspace of a geometrical incidence space S ′, then S is a
geometrical incidence space with respect to the subspace incidence structure of Exercise II.5.3.�

If P is a projective incidence space and d(P ) = n ≥ 1, then P is called a projective n-space; if
n = 2 or 1, then one also says that P is a projective plane or projective line, respectively.

Theorem IV.2. If P is a projective plane and L and M are distinct lines in P , then L ∩M
consists of a single point.�

Theorem IV.3. If S is a projective 3-space and P and Q are distinct planes in S, then P ∩Q
is a line.�

63
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These follow from (P-2) exactly as Examples 1 and 2 in Section III.4 follow from Theorem III.9.

We conclude this section with another simple but important result:

Theorem IV.4. In the definition of a projective space, property (P-1) is equivalent to the
following (provided the space is not a line):

(P-1′′′) : Every plane contains a subset of four points, no three of which are collinear.

Proof. Suppose that (P-1) holds. Let P be a plane, and let X, Y and Z be noncollinear
points in P . Then the lines L = XY , M = XZ, and N = Y Z are distinct and contained in P .
Let W be a third point of L, and let V be a third point of M . 

 

Figure IV.1

Since L and M are distinct and meet at X, it follows that the points V, W, Y, Z must be
distinct (if any two are equal then we would have L = M ; note that there are six cases to check,
with one for each pair of letters taken from W,X, Y, Z). Similarly, if any three of these four
points were collinear then we would have L = M , and therefore no three of the points can be
collinear (there are four separate cases that must be checked; these are left to the reader).�

Conversely, suppose that (P-1′′′) holds. Let L be a line, and let P be a plane containing L. By
our assumptions, there are four points A, B, C, D ∈ P such that no three are collinear.

 

Figure IV.2

Let M1 = AB, M2 = BC, M3 = CD, and M4 = AD. Then the lines M1 are distinct and
coplanar, and no three of them are concurrent (for example, M1 ∩M2 6= M3 ∩M4, and similarly
for the others). It is immediate that M1 contains at least three distinct points; namely, the
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points A and B plus the point where M1 meets M3 (these three points are distinct because no
three of the lines Mi are concurrent). Similarly, each of the lines M2, M3 and M4 must contain
at least three points.

If L is one of the four lines described above, then we are done. Suppose now that L is not equal
to any of these lines, and let Pi be the point where L meets Mi. If at least three of the points
P1, P2, P3, P4 are distinct, then we have our three distinct points on L. Since no three of the
lines Mi are concurrent, it follows that no three of the points Pi can be equal, and therefore if
there are not three distinct points among the Pi then there must be two distinct points, with
each Pi equal to a unique Pj for j 6= i. Renaming the Mi if necessary by a suitable reordering of
{1, 2, 3, 4}, we may assume that the equal pairs are given by P1 = P3 and P2 = P4. The drawing
below illustrates how such a situation can actually arise. 

 

 
Figure IV.3

We know that P1 = P3 and P2 = P4 are two distinct points of L, and Figure IV.3 suggests that
the point Q where AC meets L is a third point of L. To prove this, we claim it will suffice to
verify the following statements motivated by Figure IV.3:

(i) The point A does not lie on L.

(ii) The line AC is distinct from M1 and M2.

Given these properties, it follows immediately that the three lines AC, M1 and M2 — which all
pass through the point A which does not lie on L — must meet L in three distinct points (see
Exercise 4 below).

Assertion (i) follows because A ∈ L implies

A ∈ M2 ∩ L = M4 ∩ M2 ∩ L

and since A ∈ M1 ∩M2 this means that M1, M2, and M4 are concurrent at A. However, we
know this is false, so we must have A ∈ L. To prove assertion (ii), note that if AC = M1 = AB,
then A, B, C are collinear, and the same conclusion will hold if AC = M2 = BC. Since the
points A, B, C are noncollinear by construction, it follows that (ii) must also hold, and as
noted above this completes the proof that L has at least three points.�
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EXERCISES

1. Let (S,Π, d) be an n-dimensional projective incidence space (n ≥ 2), let P be a plane in S,
and let X ∈ P . Prove that there are at least three distinct lines in P which contain X.

2. Let n ≥ 3 be an integer, let P be the set {0, 1, · · · , n}, and take the family of subsets
L whose elements are {1, · · · , n} and all subsets of the form {0, k}, where k > 0. Show that
(P,L) is a regular incidence plane which satisfies (P-2) but not (P-1). [Hint: In this case
(P-2) is equivalent to the conclusion of Theorem IV.2.]

3. This is a generalization of the previous exercise. Let S be a geometrical incidence space of
dimension n ≥ 2, and let ∞S be an object not belonging to S (the axioms for set theory give
us explicit choices, but the method of construction is unimportant). Define the cone on S to
be S• = S ∪ {∞S}, and define a subset Q of S• to be a k-planes of S• if and only if either
Q is a k-plane of S or Q = Q0 ∪ {∞S}, where Q0 is a (k − 1)-plane in S (as usual, a 0-plane
is a set consisting of exactly one element). Prove that S• with these definitions of k-planes is a
geometrical incidence (n+ 1)-space, and that S• satisfies (P-2) if and only if S does. Explain
why S• does not satisfy (P-1) and hence is not projective.

4. Let (P,L) be an incidence plane, let L be a line in P , let X be a point in P which does
not lie on L, and assume that M1, · · · Mk are lines which pass through X and meet L in points
Y1, · · · Yk respectively. Prove that the points Y1, · · · Yk are distinct if and only if the lines
M1, · · · Mk are distinct.

5. Let (S,Π, d) be a regular incidence space of dimension ≥ 3, and assume that every plane in
S is projective (so it follows that (P-1) holds). Prove that S is projective. [Hint: Since S is
regular, condition (P-2) can only fail to be true for geometrical subspaces Q and R such that
Q ∩ R = ∅. If d(R) = 0, so that R consists of a single point, then condition (P-2) holds by
Theorem II.30. Assume by induction that (P-2) holds whenever d(R0) ≤ k − 1, and suppose
that d(R) = k. Let R0 ⊂ R be (k − 1)-dimensional, and choose y ∈ R such that y 6∈ R0. Show
that Q ? R0 ⊂ Q ? R, and using this prove that d(Q ? R) is equal to d(Q) + k or d(Q) + k + 1.
The latter is the conclusion we want, so assume it is false. Given x ∈ Q, let xR denote the
join of {x} and R, and define yQ similarly. Show that xR ∩ Q is a line that we shall call
L, and also show that R ∩ yQ is a line that we shall call M . Since L ⊂ Q and M ⊂ R, it
follows that L ∩M = ∅. Finally, show that xR ∩ yQ is a plane, and this plane contains
both L and M . Since we are assuming all planes in S are projective, it follows that L ∩M is
nonempty, contradicting our previous conclusion about this intersection. Why does this imply
that d(Q ? R) = d(Q) + k + 1?]
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2. Desargues’ Theorem

In this section we shall prove a synthetic version of a fundamental result of plane geometry
due to G. Desargues (1591–1661). The formulation and proof of Desargues’ Theorem show that
projective geometry provides an effective framework for proving nontrivial geometrical theorems.

Theorem IV.5. (Desargues’ Theorem) Let P be a projective incidence space of dimension at
least three, and let {A,B,C} and {A′, B′, C ′} be triples of noncollinear points such that the lines
AA′, BB′ and CC ′ are concurrent at some point X which does not belong to either of {A,B,C}
and {A′, B′, C ′}. Then the points

D ∈ BC ∩ B′C ′

E ∈ AC ∩ A′C ′

F ∈ AB ∩ A′B′

are collinear.

 

 

Figure IV.4

Proof. The proof splits into two cases, depending upon whether or not the sets {A,B,C} and
{A′, B′, C ′} are coplanar. One feature of the proof that may seem counter-intuitive is that the
noncoplanar case is the easier one. In fact, we shall derive the coplanar case using the validity
of the result in the noncoplanar case.
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CASE 1. Suppose that the planes determined by {A,B,C} and {A′, B′, C ′} are distinct. Then
the point X which lies on AA′, BB′ and CC ′ cannot lie in either plane. On the other hand,
it follows that the points {A′, B′, C ′} lie in the 3-space S determined by {X,A,B,C}, and
therefore we also know that the planes ABC and A′B′C ′ are contained in S. These two planes
are distinct (otherwise the two triples of noncollinear points would be the same), and hence their
intersection is a line. By definition, all three of the points D,E, F all lie in the intersection of
the two planes, and therefore they all lie on the two planes’ line of intersection.

CASE 2. Suppose that the planes determined by {A,B,C} and {A′, B′, C ′} are identical. The
idea is to realize the given configuration as the photographic projection of a similar noncopla-
nar configuration on the common plane. Since photographic projections onto planes preserve
collinearity, this such a realization will imply that the original three points D,E, F are all
collinear.

Under the hypothesis of Case 2, all the points under consideration lie on a single plane we shall
call P . Let Y be a point not on P , and let Z ∈ AY be another. Consider the line A′Z; since A′

and Z both lie on the plane AXY , the whole line A′Z lies in AXY . Thus A′Z and XY meet in
a point we shall call Q.

 

 

Figure IV.5

Consider the following three noncoplanar triangle pairs:

(i) C ′QB′ and CYB.

(ii) C ′QA′ and CYA.

(iii) B′QA′ and BYA.

Since AA′, BB′ and CC ′ all meet at X, the nonplanar case of the theorem applies in all thre
cases. Let G ∈ BY ∩ B ′Q and H ∈ CY ∩ C ′Q, and note that Z ∈ AR ∩ A′Q. Then the truth
of the theorem in the noncoplanar case implies that each of the triples

{D,H,G}, {F, Y,G}, {E,H,Z}
is collinear.
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Let P ′ be the planeDFZ. ThenG ∈ P ′ by the collinearity of the second triple, and henceH ∈ P ′

by the collinearity of the first triple. Since Z,H ∈ P ′, we have E ∈ P ′ by the collinearity of the
third triple. All of this implies that

E ∈ P ′ ∩ P = DF

which shows that the set {D,E, F} is collinear.�

Definition. A projective plane P is said to be Desarguian if Theorem 5 is always valid in P .

By Theorem 5, every projective plane that is isomorphic to a plane in a projective space of higher
dimension is Desarguian. In particular, if F is a skew-field, then FP

2 is Desarguian because FP
2

is isomorphic to the plane in FP
3 consisting of all points having homogeneous coordinates in F

4

of the form (x1, x2, x3, 0). In Section 4 we shall note that, conversely, every Desarguian plane
is isomorphic to a plane in a projective 3-space.

An example of a non-Desarguian projective plane (the Moulton plane)1 can be given by taking
the real projective plane RP

2 as the underlying set of points, and modifying the definition of
lines as follows: The new lines will include the line at infinity, all lines which have slope ≤ 0
or are parallel to the y-axis, and the broken lines defined by the equations

y = m(x− a), x ≤ a (i.e., y ≤ 0)
y = 1

2m(x− a), x ≥ a (i.e., y ≥ 0)

where m > 0. As the points at infinite of the latter lines we take those belonging to y = m(x−a).
A straightforward argument shows that the axioms for a projective plane are satisfied (see
Exercise 4 below). However, as Figure IV.6 suggests, Desargues’ Theorem is false in this plane.

 

 

Figure IV.6

1Forest Ray Moulton (1872–1952) was an American scientist who worked mostly in astronomy but is also
recognized for his contributions to mathematics.
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Informally speaking, Desargues’ Theorem fails to hold for some projective planes because there is
not enough room in two-dimensional spaces to apply standard techniques.2 Perhaps surprisingly,
there are several other significant examples of geometrical problems in which higher dimensional
cases (say n ≥ N , where N depends upon the problem) are simpler to handle than lower
dimensional ones (see the paper of Gorn for another example).

Finally, we note that Theorems II.27–29 are basically special cases of Desargues’ Theorem.

EXERCISES

1. Explain why the results mentioned above are essentially special cases of Desargues’ Theorem.

2. Is it possible to “plant ten trees in ten rows of three?” Explain your answer using Desargues’
Theorem.3

3. Explain why each of the following pairs of triangles in Euclidean 3-space satisfies the
hypotheses of Desargues’ Theorem.

(i) Two coplanar triangles such that the lines joining the corresponding vertices are par-
allel.

(ii) A triangle and the triangle formed by joining the midpoints of its sides.

(iii) Two congruent triangles in distinct planes whose corresponding sides are parallel.

4. Prove that the Moulton plane (defined in the notes) is a projective plane.

2For an example of a finite Non-Desarguian plane. see pages 158–159 of Hartshorne’s book.
3For more information on the relevance of projective geometry to counting and arrangement problems, see

Section IV.3.
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3. Duality

By the principle of duality ... geometry is at one stroke [nearly] doubled in extent with no

expenditure of extra labor, — Eric Temple Bell (1883–1960), Men of Mathematics4

Consider the following fundamental properties of projective planes:

(1) Given two distinct points, there is a unique line containing both of them.

(1∗) Given two distinct lines, there is a unique point contained in both of them.

(2) Every line contains at least three distinct points.

(2∗) Every point is contained in at least three distinct lines.

The important point to notice is that Statement (n∗) is obtained from Statement (n) by inter-
changing the following words and phrases:

(i) point ←→ line

(ii) is contained in ←→ contains

Furthermore, Statement (n) is obtained from Statement (n∗) by exactly the same process. Since
the four properties (1) − (1∗) and (2) − (2∗) completely characterize projective planes (see
Exercise 1 below), one would expect that points and lines in projective planes behave somewhat
symmetrically with respect to each other.

This can be made mathematically precise in the following manner: Given a projective plane
(P,L), we define a dual plane (P ∗,L∗) such that P ∗ is the set L of lines in P and L∗ is in 1–1
correspondence with P . Specifically, for each x ∈ P we define the pencil of lines with vertex x
to be the set

p(x) = { L ∈ L = P ∗ | x ∈ L } .
In other words, L ∈ p(x) if and only if X ∈ L. Let P ∗∗ denote the set of all pencils associated
to the projective plane whose points are given by P and whose lines are given by P ∗.

Theorem IV.6. If (P, P ∗) satisfies properties (1)−(1∗) and (2)−(2∗), then (P ∗, P ∗∗) also does.

Proof. There are four things to check:

(a) Given two lines, there is a unique pencil containing both of them.

(a∗) Given two pencils, there is a unique line contained in both of them.

(b) Every pencil contains at least three lines.

(b∗) Every line is contained in at least three pencils.

4See the bibliography for more information and comments on this book.
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However, it is clear that (a) and (a∗) are rephrasings of (1∗) and (1) respectively, and likewise
(b) and (b∗) are rephrasings of (2∗) and (2) respectively. Thus (1) − (1∗) and (2) − (2∗) for
(P ∗, P ∗∗) are logically equivalent to (1) − (1∗) and (2) − (2∗) for (P, P ∗).�

As indicated above, we call (P ∗, P ∗∗) the dual projective plane to (P, P ∗).

By Theorem 6 we can similarly define P ∗∗∗ to be the set of all pencils in P ∗∗, and it follows
that (P ∗∗, P ∗∗∗) is also a projective plane. However, repetition of the pencil construction does
not give us anything new because of the following result:

Theorem IV.7. Let (P, P ∗) be a projective plane, and let p0 : P → P ∗∗ be the map sending
a point x to the pencil p(x) of lines through x. Then p0 defines an isomorphism of incidence
planes from (P, P ∗) to the double dual projective plane (P ∗∗, P ∗∗∗).

Proof. By construction the map p0 is onto. It is also 1–1 because p(x) = p(y) implies every
line passing through x also passes through y. This is impossible unless x = y.

This it remains to show that L is a line in P if and only if p(L) is a line in P ∗∗. But lines in
P ∗∗ have the form

p(L) = {w ∈ P ∗∗ | L ∈ p(x) } .
where L is a line in P . Since L ∈ p(x) if and only if x ∈ L, it follows that p(x) ∈ p(L) if and only
if x ∈ L. Hence p(L) is the image of L under the map p0, and thus the latter is an isomorphism
of (projective) geometrical incidence planes.�

The preceding theorems yield the following important phenomenon5 which was described in the
first paragraph of this section; it was discovered independently by J.-V. Poncelet (1788–1867)
and J. Gergonne (1771–1859).

Metatheorem IV.8. (Principle of Duality) A theorem about projective planes remains true if
one interchanges the words point and line and also the phrases contains and is contained in.�

The justification for the Duality Principle is simple. The statement obtained by making the
indicated changes is equivalent to a statement about duals of projective planes which corresponds
to the original statement for projective planes. Since duals of projective planes are also projective
planes, the modified statement must also hold.

Definition. Let A be a statement about projective planes. The dual statement is the one
obtained by making the changes indicated in Metatheorem 8, and it is denoted by D(A) or A∗.

EXAMPLE 1. The phrase three points are collinear (contained in a common single line) dualizes
to three lines are concurrent (containing a common single point).

EXAMPLE 2. The property (P-1′′′), which assumes the existence of four points, not three
of which are collinear, dualizes to the statement, There exist four lines, no three of which are
concurrent. This statement was shown to follow from (P-1′′′) in the course of proving Theorem
4.

5This is called a Metatheorem because it is really a statement about mathematics rather than a theorem
within mathematics itself. In other words it is a theorem about theorems.
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By the metatheorem, a statement A∗ is true for all projective planes if A∗ is. On the other
hand, Theorem 7 implies that A∗∗ is logically equivalent to A. This is helpful in restating the
Principle of Duality in a somewhat more useful form:

Modified Principle of Duality. Suppose that A1, · · · ,An are statements about projective
planes. Then An is true in all projective planes satisfying A1, · · · ,An−1 if and only if A∗

n is
true in all projective planes satisfying A∗

1, · · · ,A∗
n−1.�

In practice, one often knows that the statements A1, · · · ,An−1 imply their own duals. Under
these circumstances, the Modified Principle of Duality shows that A∗

n is true if An is true, and
conversely. The next two theorems give significant examples of such statements; in both cases
we have (n− 1) = 1.

Theorem IV.9. If a projective plane contains only finitely many points, then it also contains
only finitely many lines.

Proof. Suppose the plane contains n elements. Then there are 2n subsets of the plane. But
lines are subsets of the plane, and hence there are at most 2n lines.�

In Theorems 11-15 we shall prove very strong duality results for projective planes with only
finitely many points. Recall that examples of such systems are given by the coordinate projective
planes ZpP

2, where p is a prime.

We shall now give a considerably less trivial example involving duality.

Theorem IV.10. If a projective plane (P, P ∗) is Desarguian, then the dual of Desargues’ The-
orem is also true in (P, P ∗).

Proof. The first step in the proof is to describe the dual result in terms of (P, P ∗).

The dualization of two abstract triples of noncollinear points is two distinct triples of non-
concurrent lines, which we denote by {α, β, γ } and {α′, β′, γ′ }. Next, the concurrency hy-
pothesis for AA′, BB′ and CC ′ dualizes to a hypothesis that E ∈ α ∩ α′, F ∈ β ∩ β′, and
D ∈ γ ∩ γ′ are collinear. Finally, the collinearity conclusion in Desargues’ Theorem dualizes to
a statement that three lines are concurrent. Specifically, if we set

A ∈ β ∩ γ A′ ∈ β′ ∩ γ′

B ∈ α ∩ γ B′ ∈ α′ ∩ γ′

C ∈ α ∩ β C ′ ∈ α′ ∩ β′

then we wish to show that AA′, BB′ and CC ′ are concurrent. As the drawing below illustrates,
the data for the dual theorem are similar to the data for the original theorem, the key difference
being that Desargues’ Theorem assumes concurrency of the lines AA′, BB′ and CC ′, using this
to prove the collinearity of D, E and F , while the dual theorem assumes collinearity of the three
points and aims to prove concurrency of the three lines.
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Figure IV.7

By construction, the lines B ′C ′, BC and DF all meet at E. Therefore Desargues’ Theorem
applies to the triples {C ′, C, F} and {B ′, B, D}, and hence we may conclude that the three
points

X ∈ BB′ ∩ CC ′

G ∈ BD ∩ CF
H ∈ B′D ∩ C ′F

are collinear. Using this, we obtain the following additional conclusions:

(1) B, D ∈ γ, and therefore γ = BD.

(2) B′, D ∈ γ′, and therefore γ ′ = B′D.

(3) C, F ∈ β, and therefore β = CF .

(4) C ′, F ∈ β′, and therefore β ′ = C ′F .

Therefore G ∈ γ ∩ β and H ∈ γ ′ ∩ β′. Since the common points of these lines are A and A′ by
definition, we see that X, A and A′ are collinear. In other words, we have X ∈ AA′∩BB′∩CC ′,
and hence the three lines are concurrent, which is what we wanted to prove.�
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Duality and finite projective planes

We shall illustrate the usefulness of duality by proving a few simple but far-reaching results
on projective planes which contain only finitely many points. We have already noted that for
each prime p there is a corresponding projective plane ZpP

2. As noted below, these are more
than abstract curiosities, and they play an important role in combinatorial theory (the study of
counting principles) and its applications to experimental design and error-correcting codes.

By Theorem 9, it follows that a projective plane is finite if and only if its dual plane is finite.
In fact, one can draw much stronger conclusions.

Theorem IV.11. Let P be a finite projective plane. Then all lines in P contain exactly the
same number of points.

Proof. Let L and M be the lines. Since there exist four point, no three of which are collinear,
there must exist a point p which belongs to neither L nor M . 

 

 

Figure IV.8

Define a map f : L → M by sending x ∈ L to the point f(x) where px meets M . It is a
straightforward exercise to verify that f is 1–1 and onto (see Exercise 6 below).�

Dualizing the preceding, we obtain the following conclusion.

Theorem IV.12. Let P be a finite projective plane. Then all points in P are contained in exactly
the same number of lines.�

Observe that the next result is self-dual, with the dual statement logically equivalent to the
original one.

Theorem IV.13. Let P be a finite projective plane. Then the number of points on each line is
equal to the number of lines containing each point.
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Proof. Let L be a line in P and let x 6∈ L. Define a map from lines through x to points on L
by sending a line M with x ∈ M to its unique intersection point with L. It is again a routine
exercise to show this map is 1–1 and onto (again see Exercise 6 below).�

Definition. The order of a finite projective plane is the positive integer n ≥ 2 such that every
line contains n+1 points and every point lies on n+1 lines. The reason for the subtracting one
from the common number is as follows: If F is a finite field with q elements, then the order of
FP

2 will be equal to q.

The results above yield the following interesting and significant restriction on the number of
points in a finite projective plane:

Theorem IV.14. Let P be a finite projective plane of order n. Then P contains exactly n2+n+1
points.

In particular, for most positive integers m it is not possible to construct a projective plane with
exactly m points. More will be said about the possibilities for m below.

Proof. We know that n + 1 is the number or points on every line and the number of lines
through every point. Let x ∈ P . If we count all pairs (y, L) such that L is a line through x and
y ∈ L, then we see that there are exactly (n+ 1)2 of them. In counting the pairs, some points
such as x may appear more than once. However, x is the only point which does so, for y 6= x
implies there is only one line containing both points. Furthermore, by the preceding result we
know that x appears exactly n+ 1 times. Therefore the correct number of points in P is given
by subtracting n (not n+ 1) from the number of ordered pairs, and it follows that P contains
exactly

(n+ 1)2 − n = n2 + n + 1

distinct points.�

The next theorem follows immediately by duality.

Theorem IV.15. Let P be a finite projective plane of order n. Then P contains exactly n2+n+1
lines.�

Further remarks on finite projective planes

We shall now consider two issues raised in the preceding discussion:

(1) The possible orders of finite projective planes.

(2) The mathematical and nonmathematical uses of finite projective planes.

ORDERS OF FINITE PROJECTIVE PLANES. The theory of finite fields is completely understood
and is presented in nearly every graduate level algebra textbook (for example, see Section V.5
of the book by Hungerford in the bibliography). For our purposes it will suffice to note that for
each prime number p and each positive integer n, there is a field with exactly q = pn elements.
It follows that every prime power is the order of some projective plane.
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The possible existence of projective planes with other orders is an open question. However,
many possible orders are excluded by the following result, which is known as the Bruck–
Ryser–Chowla Theorem: Suppose that the positive integer n has the form 4k + 1 or 4k + 2
for some positive integer k. Then n is the sum of two (integral) squares.

References for this result include the books by Albert and Sandler, Hall (the book on group
theory), and Ryser in the bibliography as well as the original paper by Bruck-Ryser (also in the
bibliography) and the following online reference6:

http://www.math.unh.edu/∼dvf/532/7proj-plane.pdf
Here is a list of the integers between 2 and 100 which cannot be orders of finite projective planes
by the Bruck-Ryser-Chowla Theorem:

6 14 21 22 30 33 38 42

45 46 54 57 62 66 69 70

74 77 78 82 86 93 94 97

The smallest positive integer ≥ 2 which is not a prime power and not excluded by the Bruck-
Ryser-Chowla Theorem is 10. In the late nineteen eighties a substantial argument — which
used sophisticated methods together with involved massive amounts of computer calculations
— showed that no projective planes of order 10 exist. Two papers on this work are listed in the
bibliography; the article by one author (C. W. H. Lam) in the American Mathematical Monthly
was written to explain the research on this problem to a reasonably broad general audience of
mathematicians and students.

By the preceding discussion, the existence of projective planes of order n is understood for
n ≤ 11, and the first open case is n = 12. Very little is known about this case.

PROJECTIVE GEOMETRY AND FINITE CONFIGURATIONS. Of course, one can view existence
problems about finite projective planes as extremely challenging puzzles similar to Magic Squares
(including the Sudoku puzzles that have recently become extremely popular), but one important
reason for studying them is their relevance to questions of independent interest.

One somewhat whimsical “application” (plant ten trees in ten rows of three) was mentioned in
Exercise IV.2.2, where the point was that such configurations exist by Desargues’ Theorem. In
fact, the study of projective spaces — especially finite ones – turns out to have many useful
consequences in the study of finite tactical configurations or block designs, which is part of
combinatorial theory or combinatorics. Specifically, finite projective planes are of interest as
examples of Latin squares, or square matrices whose entries are in a finite set such that each
element appears in every row and every column exactly once. As noted earlier, such objects play
a significant role in the areas of statistics involving the design of experiments and in the theory of
error-correcting codes. Although further comments are well outside the scope of these notes, the
references in the bibliography by Buekenhout, Crapo and Rota, Hall (the book on combinatorial
theory), Kárteszi, Lindner and Rodgers, and (the previously cited book by) Ryser are all sources
for further information. There are also several online web sites dedicated to questions about
finite geometry.

6To update this document, the conjecture of E. Catalan (1814–1894) has recently been shown to be true
bu P. Mihăilescu. The proof is at a very advanced level, but for the sake of completeness here is a reference:
P. Mihăilescu, Primary cyclotomic units and a proof of Catalan’s Conjecture, [Crelle] Journal für die reine und
angewandte Mathematik 572 (2004), 167–195.
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Duality in higher dimensions

The concept of duality extends to all projective n-spaces (where n ≥ 2), but the duality is more
complicated for n ≥ 3 than it is in the 2-dimensional case. Specifically, if S is a projective
n-space, then points of the dual space S∗ are given by the hyperplanes of S. for each k-plane
P in S, there is an associated (linear) bundle of hyperplanes with center P , which we shall
denote by b(P ), and the dimension of b(P ) is set equal to n− k − 1. We shall also denote the
set of all such bundles by Π∗ the associated dimension function by d∗. The following result is
the appropriate generalization of Theorems 6 and 7 which allows extension of the principle of
duality to higher dimensions.

Theorem IV.16. If (S,Π, d) is a projective n-space for some n ≥ 2, then so is the dual object
(S∗,Π∗, d∗). Furthermore, the map E sending x ∈ S to the bundle of hyperplanes b(x) with
center x defines an isomorphism of geometrical incidence spaces.

We shall not give a direct proof of this result for two reasons.

1. Although the proof is totally elementary, it is a rather long and boring sequence of
routine verifications.

2. The result follows from a coordinatization theorem in the next section (Theorem 18)
and the results of Section VI.1, at least if n ≥ 3 (and we have already done the case
n = 2).

An excellent direct proof of Theorem 16 is given in Sections 4.3 and 4.4 of Murtha and Willard,
Linear Algebra and Geometry (see the bibliography for further information).

EXERCISES

1. Prove that properties (1)− (1∗) and (2)− (2∗) completely characterize projective planes. In
other words, if (P,L) is a pair consisting of a set P and a nonempty collection of proper subsets
L satisfying these, then there is a geometrical incidence space structure (P,L, d) such that the
incidence space is a projective plane and L is the family of lines in Π.

2. Write out the plane duals of the following phrases, and sketch both the given data and their
plane duals.

(i) Two lines, and a point on neither line.

(ii) Three collinear points and a fourth point not on the line of the other three.

(iii) Two triples of collinear points not on the same line.

(iv) Three nonconcurrent lines, and three points such that each point lies on exactly one of
the lines.
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3. Draw the plane duals of the illustrated finite sets of points which are marked heavily in the
two drawings below.
 
 

 
Figure IV.9

4. Suppose that f : S → T is an incidence space isomorphism from one projective n-space
(n ≥ 2) to another. Prove that f induces a 1–1 correspondence f ∗ : S∗ → T ∗ taking a hyperplane
H ⊂ S to the image hyperplane f ∗(H) = f [H] ⊂ T . Prove that this correspondence has the
property that B is an r-dimensional bundle of hyperplanes (in S∗) if and only if f ∗[B] is such
a subset of T ∗ (hence it is an isomorphism of geometrical incidence spaces, assuming Theorem
16).

5. Prove that the construction in the preceding exercise sending f to f ∗ has the following
properties:

(i) If g : T → U is another isomorphism of projective n-spaces, then (g of)∗ = g∗ of∗.

(ii) For all choices of S the map (idS)∗ is equal to the identity on S∗.

(iii) For all f we have
(
f−1

)∗
=
(
f∗
)−1

.

6. Complete the proof of Theorem 11.

7. Let (P,L) be a finite affine plane. Prove that there is a positive integer n such that

(i) every line in P contains exactly n points,

(ii) every point in P lies on exactly n lines,

(iii) the plane P contains exactly n2 points.
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4. Conditions for coordinatization

Since the results and techniques of linear algebra are applicable to coordinate projective n-spaces
S1(V ) (where dimV = n+ 1), these are the most conveniently studied of all projective spaces.
Thus it is desirable to know when a projective n-space is isomorphic to one having the form
S1(V ), where dimV = n + 1. The following remarkable theorem shows that relatively weak
hypotheses suffice for the existence of such an isomorphism.

Theorem IV.17. Let P be a projective n-space in which Desargues’ Theorem is valid (for exam-
ple, n ≥ 3 or P is a Desarguian plane). Then there is a skew-field F such that P is isomorphic
to FP

n (where we view F
n+1 as a right vector space over F. If E is another skew-field such that

P is isomorphic to EP
n, then E and F are isomorphic as skwe-fields.

A well-illustrated proof of Theorem 17 from first principles in the case n = 2 appears on pages
175–193 of the book by Fishback listed in the bibliography. Other versions of the proof appear
in several other references from the bibliography. Very abstract approaches to the theorem when
n = 2 appear in Chapter III of the book by Bumcrot and also in the book by Artzy. The proof
in Chapter 6 of Hartshorne’s book combines some of the best features of the other proofs. There
is also a proof of Theorem 17 for arbitrary values of n ≥ 2 in Chapter VI from Volume I of
Hodge and Pedoe. Yet another reference is Sections 4.6 and 4.7 of Murtha and Willard. For
more information on the uniqueness statement, see Theorem V.10.

Theorem 17 yields a classification for projective n-spaces (n ≥ 3) that is parallel to Theorem
II.38 (see Remark 3 below for further discussion). Because of its importance, we state this
classification separately.

Theorem IV.18. Let P be a projective n-space, where n ≥ 3. Then there is a skew-field
F, unique up to algebraic isomorphism, such that P and FP

n are isomorphic as geometrical
incidence spaces.�

Theorem 17 also implies the converse to a remark following the definition of a Desarguian
projective plane in Section IV.2.

Theorem IV.19. If a projective plane is Desarguian, then it is isomorphic to a plane in a
projective 3-space.

Proof. By Theorem 17, the plane is isomorphic to FP
2 for some skew-field F. But FP

2 is
isomorphic to the plane in FP

3 defined by x4 = 0.�

REMARK 1. Suppose that P is the Desarguian plane FP
2. By Theorem 10, P ∗ is also Desarguian

and hence is isomorphic to some plane EP
2. As one might expect, the skew-fields F and E are

closely related. In fact, by Theorem V.1 the dual plane P ∗ is isomorphic to S1(F3), where F3 is
a left vector space over F, and left vector spaces over F correespond to right vector spaces over
the opposite skew-field F

OP, whose elements are the same as F and whose multiplication is
given by reversing the multiplication in F. More precisely, one defines a new product ⊗ in F

via a ⊗ b = b · a, and if V is a left vector space over F define vector space operations via the
vector addition on F and the right scalar product x ⊗ a = a · x (here the dot represents the
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original multiplication). It is a routine exercise to check that F
OP is a skew-field and ⊗ makes

left F-vector spaces into right vector spaces over F
OP. Thus, since F3 is a 3-dimensional right

F
OP-vector space, it follows that E must be isomorphic to F

OP.

REMARK 2. If P is the coordinate projective plane FP
2 and multiplication in F is commutative,

then the preceding remark implies that P and P ∗ are isomorphic because F and F
OP are identical

in such cases. However, the reader should be warned that the isomorphisms from P to P ∗ are
much less “natural” than the standard isomorphisms from P to P ∗∗ (this is illustrated by
Exercise V.1.5). More information on the noncommutative case appears in Appendix C.

EXAMPLE 3. Theorem II.18 follows from Theorem 18. For if S is an affine n-space, let S
be its synthetic projective extension as defined in the Addendum to Section III.4. By Theorem
III.16, we know that S is an n-dimensional projective incidence space, so that S is isomorphic
to FP

n for some skew-field F and S ⊂ S is the complement of some hyperplane. Since there is
an element of the geometric symmetry group of FP

n taking this hyperplane to the one defined
by xn+1 = 0 (see Exercise III.4.14), we can assume that S corresponds to the image of F

n in
FP

n. Since k-planes in S are given by intersections of k-planes in S with S and similarly the
k-planes in F

n are given by intersections of k-planes in FP
n with the image of F, it follows that

the induced 1–1 correspondence between S and F
n is a geometrical incidence space isomorphism.

A general coordinatization theory for projective planes that are not necessarily Desarguian
exists; the corresponding algebraic systems are generalizations of skew-fields known as planar
ternary rings. Among the more accessible references for this material are the previously cited
book by Albert and Sandler, Chapter 4 of the book by Artzy, Chapters III and VI of the book
by Bumcrot, Chapter 17 of the book by Hall on group theory, and the 2007 survey article by C.
Weibel (see the bibliography for more details).

One of the most important examples of a planar ternary ring (the Cayley numbers) is de-
scribed on pages 195–196 of Artzy7 As one might expect, the Cayley numbers (also called
octonions) are associated to a projective plane called the Cayley projective plane. However, the
coordinatization theorem implies that are no Cayley projective spaces of higher dimension.

7One brief and accurate online summary is given in http://en.wikipedia.org/wiki/Octonion. The relia-
bility issue for Wikipedia articles is discussed in a footnote for Appendix C, and it also applies here.





CHAPTER V

PLANE PROJECTIVE GEOMETRY

In this chapter we shall present the classical results of plane projective geometry. For the most part, we

shall be working with coordinate projective planes and using homogeneous coordinates, but at certain

points we shall also use synthetic methods, especially when it is more convenient to do so. Our treatment

will make extensive use of concepts from linear algebra. Since one major geometric result (Pappus’

Theorem) is closely connected to the algebraic commutativity of multiplication in a skew-field, we shall

be fairly specific about using left or right vector spaces in most sections of this chapter.

1. Homogeneous line coordinates

If F is a skew-field, it will be convenient to let view FP
n as the set of all 1-dimensional vector

subspaces of the (n + 1)-dimensional right vector space F
n+1,1 of (n + 1) × 1 column matrices

over F with the obvious entrywise right multiplication:



x1

· · ·
· · ·
xn+1


 · c =




x1 c
· · ·
· · ·

xn+1 c




It follows from Theorem III.12 that a line in FP
2 is definable by an equation of the form u1x1 +

u2x2 + u3x3 = 0, where u1, u2, u3 are not all zero. Furthermore, two triples of coefficients
(u1, u2, u3) and (v1, v2, v3) define the same line if and only if there is a nonzero k ∈ F such
that Ui = k vi for i = 1, 2, 3. Thus we see that a line in FP

2 is completely determined by a
one-dimensional subspace of the left vector space of 1× 3 row matrices. — Therefore the dual
projective plane to FP

2 is in 1–1 correspondence with the 1-dimensional subspaces of F
1,3, where

the latter is the left vector space of 1 × 3 matrices. Under this correspondence the lines in the
dual of FP

2 correspond to lines in S1(F
1,3). For a line in the dual is the set of lines through

a given point, and by a reversal of the previous argument a line in S1(F
1,3) is just the set of

elements whose homogeneous coordinates (u1, u2, u3) satisfy a linear homogeneous equation of
the form u1x1 + u2x2 + u3x3 = 0, where x1, x2, x3 are not all zero. Much as before, the
triples (x1, x2, x3) and (y1, y2, y3) define the same set if and only if yi = xim for some nonzero
constant m ∈ F. We can summarize the discussion above as follows:

Theorem V.1. Let F be a skew-field, and identify FP
2 with S1(F

3,1) as above. Then the dual
plane

(
FP

2
)∗

is isomorphic to S1(F
1,3) such that if the point x corresponds to the 1-dimensional

right vector subspace ξ · F and the line L corresponds to the 1-dimensional left vector subspace
F · λ, then x ∈ L if and only if λ · ξ = 0.�

83
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The dot indicates matrix multiplication operation

F
1,3 × F

3,1 −→ F
1,1 ∼= F .

As before, F · λ denotes all left scalar multiples of λ, and we similarly let ξ · F denote all right
scalar multiples of ξ. Note that if λ · ξ = 0 for one pair of homogeneous coordinate choices,
then the same is true for every other pair. For the most general change of representatives is
given by k λ and ξ m so that

(k λ) · (ξ m) = k (λ · ξ)m = 0

by associativity of multiplication.

Definition. Given a line L in
(
FP

2
)∗ ∼= S1(F

1,3), we say that a nonzero vector λ ∈ F
1,3 is a

set of homogeneous coordinates for L if the latter is the set of all points x whose homogeneous
coordinates ξ satisfy λ · ξ = 0.

By construction, three points in FP
2 are collinear if and only if their homogeneous coordinates

span a 2-dimensional right vector subspace of F
3,1. The dualization of this to homogeneous line

coordinates is an easy consequence of Theorem 1.

Theorem V.2. Let L, M and N be three distinct lines in FP
2. Then they are concurrent if and

only if their homogeneous line coordinates are linearly dependent.�

NOTATIONAL CONVENTIONS. Throughout this chapter we shall be passing back and forth
between geometric points and lines and the algebraic homogeneous coordinates which represent
them. Needless to say, it is convenient to have some standard guidelines for passing back and
forth between the geometric and algebraic objects. Normally we shall denote the geometric
objects by Roman letters and appropriate homogeneous coordinates by corresponding Greek
letters (strictly speaking, we use mathematicians’ versions of Greek letters). For example, if X
and Y are points, then we shall normally use ξ or η for homogeneous coordinates, and if L is a
line we shall normally use λ.

Homogeneous coordinate formulas

In the remainder of this section, we shall describe some useful formulas which are valid provided
the skew-field F is commutative. Of course, if F is commutative the distinction between left
and right vector subspaces is unnecessary.

We begin by stating two obvious problems:

1. If L is a line determined by x and y, express homogeneous coordinates for L in terms
of homogeneous coordinates for x and y.

2. If x is the point of intersection for lines L and M , express homogeneous coordinates
for x in terms of homogeneous coordinates for L and M .
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Consider the first problem. By the definition of homogeneous coordinates of lines, a set of
homogeneous coordinates λ for L must satisfy λ · ξ = λ · η = 0. If F is the real numbers, this
means that the transpose of λ is perpendicular to ξ and η. Since x 6= y, it follows that ξ and
η are linearly independent; consequently, the subspace of vectors perpendicular to both of the
latter must be 1-dimensional. A nonzero (and hence spanning) vector in the subspace of vectors
perpendicular to ξ and η is given by the cross product ξ × η, where the latter are viewed as
ordinary 3-dimensional vectors (see Section 5 of the Appendix). It follows that λ may be chosen
to be an arbitrary nonzero multiple of ξ × η. We shall generalize this formula to other fields.

Theorem V.3. Let F be a (commutative) field, and let x and y be distinct points in FP
2 having

homogeneous coordinates ξ and η. Then the line xy has homogeneous coordinates given by the
transpose of ξ × η.

Proof. The definition of cross product implies that

T(ξ × η) · ξ = T(ξ × η) · η = 0

so it is only necessary to show that if ξ and η are linearly independent then ξ × η 6= 0.

Let the entries of ξ be given by xi, let the entries of η be given by yj, and consider the 3 × 2
matrix B whose entries are the entries of the 3× 1 matrices ξ and η:



x1 y1

x2 y2

x3 y3




Since the columns are linearly independent, the rank of this matrix is 2. By Theorem A.11 this
means there is 2× 2 submatrix of B with nonzero determinant. If k ∈ {1, 2, 3} is such that the
matrix obtained by deleting the kth row is nonzero, then by the definition of cross product the
kth entry of the latter must be nonzero. Therefore the transpose of ξ×η is a set of homogeneous
coordinates for L.�

Dually, we have the following result:

Theorem V.4. Let F be a (commutative) field, and let L and M be distinct lines in FP
2 having

homogeneous coordinates λ and µ. Then the intersection point of L and M has homogeneous
coordinates given by the transpose of λ× µ.�

The “Back-Cab Rule” for triple cross products

a × (b× c) = b (a · c) − c (a · b)

(see Theorem A.20) implies the following useful formula:

Theorem V.5. Let L be a line in FP
2, and let x and y be points of FP

2 not on L. Let λ, ξ and
η be homogeneous coordinates for L, x and y respectively. Then the common point of the lines
L and xy has homogeneous coordinates equal to (λ · ξ) Tη − (λ · η) Tξ.
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Proof. By Theorem 3 the line xy has homogeneous coordinates Tξ×Tη, and thus by Theorem
4 the common point of L and xy has homogeneous coordinates equal to

T
(
λ× T

(
Tξ × Tη

) )
.

The latter is equal to (λ · ξ) Tη − (λ · η) Tξ by the Back-Cab Rule.�

EXERCISES

1. Consider the affine line in F
2 defined by the equation ax + by = c. What are the

homogeneous coordinates of its extension to FP
2? As usual, consider the 1–1 map from F

2 to
FP

2 which sends (x, y) to the point with homogeneous coordinates


x
y
1


 .

2. Suppose that three affine lines are defined by the equations aix+biy = ci, where i = 1, 2, 3.
Prove that these three lines are concurrent if and only if∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= 0 and

∣∣∣∣
a1 b1
a2 b2

∣∣∣∣ 6= 0 .

What can one conclude about the lines if both determinants vanish?

3. Using the methods of this section, find the equation of the affine line joining ( 1
4 ,

1
2) to the

point of intersection of the lines defined by the equations x+2y+1 = 0 and 2x+ y+3 = 0.

4. Fine the homogeneous coordinates of the point at which the line with homogeneous
coordinates (2 1 4) meets the line through the points with homogeneous coordinates




2
3
−1


 and




1
1
0


 .

5. Let A be an invertible 3 × 3 matrix over F, and let T be the geometric symmetry of
FP

2 ∼= S1(F
3,1) defined by the equation

T (x) = A · ξ · F
where ξ is a set of homogeneous coordinates for x and the dot indicates matrix multiplication.
If L is a line in FP

2 with homogeneous coordinates λ, show that the line f [L] has homogeneous
coordinates given by λ ·A−1.
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2. Cross ratio

At the beginning of Chapter III, we mentioned that one forerunner of projective geometry was the
development of a mathematical theory of perspective images by artists during the 15th and early
16th century. Clearly, if one compares such perspective photographic images with the physical
objects they come from, it appears that some physical properties are faithfully captured by the
photograph while others are not. For example, if three points on a physical object are collinear,
then their photographic images are also collinear, and under suitable conditions if we have three
distinct points A, B and C such that B is between A and C, then the image point B ′ of B will
also lie between the corresponding image points A and C ′.1 However, it is also apparent that
the relative distances among the three points can be greatly distorted. For example, if B is the
midpoint of A and C, then we cannot conclude that B ′ is the midpoint of A′ and C ′. Similarly,
if B is between A and C and the distance from B to C is twice the distance from A to B, we
cannot conclude that a similar relationship holds for the corresponding relative distances among
the image points A′, B′ and C ′. HOWEVER, if we are given four collinear points on the physical
object, then there is a number called the cross ratio, which is determined by relative distances
among the four points, that is the same for the original four points on the physical object(s) as
well as their photographic images. The cross ratio itself was apparently first defined algebraically
by P. de la Hire (1640–1718), but the perspective invariance property was essentially known to
Pappus of Alexandria (c. 290 – c. 350??) and perhaps even earlier. Throughout the rest of
these notes we shall see that the cross ratio plays a fundamentally important role in projective
geometry.

It will be convenient to define the cross ratio in terms of homogeneous coordinates and to give
a nonvisual motivation for the concept. In problems involving coordinate projective spaces, it
is often helpful to choose homogeneous coordinates in a particular way. We shall prove some
results justifying such choices below and use them to give a fairly simple definition of the cross
product. The discussion up to (but not including) Theorem 8 is valid for any skew-field F.
Starting with Theorem 9, we assume F is commutative.

Theorem V.6. Let A, B, C, D be four points in FP
2, no three of which are collinear. Then

there exist homogeneous coordinates α, β, γ, δ for A, B, C, D such that δ = α+ β + γ.

Proof. Let α0, β0, γ0 be arbitrary homogeneous coordinates for A, B, C respectively.
Since A, B, C are noncollinear, the vectors α0, β0, γ0 form a basis for F

3,1. Thus there exist
x, y, z ∈ F such that homogeneous coordinates for D are given by δ = α0x+ β0y + γ0z. We
claim that each of x, y, z is nonzero. If x = 0, then it follows that δ = yβ0 + zγ0, so that D
lies on the line BC; therefore it follows that x 6= 0, and similarly we can conclude that y and
z are nonzero. But this means that α0x, β0y, γ0z are homogeneous coordinates for A, B, C
respectively, and accordingly we may take α = α0x, β = β0y, and γ = γ0z.�

The next few results are true in FP
n for any n ≥ 1.

1The suitable, and physically reasonable, conditions are given in terms of the aperture of the camera at some
point X and the image plane P which does not contain X: If Q is the unique plane through X which is parallel
to P , then normally the plane P the physical object(s) being photographed will lie on opposite sides of the plane
Q.
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Theorem V.7. Let A and B Let A and B be distinct points in FP
n with homogeneous coordinates

α and β respectively. Let C be a third point on AB. Then there exist homogeneous coordinates
γ for C such that γ = αx+ β for some unique x ∈ F.

Proof. Since A, B, and C are noncollinear, there exist u, v ∈ F such that homogeneous
coordinates for C are given by αu+βv. We claim that v 6= 0, for otherwise γ = αu would imply
C = A. Thus αu v−1 + β is also a set of homogeneous coordinates for C, proving the existence
portion of the theorem. Conversely, if αy + β is also a set of homogeneous coordinates for C,
then there is a nonzero scalar k such that

α y + β = (αx + β) · k = αxk + β k .

Equating coefficients, we have k = 1 and y = xk = x.�

Notation. If C 6= A, the element of F determined by Theorem 7 is called the nonhomogeneous
coordinate of C with respect to α and β and written γ(α,β).

Theorem V.8. Let A, B, and C be distinct collinear points in FP
n. Then there exist homo-

geneous coordinates α, β, γ for A, B, C such that γ = α + β. Furthermore, if α′, β′, γ′ are
arbitrary homogeneous coordinates for A, B, and C, then there is a nonzero constant k ∈ F

such that α′ = αk, β′ = βk, and γ ′ = γk.

Proof. By Theorem 7 there exist homogeneous coordinates α′′ and β′′ for A and B such that
homogeneous coordinates for C are given by γ = α′′x+ β′′. If x were zero then B and A would
be equal, and consequently we must have x 6= 0. Thus if we take α = α′′x and β = β′, then
γ = α+ β is immediate.

Suppose that α′, β′, γ′ satisfy the condition of the theorem. Then there exist constants a, b, c
such that α′ = α a, β′ = β b, and γ ′ = γ c. It follows that

α c + β c = γ c = α′ + β′ = α · a + β · b .
Equating coefficients, we obtain a = c = b, and thus we may take k = c.�

COMMUTATIVITY ASSUMPTION. Throughout the rest of this section F is assumed to be
commutative. The definition of cross ratio is justified by the following result:

Theorem V.9. Let A, B and C be distinct collinear points in FP
n, and let D be a point on

this line such with D 6= A. Suppose that homogeneous coordinates α, β, γ for A, B, C are
chosen such that γ = α+ β, and write homogeneous coordinates for D as δ = uα+ vβ in these
coordinates (since D 6= A we must have v 6= 0). Then the quotient u/v is the same for all
choices of α, β, γ satisfying the given equation.

Definition. The scalar u/v ∈ F is called the cross ratio of the ordered quadruple of collinear
points (A,B,C,D), and it is denoted by XR(A,B,C,D).
Proof. If α′, β′, γ′ is another triple such that γ ′ = α′ + β′, then by Theorem 8 there is
a nonzero scalar k ∈ F such that α′ = kα, β′ = kβ, and γ ′ = kγ. If δ′ is another set of
homogeneous coordinates for D, then δ ′ = rδ for some r ∈ F. Thus if δ′ = u′α′ + v′β′, it follows
that δ′ = ku′α + kv′β. On the other hand, δ′ = rδ implies that δ′ = ruα + rvβ. Equating
coefficients, we find that ku′ = ru and kv′ = rv. Therefore we have

u

v
=

ru

rv
=

ku′

kv′
=

u′

v′
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and therefore the ratio of the coefficients does not depend upon the choices of homogeneous
coordinates.�

The next result answers a fundamental question concerning the cross ratio:

Theorem V.10. Suppose that A, B and C are distinct collinear points and r ∈ F is an arbitrary
constant. Then there is a unique D ∈ AB such that XR(A,B,C,D) = r.

Proof. Existence. Choose D so that it has homogeneous coordinates equal to δ = rα+ β.

Uniqueness. Suppose that XR(A,B,C,D) = XR(A,B,C,E) = r, where neither D nor E is
equal to A. Choose homogeneous coordinates so that we have γ = α + β; then we may write
δ = uα+ vβ and ε = sα+ tβ, where

u

v
= r =

s

t
;

note that v and t are nonzero because neither D nor E is equal to A. It follows that u = vr and
s = tr, from which we conclude that δ = v t−1ε. The latter in turn implies that D = E.�

Another fundamental property of the cross ratio is given by the following result, whose proof is
left as an exercise:

Theorem V.11. Let A, B, C and D be distinct noncollinear points, and let E 6= A be another
point on the same line. Then XR(A,B,C,E) = XR(A,B,C,D) · XR(A,B,D,E).�

There are 24 possible orders in which four distinct collinear points A, B, C, D may be reordered.
We summarize what happens to the cross ration under reordering below.

Theorem V.12. Let A, B, C and D be distinct noncollinear points in FP
n, and assume that

XR(A,B,C,D) = r. Then the other 23 cross ratios involving these points by reordering are
given as follows:

r = XR(A,B,C,D) = XR(B,A,D,C) = XR(C,D,A,B) = XR(D,C,B,A)

1

r
= XR(A,B,D,C) = XR(B,A,C,D) = XR(D,C,A,B) = XR(C,D,B,A)

1 − r = XR(A,C,B,D) = XR(C,A,B,D) = XR(B,D,A,C) = XR(D,B,C,A)

1

1− r = XR(A,C,D,B) = XR(C,A,B,D) = XR(D,B,A,C) = XR(B,D,C,A)

1− r
r

= XR(A,D,B,C) = XR(D,A,C,B) = XR(B,C,A,D) = XR(C,B,D,A)

r

1− r = XR(A,D,C,B) = XR(D,A,B,C) = XR(C,B,A,D) = XR(B,C,D,A)

The proof is a sequence of elementary and eventually boring calculations, and it is left as an
exercise.�

The next result gives a useful expression for the cross ratio:



90 V. PLANE PROJECTIVE GEOMETRY

Theorem V.13. Let A1, A2, A3 be distinct collinear points, and let A4 6= A1 lie on this line.
Let B1, B2, B3 be distinct collinear points on this line with B1 6= Ai for all i, and suppose that
XR(B1, B2, B3, Ai) = xi for i = 1, 2, 3, 4. Then the following holds:

XR(A1, A2, A3, A4) =
(x1 − x3) (x2 − x4)

(x1 − x4) (x2 − x3)

Proof. Choose homogeneous coordinates βi for Qi such that β3 = β1 + β2. Then
homogeneous coordinates αj for the points Aj are given by xjβ1 + β2. It is not difficult to
verify that

(x1 − x2)α3 = (x3 − x2)α1 + (x1 − x3)α2

is true and similarly

(x1 − x2)α3 = (x3 − x2)α1 + (x1 − x3)α2 .

Thus if α′
1 = (x3 − x2)β1 and α′

2 = (x1 − x3)β2, then we have

(x1 − x2)α4 =
(x4 − x2)

(x3 − x2)
α′

1 +
(x1 − x4)

(x1 − x3)
α′

2 .

The cross ratio formula in the theorem is an immediate consequence of these formulas.�

DUALIZATION. The preceding discussion can be dualized to yield the cross ratio of four con-
current lines in FP

2. Cross rations of collinear points and concurrent lines are interrelated as
follows.

Theorem V.14. Let L1, L2, L3 be distinct concurrent lines, and let L4 6= L1be another line
through this point. Let M be a line in FP

2 which does not contain this common point, and let
Ai be the point where Li meets M , where i = 1, 2, 3, 4. Then the point A4 ∈M lies on L4 if and
only if XR(A1, A2, A3, A4) = XR(L1, L2, L3, L4).

Proof. Suppose that A4 ∈ M ∩ L4. Let r be the cross ratio of the lines, and let s be the
cross ratio of the points. Choose homogeneous coordinates for the points Ai and lines Li such
that α3 = α1 +α2 and λ3 = λ1 +λ2, so that α4 = sα1 +α2 and λ4 = r λ1 +λ2. Since Ai ∈ Li

for all i, we have λi · αi = 0 for all i. In particular, these equations also imply

0 = λ3 · α3 = (λ1 + λ2) · (α1 + α2) =

λ1 · α1 + λ1 · α2 + λ2 · α1 + λ2 · α2 =

λ1 · α2 + λ2 · α1

so that λ1 · α2 = −λ2 · α1. Therefore we see that

0 = λr · αr = (rλ1 + λ2) · (sα1 + α2) =

rλ1 · α2 + sλ2 · α1 = (r − s)λ1 · α2 .

The product λ1 · α2 is nonzero because A2 6∈ L1, and consequently r − s must be equal to zero,
so that r = s.�

Suppose that the cross ratios are equal. Let C ∈ M ∩ L4; then by the previous discussion we
know that

XR(A1, A2, A3, C) = XR(L1, L2, L3, L4) .

Therefore we also have XR(A1, A2, A3, C) = XR(A1, A2, A3, A4), so that A4 = C by Theorem
10 and in addition we have A4 ∈ L4.�
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The following consequence of Theorem 14 is the result on perspective invariance of the cross
ratio mentioned at the beginning of this section.

Theorem V.15. Let L1, L2, L3 and L4 be distinct concurrent lines, and let M and N be two
lines which do not contain the common point. Denote the intersection points of M and N with
the lines Li by Ai and Bi respectively. Then XR(A1, A2, A3, A4) = XR(B1, B2, B3, B4).

 
 

 

Figure V.1

Proof. Two applications of Theorem 14 imply that

XR(A1, A2, A3, A4) = XR(L1, L2, L3, L4) = XR(B1, B2, B3, B4) .�

As noted before, Theorem 15 has a visual application to the interpretation of photographs.
Namely, in any photograph of a figure containing four collinear points, the cross ratio of the
points is equal to the cross ratio of their photographic images (as before, think of the common
point as the aperture of the camera, the line N as the film surface, and the points Ai as the
points being photographed).

Finally, we explain the origin of the term cross ratio. If V is a vector space over F and a, b,
and c are distinct collinear points of V , then the ratio in which c divides a and b is given by
(1 − t)/t, where c = ta + (1 − t)b. If d is a fourth point on the line and J : F

n → FP
n is the

usual inclusion, then Theorem 16 shows that XR
(
J(a), J(b), J(c), J(d)

)
is the ratio in which c

divides a and b divided by the ratio in which d divides a and b.

Theorem V.16. Let a, b, c, and d be distinct collinear points of F
n, and write c = ta + (1−t)b

and d = sa + (1− s)b. Then

XR
(
J(a), J(b), J(c), J(d)

)
=

(1− t) s
(1− s) t .



92 V. PLANE PROJECTIVE GEOMETRY

Proof. We shall identify F
n+1,1 with F

n+1 and F
n × F in the obvious manner. Recall that

x ∈ F
n implies that ξ = (x, 1) is a set of homogeneous coordinates for x. Clearly we have

(c, 1) = t (a, 1) + (1− t) (b, 1)

so that we also have

(d, 1) =
s

t
(ta, t) +

1− s
1− t

(
(1− t)b, (1 − t)

)

and the cross ratio formula is an immediate consequence of this.�

The following formula is also useful.

Theorem V.17. Let a, b, and c and be distinct collinear points of F
n, and let P∞ be the point

at infinity on the projective extension of this line. If c = ta + (1− t)b, then we have

XR
(
J(a), J(b), J(c), P∞

)
=

t− 1

t
.

Proof. Let homogeneous coordinates for J(), J(b), and J(c) be given as usual by (a, 1), (b, 1),
and (c, 1) respectively. Then (c, 1) has homogeneous coordinates

(c, 1) = (ta, t) +
(
(1− t)b, (1− t)

)

and P∞ has homogeneous coordinates

(b− a, 0) = (b, 1) − (a, 1) =
1

1− t ·
(
(1− t)b, (1− t)

)
− 1

t
(ta, t) .

Therefore the cross ratio is equal to

−1/t

1/(1− t) =
t− 1

t

which is the formula stated in the theorem.�

EXERCISES

1. Prove Theorem 11.

2. Prove Theorem 12.

3. In the notation of Theorem 13, assume that all the hypotheses except A1 6= B1 are valid.
Prove that the cross ratio is given by (x2 − x4)/(x2 − x3) if A1 = B1.

4. Find the cross ratio of the four collinear points in RP
3 whose homogeneous coordinates are

given as follows: 


1
3
0
0







0
1
1
1







1
7
4
4







1
1
−2
−2



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5. In RP
2, find the cross ratio of the lines joining the point J( 1

4 ,
1
2 ) to the points with the

following homogeneous coordinates:



0
1
1







1
0
1







1
1
0







1
1
1




6. In RP
2, find the cross ratio formed by the points with homogeneous coordinates T(1 1 2)

and T(2 3 4) and the points in which their line meets the lines defined by x1 + x2 + x3 = 0
and 2x1 + x3 = 0.

7. Let a, b, c, and d be distinct collinear points of R
n. Prove that their cross ratio is given

by the following formula in which “·” denotes the usual vector dot (or inner) product:

XR
(
J(a), J(b), J(c), J(d)

)
=

[ (b− c) · (b− a) ] [ (d− a) · (b− a) ]

[ (c− a) · (b− a) ] [ (d− d) · (b− a) ]

Using this formula, show that the absolute value of the cross ratio is given by the following
expression:

|c− b| |d− a|
|c− a| |d− b|

8. If A, B, C and D are four distinct collinear points of FP
n (where F is a commutative field)

and (A′, B′C ′D′) is a rearrangement of (A, B, C, D), then by Theorem 12 there are at most
six possible values for XR(A′, B′, C ′, D′) as (A′, B′, C ′, D′) runs through all rearrangements.
Usually there are exactly six different values for all the possible rearragements, and this exercise
analyzes the exceptional cases when there are fewer than six possibilities. By interchanging the
roles of (A, B, C, D) if necessary, we can assume that XR(A,B,C,D) = r is equal to one of the
other five expressions in Theorem 12.

(i) Suppose that 1 + 1 6= 0 in F and XR(A,B,C,D) = r is equal to one of the expressions
1/r, 1 − r or r/(r − 1). Prove that r belongs to the set {−1, 2, 1

2} ⊂ F and that the values of
the cross ratios XR(A′, B′, C ′, D′) for the various rearrangements are precisely the elements of
{−1, 2, 1

2}. — Explain why there are three elements in this set if 1 + 1 + 1 6= 0 in F but only
one if 1 + 1 + 1 = 0 in F.

(ii) Suppose that F is the complex numbers C and that r is equal to either 1/(1 − r) or (r −
1)/r. Prove that r belongs to the set { 1

21 + i
√

3, 1
2(1 − i

√
3, } ⊂ C and that the values of

the cross ratios XR(A′, B′, C ′, D′) for the various rearrangements are precisely the elements of

{ 1
21 + i

√
3, 1

2 (1 − i
√

3, }. — Explain why r6 = 1 but rm 6= 1 for 1 ≤ m ≤ 5. [Hint: Show

that r2 − r + 1 = 0 implies r3 = −1 by multiplying both sides by (r + 1), and then use this
to explain why r6 = 1. In particular, it follows that the possibilities in this case arise if and
only if there is some element r ∈ F such that r6 = 1 but no smaller positive integral power of
r is equal to 1. Such elements exist in Zp if p is a prime of the form 6k + 1 — for example, if
p = 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, or 97.]

Definitions. In Case (i) of the preceding exercise, there is a rearrange-
ment (A′, B′C ′D′) of (A, B, C, D) such that XR(A′, B′, C ′, D′) = −1. Or-
dered quadruples of collinear points satisfying this condition are called harmonic
quadruples, and they are discussed further in Section V.4, Exercise VI.3.8 and
Exercise VII.2.3. In Case (ii), the quadruple is said to form an equianharmonic
set (the next to last word should be decomposed as equi/an/harmonic). The
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latter are related to topics in the theory of functions of a complex variable which
go far beyond the scope of these notes, and we shall not attempt to give any
contexts in which such sets arise.

9. Let F be a field in which 1+1 6= 0 and 1+1+1 6= 0, and let A, B, C and D be four distinct
collinear points in FP

n.

(i) Suppose that XR(A,B,C,D) = −1. Determine all the rearrangements (A′, B′, C ′, D′) of
(A, B, C, D), for which XR(A′, B′, C ′, D′) is equal to −1, 2, and 1

2 respectively.

(ii) Suppose that XR(A,B,C,D) = r, where r satisfies the quadratic equation x2 − x + 1 = 0.
Explain why 1− r is a second root of the equation such that r 6= 1− r, and using Theorem 12
determine all the rearrangements (A′, B′, C ′, D′) of (A, B, C, D), for which XR(A′, B′, C ′, D′)
is equal to r and (1− r) respectively.

10. Let n ≥ 1, let A be an invertible (n + 1) × (n + 1) matrix over F, and let TA be the
geometric symmetry of FP

n ∼= S1(F
n+1,1) defined by the equation

TA(x) = A · ξ · F
where ξ is a set of homogeneous coordinates for x and the dot indicates matrix multiplication.
Suppose that x1, x2, x3, x4 are collinear points such that the first three are distinct and
x4 6= x1. Prove that TA preserves cross ratios; more formally, prove that

(x1, , x2, x3, x4) =
(
TA(x1), TA(x2), TA(x3), TA(x4)

)
.

11. Let F be a field, and let g : FP
1 → FP

1 be the 1–1 correspondence such that g oJ(x) = x−1

if 0 6= x ∈ F, and G interchanges the zero point J(0) and the point at infinity ∞(FP
1) with

homogeneous coordinates given by the transpose of T(1 0). Prove that there is an invertible
2 × 2 matrix A such that g = TA, where the right hand side is defined as in the preceding
exercise. [Hint: The result extends to linear fractional transformations defined by

g oJ(x) =
ax+ b

cx+ d
(where c and ad − bc 6= 0)

if x 6= −d/c, while g interchanges −d/c and ∞(FP
1).]
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3. Theorems of Desargues and Pappus

We begin with a new proof of Theorem IV.5 (Desargues’ Theorem) for coordinate planes within
the framework of coordinate geometry. Among other things, it illustrates some of the ideas
that will appear throughout the rest of this chapter. For most of this section, F will denote an
arbitrary skew-fields, and as in the beginning of Section V.1 we shall distinguish between left
and right vector spaces.

Theorem V.18. A coordinate projective plane FP
2 is Desarguian.

Proof. Let {A, B, C} and {A′, B′, C ′} be two triples of noncollinear points, and let X be a
point which lies on all three of the lines AA′, BB′ and CC ′. Choose homogeneous coordinates
α, β, γ, α′, β′, γ′ for A,B,C,A′, B′, C ′ and ξ for X such that

α′ = ξ + α · a, β ′ = ξ + β · b, γ ′ = ξ + γ · c.
Since β′ − γ′ = β · b − γ · c, it follows that the point D ∈ BC ∩ B ′C ′ has homogeneous
coordinates β ′−γ′. Similarly, the points E ∈ AC ∩A′C ′ and F ∈ AB∩A′B′ have homogeneous
coordinates α′ − γ′ and α′ − β′ respectively. The sum of these three homogeneous coordinates
is equal to zero, and therefore it follows that the points they represent — which are D, E and
F — must be collinear.�

Another fundamental result of projective geometry was first stated and proved by Pappus of
Alexandria in a Euclidean context.

Pappus’ Theorem.2 Let {A1, A2, A3} and {B1, B2, B3} be two coplanar triples of non-
collinear points in the real projective plane or 3-space. Assume the two lines and six points are
distinct. Then the cross intersection points

X ∈ A2B3 ∩ A3B2

Y ∈ A1B3 ∩ A3B1

Z ∈ A1B2 ∩ A2B1

are collinear.

2This is sometimes called the Pappus Hexagon Theorem to distinguish it from the theorems on centroids
of surfaces and solids of revolution that were proven by Pappus and rediscovered independently by P. Guldin
(1577–1643). A more detailed discussion of Guldin’s life and work is available at the following online site:
http:/www.faculty.fairfield.edu/jmac/sj/scientists/guldin.htm . For reasons discussed in the final section
of Chapter VII, the Theorem of Pappus stated in this section is sometimes called Pascal’s Theorem, and this is
especially true for mathematical articles and books written in French or German.
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Figure V.2

Theorem V.19. Let F be a skew-field. Then Pappus’ Theorem is valid in FP
n (where n ≥ 2) if

and only if F is commutative.

Proof. At most one of the six points {A1, A2, A3, B1, B2, B3} lies on both lines. In
particular, there exist distinct numbers j, k ∈ {1, 2, 3} such that Aj, Ak, Bj, Bk do not lie on
both lines. If we re-index the points using a suitable reordering of {1, 2, 3} (explicitly, send j to
1, k to 2, and the remaining number to 3), we find that the renamed points A1, A2, B1, B2

do not lie on both lines. We shall use this revised indexing henceforth. Since the six points
are coplanar, by Theorem 6 we may choose homogeneous coordinates αi and βj for the points
so that β2 = α1 + α2 + β1. Furthermore, by Theorem 7 we may write α3 = α1 + α2 · a
and β3 = β1 + β2 · b. Since Z ∈ A1B2 ∩ A2B1, we know there are scalars x, y, u, v such that
homogeneous coordinates ζ for Z are given by

ζ = α1 · x + β2 · y = β1 · u + α2 · v = α1 (x+ y) + α2 · y + β1 · y .
Equating coefficients, we see that x+ y = 0 and y = u = v. Hence homogeneous coordinates for
Z are given by β1 + α2. Similarly, homogeneous coordinates η for Y are given as follows:

η = α1 · x + β3 · y = α1 (x+ by) + β1 (y + by) + α2 (by) =

α3 · u + β1 · v = α1 · u + α2 · au + β1 · v .
Equating coefficients as before, we find that homogeneous coordinates for Y are given by

η = α1 + α2 · a + β1 (1 + b−1a) .

Still another calculation along the same lines shows that homogeneous coordinates ξ for X are
given by

ξ = α1 + α2 (1 + b−1 − ab−1) + β1 (1 + b−1) .

Assume now that F is commutative. Then ab−1 = b−1a, and hence

η − ξ = α2 (a− 1− b−1 + ab−1) + β1 (a+ b−1a− 1− b−1)

is a scalar multiple of α2 + β1. Since the latter vector is a set of homogeneous coordinates for
Z, the conclusion Z ∈ XY is immediate.�
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Conversely, assume that the Pappus’ Theorem is always valid in FP
n. It suffices to prove that

ab = ba for all a, b ∈ F which are not equal to 0 or 1. Let A1, A2, B1, B2 be four coplanar points,
no three of which are collinear, and choose homogeneous coordinates such that β2 = α1+α2+β1.
Let A3 ∈ A1A2 and B3 ∈ B1B2 be chosen so that we have homogeneous coordinates of the form
α3 = α1 + α2 · a and β3 = β1 + β2 · b−1.

Since Z ∈ XY , there exist x, y ∈ F such that

α2 + β1 = η · x + ξ · y .
By the calculations in the preceding half of the proof, the right hand side is equal to

α1 (x+ y) + α2 · z + β1 · w
where z and w are readily computable elements of F. If we equate coefficients we find that
x+ y = 0 and hence α2 + β1 = (η − ξ)x. On the other hand, previous calculations show that

(η − ξ)x = α2 (a− 1− b− ab)x + β1 (a+ ba− 1− b)x .
By construction, the coefficients of α2 and β1 in the above construction are equal to 1. Therefore
x is nonzero and

a − 1 − b − ab = a + ba − 1 − b

from which ab = ba follows.�

Since there exist skew-fields that are not fields (e.g., the quaternions given in Example 3 at the
beginning of Appendix A), Theorem 19 yields the following consequence:

For each n ≥ 2 there exist Desarguian projective n-spaces in which Pappus’
Theorem is not valid.

Appendix C contains additional information on such noncommutative skew-fields and their im-
plications for projective geometry. The logical relationship between the statements of Desargues’
Theorem and Pappus’ Theorem for projective spaces is discussed later in this section will be
discussed following the proof of the next result, which shows that Pappus’ Theorem is effectively
invariant under duality.

Theorem V.20. If Pappus’ Theorem is true in a projective plane, then the dual of Pappus’
Theorem is also true in that plane.

Proof. Suppose we are given two triples of concurrent lines {α1, α2, α3} and {β1, β2, β3}
with distinct points of concurrency that we shall call A and B respectively. Let Ci,j denote the
common point of αi and βj . To prove the planar dual of Pappas’ Theorem, we must show that
the lines

C1,3C3,1, C2,3C3,2, C1,2C2,1

are concurrent (see the figure below):
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Figure V.3

Now {A, C3,1, C3,2} and {B, C2,3, C1,3} are two triples of collinear points not on the same
line, and hence the three points

X ∈ C3,1C2,3 ∩ C3,2C2,3

C2,1 ∈ AC2,3 ∩ BC3,1 = α2 ∩ β1

C1,2 ∈ AC1,3 ∩ BC3,2 = α1 ∩ β2

are collinear by Pappus’ Theorem. Hence X ∈ C1,2C2,1. By the definition of X, it now follows
that X lies on all three of the lines C1,3C3,1, C2,3C3,2, and C1,2C2,1.�

A relationship between the validities of Desargues’ Theorem and Pappus’ Theorem was first
formulated by G. Hessenberg (1874–1925). However, his proof was incomplete, and the first
correct argument was published by A. Cronheim (1922–2005); the paper containing Cronheim’s
proof is listed int the bibliography.
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Theorem V.21. Let (P,L) be a projective plane in which Pappus’ Theorem is valid. Then (P,L)
is Desarguian.

The original idea of the proof of Theorem 21 is fairly elementary, but the complete argument is
a tedious exercise in the use of such elementary techniques. Details appear on pages 64–66 of
the book by Bumcrot listed in the bibliography.

We have already noted that Pappus’ Theorem is not necessarily valid in a Desarguian projective
plane. However, the following result is true:

Theorem V.22. Let P be a FINITE Desarguian projective plane. Then Pappus’ Theorem is
valid in P .

The main step in the proof of Theorem 22 is an algebraic result of J. H. M. Wedderburn.3 Proofs
appear on pages 375–376 of M. Hall’s book on group theory and in the final chapter of the book,
Topics in Algebra, by I. Herstein (more detailed information appears in the bibliography).

Theorem of Wedderburn. Every finite skew-field is commutative.�

Proof of Theorem 22. (assuming Wedderburn’s Theorem) By Theorem IV.17 we know
that P is isomorphic to FP

2 for some skew-field F. Since FP
2 is finite, so is F, and since F is

commutative by Wedderburn’s Theorem, Pappus’ Theorem is valid by Theorem 19.�

STRENGTHENED RESULT. The theory of finite fields4 implies that the number of elements
in a finite field is pr, where p is prime and r is a positive integer and also that all finite fields
with pr elements are isomorphic. Combining this with the preceding theorem and a count of
the number of elements in FP

n if F has q = pr, one can prove the following result:

Complement to Theorem 22. The number of elements in a finite Desarguian projective
n-plane is equal to 1+ q+ · · · + qn where q = pr for some r, and two finite Desarguian n-spaces
with the same numbers of elements are isomorphic.�

A purely algebraic proof of this result is described in the exercises.

Note on the proofs of Theorem 22 and its complement . Since the statements of the result and
its complement only involve synthetic and geometric concepts, it is natural to ask if there is
a more direct proof that does not require such substantial algebraic input. However, no other
proofs are known.

EXERCISES

1. Fill in the omitted details of the calculations for ξ and η in Theorem 19.

3Joseph H. M. Wedderburn (1882–1948) is particularly known for some fundamental results on the
structure of certain important types of abstract algebraic systems. As noted in the article by K. H. Parshall
in the bibliography, there is a case for attributing the cited result jointly to Wedderburn and L. E. Dickson
(1874–1954).

4See the books by Herstein or Hungerford.
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2. Given three collinear points {A, B, C} and three other collinear points on a different lines,
how many different 1–1 ordered correspondences involving the two sets of points are possible?

3. In Exercise 2, assume all points belong to FP
2, where F is a field. Each correspondence

in Exercise 2 determines a line given by Pappus’ Theorem. Draw a figure illustrating the lines
arising from the two given unordered triples of collinear points. Formulate and prove a statement
about these lines.

4. Prove the Complement to Theorem 22. [Hint: If F has q elements, show that the number
of nonzero elements of F

n+1 is equal to the product of the number of 1-dimensional subspaces
times the number of nonzero elements in F. Both of the latter are easy to compute. Solve the
resulting equation to obtain the number of elements in FP

n. If two finite fields have different
numbers of elements, use the formula to show that their projective n-spaces also have different
number of elements because 1 + q + · · · + qn is a strictly increasing function of q.]
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4. Complete quadrilaterals and harmonic sets

In the exercises for the preceding section, we defined the concept of a harmonic quadruple of
collinear points. Since the concept plays an important role in this section, we shall repeat the
definition and mention a few alternative phrases that are frequently used.

Definition. Let A, B, C, D be a set of four collinear points in FP
n, where F is a skew-field

such that 1 + 1 6= 0 in F. We shall say that the ordered quadruple (A,B,C,D) is a harmonic
quadruple if XR(A, B, C, D) = − 1. Frequently we shall also say that the points A and B
separate the points C and D harmonically ,5 or that the ordered quadruple (A,B,C,D) forms a
harmonic set (sometimes, with an abuse of language, one also says that the four points form a
harmonic set, but Theorem 12 shows that one must be careful about the ordering of the points
whenever this wording is used).

Here is the definition of the other basic concept in this section.

Definition. Let A, B, C, D be a set of four coplanar points in a projective incidence space
such that no three are collinear. The complete quadrilateral determined by these four points,
written �ABCD, is the union of the six lines joining these four points:

�ABCD = AB ∪ BC ∪ CD ∪ DA ∪ AC ∪ BD

Each line is called a side, and the points

X ∈ AD ∩ BC
Y ∈ AB ∩ CD
Z ∈ AC ∩ BD

are called the diagonal points of the complete quadrilateral.
 
 

 

Figure V.4

Note that if the original four points form the vertices of an affine parallelogram in F
n where

n ≥ 2 and 1 + 1 6= 0 in F, then by Theorem II.26 the first two diagonal points are ideal points
but the third is not. On the other hand, if we have a field F such that 1 + 1 = 0 in F, then

5This does not depend upon the order of {A, B} or {C, D} because XR(A, B, C, D) = − 1 and Theorem
12 imply XR(B, A, C, D), XR(A, B, D, C) and XR(B, A, D, C) are all equal to −1. In fact, the definition is
symmetric in the two pairs of points because Theorem 12 implies XR(A, B, C, D) = XR(C, D, A, B).
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by Exercise II.4.8 then all three diagonal points are ideal points. The following result, whose
significance was observed by G. Fano,6 is a generalization of these simple observations about
parallelograms.

Theorem V.23. Let n ≥ 2, let F be a skew-field and let A, B, C, D be a set of four coplanar
points in FP

n such that no three are collinear.

(i) If 1 + 1 6= 0 in F, then the diagonal points of the complete quadrilateral �ABCD are
noncollinear.

(ii) If 1+1 = 0 in F, then the diagonal points of the complete quadrilateral �ABCD are collinear.

Proof. As usual start by choosing homogeneous coordinates α, β, γ, δ for A, B, C, D such
that δ = α+ β + γ. There exist scalars x, y, u, v such that homogeneous coordinates for X are
given by

β · x + γ · y = α · u + δ · v = α (u+ v) + β · v + γ · v .
Thus we must have x = y = v and u + v = 0, so that ξ = β + γ is a set of homogeneous
coordinates for X. Similarly, homogeneous coordinates for Y and Z are given by

η0 = α · x + β · y = γ · u + δ · v = α · v + β · v + γ (u+ v)

and

ζ0 = α · x′ + γ · y′ = β · u′ + δ · v′ = α · v′ + β (u′ + v′) + γ · v′

respectively, where u, v, u′, v′ are appropriate scalars. In these equations we have x = y = v
and x′ = y′ = v′, so that Y and Z have homogeneous coordinates η = α+ β and ζ = α + γ
respectively. The vectors ξ, η and ζ are linearly independent if 1 + 1 6= 0 in F and linearly
dependent if 1+ 1 = 0 in F, and therefore the points X, Y and Z are noncollinear if are linearly
independent if 1 + 1 6= 0 in F and collinear if 1 + 1 = 0 in F.�

HYPOTHESIS. Throughout the rest of this section we assume F is a commutative field; in most
but not all cases, we shall also assume that 1 + 1 6= 0 in F, but for each result or discussion we
shall state explicitly if we making such an assumption.

AFFINE INTERPRETATIONS OF HARMONIC SETS. Given that we have devoted so much
attention to affine geometry in these notes, it is natural to ask just what harmonic quadruples
look like in affine (and, of course, Euclidean) geometry. Here is one basic result which shows that
harmonic quadruples often correspond to familiar concepts in “ordinary” geometry. Additional
examples are given in the exercises.

Theorem V.24. Let F be a field in which 1 + 1 6= 0, let a, b, cbe three distinct points
in F

n, where n ≥ 1, and let P∞ be the ideal point on the projective line J(a)J(b). Then(
J(a), J(b), J(c), J(P∞)

)
if and only if c is the midpoint of a and b.

6Gino Fano (1871–1952) is recognized for his contributions to the foundations of geometry and to algebraic
geometry; an important class of objects in the latter subject is named after him, the projective plane over Z2 is
frequently called the Fano plane, and the noncollinearity conclusion in Theorem 23 below is often called Fano’s

axiom.
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Proof. According to Theorem 17, if c = ta + (1− t)b, then

(
J(a), J(b), J(c), J(P∞)

)
= − 1− t

t
.

It is a straightforward algebraic exercise to verify that the right hand side is equal to −1 if and
only if t = 1

2 .�

In view of the preceding theorem, the next result may be interpreted as a generalization of the
familiar theorem, “The diagonals of a parallelogram bisect each other” (see Theorem II.26).

Theorem V.25. Let �ABCD be a complete quadrilateral in FP
n, and let X, Y ,Z be its

diagonal points as in the definition. Let W ∈ XY ∩BD and let V ∈ AC ∩XY . Then we have
XR(B,D,W,Z) = XR(X,Y,W, V ) = −1.

 
 

 

Figure V.5

Proof. Since X ∈ AB, Y ∈ AD, W ∈ AW and V ∈ AZ, clearly the two cross ratios agree.
Choose homogeneous coordinates so that δ = α+ β + γ (as usual α, β, γ, δ are homogeneous
coordinates for A, B, C, D respectively). We have already seen that homogeneous coordinates
ξ, η, ζ for X, Y, Z are given by ξ = α + β, η = β + γ, and ζ = α + γ. To find homogeneous
coordinates ω for W , note that ξ+η = α+2β+γ = β+δ. Thus ω = α+2β+γ−ξ+η = β+δ.
However, the formulas above imply that

ζ = α + γ = −β + δ

and therefore the desired cross ratio formula XR(B,D,W,Z) = −1 follows.�

REMARK. One can use the conclusion of the preceding result to give a purely synthetic definition
of harmonic quadruples for arbitrary projective planes. Details appear in many of the references
in the bibliography.

Definition. Let L be a line in a projective plane, and let Xi (where 1 ≤ i ≤ 6) be six
different points on L. The points Xi are said to form a quadrangular set if there is a complete
quadrilateral in the plane whose six sides intersect L in the points Xi.
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The next result was first shown by Desargues.

Theorem V.26. Let F be a field. Then any five points in a quadrangular set uniquely determine
the sixth.

We should note that the theorem is also true if F is a skew-field; the commutativity assumption
allows us to simplify the algebra in the proof.

Proof. Let L be the given line, and let �ABCD be a complete quadrilateral. Define
X1, X2, X3, X4, X5, X6 to be the intersections of L with AB, AC, BC, BD, AD, CD
respectively. It suffices to prove that X6 is uniquely determined by the points Xi for i ≤ 5. The
other five cases follow by interchanging the roles of A, B, C and D.

Choose homogeneous coordinates as usual so that δ = α+β+γ, and let λ be a set of homogeneous
coordinates for L. Define a = λ · α, b = λ · β, c = λ · γ, and d = λ · δ. By construction, we
have d = a + b + c. Using Theorem 5, we obtain homogeneous coordinates for the points Xi

as follows:
ξ1 = λ · (α× β) = (λ · β)α − (λ · α)β = bα − aβ

ξ2 = cα − aγ
ξ3 = cβ − bγ

ξ4 = (a+ c)β − b(α+ γ)
ξ5 = (b+ c)α − a(β + γ)
ξ6 = (a+ b)γ − c(α+ δ)

The preceding equations immediately imply that

ξ4 = ξ3 − ξ1 , ξ5 = ξ1 + ξ2 , ξ6 = ξ3 − ξ2

for the above choices of ξi. Furthermore, we have cξ1− bξ2 = aξ3, and hence we may write the
equations above as follows:

ξ3 =
c

a
ξ1 −

b

a
ξ2 , ξ4 =

c− a
a

ξ1 −
b

a
ξ2 , ξ6 =

c

a
ξ1 −

b+ a

a
ξ2 .

By definition, the above equations imply the following cross ratio properties:

XR(X1, X2, X5, X3) = − c
b

XR(X1, X2, X5, X4) = − c− a
b

XR(X1, X2, X5, X6) = − c

a+ b
If the first cross ratio is denoted by r and the second by s, then the third is equal to

r

s− r + 1
.

Thus the third cross ratio only depends upon the points Xi for i ≤ 5; in particular, if

{X1, X2, X3, X4, X5, Y }
is an arbitrary quadrangular set, then XR(X1, X2, X5, Y ) = XR(X1, X2, X5, X6). By Theorem
10, this implies that Y = X6.�
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Harmonic quadruples and von Staudt’s Theorem

The importance of harmonic quadruples in projective geometry is reflected by the following
remarkable result of K. von Staudt.7

Theorem V.27. Let ϕ : RP
1 → RP

1 be a 1− 1 onto map which preserves harmonic quadruples;
specifically, for all distinct collinear ordered quadruples (a,b, c,d) we have XR(a,b, c,d) = −1
if and only if XR (ϕ(a), ϕ(b), ϕ(c), ϕ(d) ) = −1. Then there is an invertible 2 × 2 matrix A
over R such that ϕ corresponds to S1(A) under the standard identification of RP

1 with S1(R
2,1),

and for all distinct collinear ordered quadruples (a,b, c,d) we have

XR(a,b, c,d) = XR (ϕ(a), ϕ(b), ϕ(c), ϕ(d) ) .

The second part of the conclusion follows from the first (see Exercise V.2.10). One very accessible
proof of the first conclusion of the theorem is the following online document:

http://www-m10.ma.tum.de/∼richter/Vorlesungen/ProjectiveGeometrie/Kapitel/Chap5.pdf
Note that von Staudt’s result is only stated for the case F = R. The corresponding result for
more general fields in which 1 + 1 6= 0 is discussed in Section VI.3 following Theorem VI.11 (see
the subheading Collineations of FP

1).

EXERCISES

1. In RP
2, show that the pair of points whose homogeneous coordinates satisfy

x2
1 − 4x1x2 − 3x2

2 = x3 = 0

separate harmonically the pair whose coordinates satisfy

x2
1 + 2x1x2 − x2

2 = x3 = 0 .

2. Prove that a complete quadrilateral is completely determined by one vertex and its diagonal
points.

3. State the plane dual theorem to the result established in Theorem 26.

4. In the Euclidean plane R
2, let a, b, c be noncollinear points, and let the lines bisecting

∠bac and its supplement meet bc in the points e and d of RP
2 respectively. Prove that

XR(b, c,d, e) = −1.

7Karl G. C. von Staudt (1798–1867) is best known for his contributions to projective geometry and his
work on a fundamentally important sequence in number theory called the Bernoulli numbers. In his work on
projective geometry, von Staudt’s viewpoint was highly synthetic, and his best known writings provide a purely
synthetic approach to the subject.
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Figure V.6

[Hint: Explain why it suffices to consider the triple of points a, b, c′ where c′ satisfies
c′ − a = t(c− a) for some t > 0 and |c′ − a| = |b− a|. Why is ae the perpendicular bisector of
b and c′, and why is bc′||ad? If e′ is the point where ae meets bc′ and j is the ideal point on
the line bc′, what are XR(b, c′, e′, j) and XR(b, c′, j, e′)?]8

5. Let F be a field in which 1 + 1 6= 0, let A 6= B in FP
n, where n ≥ 1, and let α and β be

homogeneous coordinates for A and B. For 1 = 1, 2, 3, 4 let Xi have homogeneous coordinates
xiα+ β, and assume that XR(X1, X2, X3, X4) = −1. Prove that

2

x4 − x3
=

1

x1 − x2
+

1

x1 − x4
.

6. Let F be as in the previous exercise, and let a, b, c, d ∈ F
2 be distinct points with

coordinates (0, 0), (b, 0), (c, 0) and (d, 0) respectively. Assume that XR(a,b, c,d) = −1. Prove
that

1

b
=

1

2
·
(

1

c
+

1

d

)
.

[Hint: Apply the preceding exercise, taking A and B to be the points U and V whose homo-
geneous coordinates are T(1 0 0) and T(0 0 1) respectively.]

REMARK. The right hand side of the equation above is called the harmonic
mean of c and d. The harmonic mean was well-known to ancient Greek math-
ematicians; the name itself9 was first used by Archytas of Tarentum (c. 428 B.
C. E. – c. 350 B. C. E.), but the concept had been known since the time of the
Pythagoreans.

7. Let F be the real numbers R, let a, b, c, d ∈ R
2 be distinct points with coordinates

(0, 0), (b, 0), (c, 0) and (d, 0) respectively, and assume that b, c and d are all positive. Prove that
XR(a,b, c,d) is positive if either b is less than or greater than both c and d, but XR(a,b, c,d) is
negative if either 0 < c < b < d or 0 < d < b < c. — In other words, the cross ratio is negative
if and only if the points 0 and b separate the points c and d in the sense that one of the latter
lies on the bounded open interval defined by 0 < x < b and the other lies on the unbounded
interval defined by x > b. More will be said about this concept of separation in the final section
of Chapter VI. [Hint: Use the same methods as in the preceding exercise to express the cross
ratio in terms of the coordinates of the four points.]

8See Moise, Prenowitz and Jordan, or the online site mentioned in the Preface for mathematically sound
treatments of the Euclidean geometry needed for this exercise.

9More correctly, the corresponding name in Classical Greek.
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5. Interpretation of addition and multiplication

Theorem IV.15 states that if an n-dimensional projective incidence space is isomorphic to FP
n

for some skew-field F, then the latter is unique up to algebraic isomorphism. In particular, if E

is a skew-field such that EP
n is isomorphic to FP

n, then E is algebraically isomorphic to F. The
reason for this is that addition and multiplication in the underlying skew-field have synthetic
interpretations in terms of certain geometric constructions which are motivated by ordinary
Euclidean geometry. If the two coordinate projective spaces as above are isomorphic, this means
that the algebraic operations in each are characterized by the same synthetic constructions, and
therefore the algebraic operations in the two underlying skew-fields must be isomorphic.

We shall take the preceding discussion further in Chapter VI, where we shall use the synthetic
interpretations of addition and multiplication to give an complete description of all geometrical
(incidence space) automorphisms of FP

n, where F is a field and n ≥ 2.

In order to simplify the algebra, we again restrict attention to commutative fields; however, all
the results in this section are equally valid for arbitrary skew-fields (and the result on automor-
phisms in Chapter VI also extend to the noncommutative case).

Euclidean addition of lengths. If L is a line in the Euclidean plane containing the points X1, A
and B such that the lengths of the segments [X1A] and [X1B] have lengths a and b respectively,
then the figure below indicates one method for finding a point C ∈ L such that the segment
[X1C] has length a+ b. 

 

 

L||L′, X1Y ||AZ, Y B||ZC with ideal points X0, E and D respectively.

Figure V.7

This example motivates the following abstract result:

Theorem V.28. Let F be a field, and let n ≥ 2. Let L be a line in FP
n containing a point X0,

let M be another line containing X0, let X1 be another point on L, and let U be a third point on
L = X0X1. Let A and B be points of L− {P0}, and let Y be a point in the plane of L and M
which does not line on either line. Let D be the (unique) intersection point of X1Y ∩M (note
that D 6= X1, for that would imply X1 and X0 both lie on L ∩M), and let

Z ∈ AD ∩X0Y , E ∈ Y B ∩M , C ∈ RE ∩ L .

Then C 6= X0 and XR(X0, X1, U, C) = XR(X0, X1, U,A) + XR(X0, X1, U,B).
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Figure V.8

Proof. Let V be the point whereX0Y meets DU . Then no three of the points {X0, X1, D, V }
are collinear. Choose homogeneous coordinates ξ0, ξ1, δ, ψ for X0, X1, D, V so that ψ = ξ0+
ξ2 + δ. Since Y ∈ DX1 ∩X0V it follows that η = ξ1 + δ, and since U ∈ X0Y ∩DV it follows
that η = ξ1 + δ.

By the definition of cross ratios, there are homogeneous coordinates α and β for A and B
respectively such that α = aξ0 + ξ1 and β = bξ0 + ξ1, where a = XR(X0, X1, U,A) and
b = XR(X0, X1, U,B). Since Z ∈ AD ∩X0Y , there exist x, y, u, v ∈ F such that homogeneous
coordinates for ζ are given by

xα + y · a = uξ0 + vη .

Using the preceding equations, this equation may be expanded to

xaξ0 + xξ1 + yδ = uξ0 + vξ1 + vδ .

Therefore we must have x = v and xa = u, so that ζ = aξ0 + ξ1 + δ. Similarly, D ∈ Y B ∩X0D
implies an equation of the form xη + yβ = uξ0 + δ, which is equivalent to

xξ1 + xδ + ybξ0 + yξ1 = uξ0 + vδ .

Therefore yb = u, x = v and x + y = 0 imply that homogeneous coordinates ε for E are given
by

ε = −bξ0 + δ .

Finally, C ∈ ZE ∩X0X1 implies an equation

xζ + yε = uξ0 + vξ1

which is equivalent to

xaξ0 + xξ1 + xδ − yδ − ybξ0 = uξ0 + vξ1 .

Thus x+ y = 0, xa− yb = u and x = v imply that homogeneous coordinates γ for C are given
by

γ = (a+ b)ξ0 + ξ1 .

In particular, it follows that C 6= X0 and XR(X0, X1, U, C) = a+ b.�
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Euclidean multiplication of lengths. Similarly, if L is a line in the Euclidean plane containing
the points X1, U , A and B such that the lengths of the segments [X1U ], [X1A], and [X1B] have
lengths 1, a and b respectively, then the figure below indicates one method for finding a point
K ∈ L such that the segment [X1K] has length a · b.

 
 

 

Y A||WK and Y U ||BW with ideal points H and G respectively, and X0 is the ideal point

of L.

Figure V.9

Here is the corresponding abstract result:

Theorem V.29. Let L, X0, X1, U, A, B, Y, D satisfy the conditions of the previous theorem,
and let

G ∈ Y U ∩ L , H ∈ Y A ∩ L , W ∈ X1D ∩ BG , K ∈ HW ∩ X0X1 .

Then K 6= X0 and XR(X0, X1, U, C) = XR(X0, X1, U,A) · XR(X0, X1, U,B).

 

 

Figure V.10

Proof. The problem here is to find homogeneous coordinates for G, H, W and K. Unless
otherwise specified, we shall use the same symbols for homogeneous coordinates representing
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L, X0, X1, A, B, Y, D as in the previous argument, and choose homogeneous coordinates for
U of the form ξ0 + ξ1. Since G ∈ Y U ∩X0D, there is an equation of the form

xη + y(ξ0 + ξ1) = uξ0 + vδ

which is equivalent to
x(ξ1 + δ) + y(ξ0 + ξ1) = uξ0 + vδ .

Therefore y = u, x + y = 0, and x = v imply that homogeneous coordinates χ for G are given
by

χ = ξ0 − δ .
Since H ∈ Y A ∩X0D, there is an equation of the form

xξ0 + yα = uξ0 + vδ

which is equivalent to
x(ξ0 + δ) = y(aξ0 + ξ1) = uξ0 + vδ .

Therefore ya = u, x+ y = 0, and x = v imply that homogeneous coordinates θ for H are given
by

θ = −aξ0 + δ .

Since W ∈ X1U ∩BG, there is an equation

xξ1 + yδ = uβ + vχ

which is equivalent to

xξ1 + yδ = u(bξ0 + ξ1) + v(ξ0 − δ) = (ub+ v)ξ0 + uξ1 − vδ .

Thus ub+ v = 0, −v = y, and u = x imply that homogeneous coordinates ω for W are given by

ω = ξ1 − δ .

Finally, K ∈ HW ∩X0X1 implies an equation of the form

xθ + yω = uξ0 + vξ1

which is equivalent to

uξ0 + vξ1 = x(−aξ0 + δ) + y(ξ − bδ) = −axξ0 + yξ1 − (ax+ by)δ .

Therefore u = −ax, v = y.and x+ by = 0 imply

u = −ax = −a(−by) = aby = abv

and hence homogeneous coordinates κ for K are given by κ = abξ0 + ξ1.�



CHAPTER VI

MULTIDIMENSIONAL PROJECTIVE GEOMETRY

In this chapter we shall study coordinate projective spaces of arbitrary dimension. As in the previous
chapter, we shall use concepts from linear algebra extensively. Although some portions of this chapter
contain results of the previous one as special cases, most of the material involves concepts not covered
earlier in these notes.

One major difference between this chapter and the previous one is that we are mainly interested in

somewhat different types of results. In particular, we are interested in the geometric automorphisms of

a coordinate projective space FPn, and the results of this chapter give a simple but complete description

of them. In the final section of this chapter we shall assume that we have a field (or skew-field) of scalars

F which has a notion of ordering with the same basic properties of the orderings of the real or rational

numbers, and we shall analyze the geometrical implications of such algebraic orderings.

1. Linear varieties and bundles

Our first objective is to extend the results of Section V.1 on duality and homogeneous coordinates
from FP

2 to FP
n, where n ≥ 3 is arbitrary. As indicated in Theorem IV.16, if (S,Π, d) is an

n-dimensional projective (incidence) space, then the “points” of the dual projective n-space
(S∗,Π∗, d∗) are the hyperplanes of S. Suppose now that S = FP

n for some skew-field F; by
the results of Section V.1, if n = 2 then we can introduce homogeneous coordinates into the
dual projective plane

(
FP

2
)∗

. We shall extend this to all n ≥ 2, showing that one can define
well-behaved homogeneous coordinates for the hyperplanes of FP

n for all n ≥ 2 such that most
of the fundamental results from Section V.1 also extend to this more general setting.

According to Theorem III.12, a hyperplane in FP
n is definable by a right homogeneous linear

equation
n+1∑

i=1

ui xi = 0

where the coefficients ui are not all zero. Furthermore, two n-tuples (u1, · · · , un+1) and
(v1, · · · , vn+1) define the same hyperplane if and only if there is a nonzero k ∈ F such that
ui = k vi for all i (compare Section V.1). This immediately yields the following analog of
Theorem V.1:

Theorem VI.1. Let F be a skew-field, and let n ≥ 2. Then the set of hyperplanes in FP
n is in

1− 1 correspondence with S1(F
1,n+1). Furthermore, if the hyperplane H corresponds to the left

1-dimensional vector subspace F · θ and X ∈ FP
n is given by ξ · F, then X ∈ H if and only if

θ · ξ = 0.�

111
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As before, if the hyperplaneH corresponds to the left 1-dimensional vector subspace Ω of F
1,n+1,

then a set of homogeneous coordinates for H is any nonzero vector in Ω.

Motivated by the preceding description of hyperplanes, we define a linear variety in FP
n to be

the set of all points whose homogeneous coordinates satisfy a system of linear homogeneous
equations

n+1∑

j=1

ui.jxj = 0 1 ≤ i ≤ m .

The following result shows that linear varieties are the same as geometrical subspaces.

Theorem VI.2. Let V be a linear variety defined by a system of linear homogeneous equations
as above, and suppose that the (left) row rank of the matrix B = (ui,j ) is equal to r. Then V
is an r-plane in FP

n.

Proof. If V0 is the solution space of the system of equations, then clearly V = S1(V0). Since
the rank of B is r, then dimension of V0 is equal to n+ 1− r by Theorem A.10, and hence V is
an (n− r)-plane in FP

n.

On the other hand, assume that W is a (k + 1)-dimensional vector subspace of F
n+1,1, so that

S1(W ) is a k-plane. Let w1, · · · wk+1 be a basis for W , and write wi = T(w1,i · · · wk+1,i).
Consider the left-homogeneous system of linear equations

∑

i

yiwj,i = 0 (1 ≤ i ≤ k + 1) .

Since the right column rank of the matrix C = (wj,i ) is equal to k+1, the left subspace of
solutions has dimension equal to n−k (again by Theorem A.10). Let v1, · · · vn−k be a basis for
the space of solutions, and write vi = (vi,1 · · · vi,n+1). Then, by construction, the vector
subspace W is contained in the space of solutions of the system

∑

j

vj,i xj = 0 (1 ≤ j ≤ n− k) .

On the other hand, the space of solutions W ′ has dimension equal to

(n+ 1) − (n− k) = k + 1 .

Since this is the dimension of W , we must have W ′ = W , and this proves the second half of the
theorem.�

Similarly, we may define a linear variety of hyperplanes to be the set of all hyperplanes whose
homogeneous coordinates satisfy a system of left-homogeneous linear equations

∑

i

ui xi,j = 0 (1 ≤ j ≤ m) .

If the right rank of X = (xi,j ) is r, the variety of hyperplanes is said to be (n−r)-dimensional.
The following result shows that linear varieties of hyperplanes are also equivalent to geometrical
subspaces of FP

n.

Theorem VI.3. An r-dimensional linear variety of hyperplanes in FP
n consists of all hyper-

planes containing a fixed (n − r − 1)-plane in the terminology of Chapter IV, a linear bundle
with the given (n − r − 1)-plane as center). Conversely, every (n − r − 1)-plane in FP

n is the
center of some linear variety of hyperplanes.
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Proof. The ideas are similar to those employed in Theorem 2. Let C0 be the span of the rows
of the matrix (xi,j ). By hypothesis, dimC0 = n− r. Thus C = S1(C0) is an (n− r−1)-plane in
FP

n, and every hyperplane containing it automatically belongs to the linear variety. Conversely,
if y0 ∈ C0, then we may write y =

∑
i xi ri where xi = (x1,i, · · · , xn+1,i) and ri ∈ F, so that

if H lies in the variety and θ is a set of homogeneous coordinates for H then we have

θ · y =
∑

i

(θ · xi) ri = 0 .

Thus every hyperplane in the variety contains every point of C. This proves the first half of the
theorem.

Now suppose that we are given an (n− r− 1)-plane Z = S1(Z0). Let z1, · · · , zn−r be a basis
for Z0, and write zj = (z1,j , · · · , zn+1,j). Consider the variety of hyperplanes defined by the
system of homogeneous equations

∑

j

ui zi,j = 0 (1 ≤ j ≤ n− r) .

Since the right rank of the matrix ( zi,j ) is equal to (n − r), this bundle is r-dimensional.
Furthermore, its center Z ′ is an (n − r − 1)-plane which contains every point of Z by the
reasoning of the previous paragraph. Therefore we have Z = Z ′.�

The preceding result has some useful consequences.

Theorem VI.4. Let ( FP
n )∗ be the set of hyperplanes in FP

n, and let Π∗ and d∗ be defined as
in Section IV.3. Then a subset S ⊂ ( FP

n )∗ is in Π∗ if and only if it is a linear variety of
hyperplanes, in which case d∗(S) is the dimension as defined above.�

Theorem VI.5. (compare Theorem V.1) The triple
(
( FP

n )∗ , Π∗, d∗
)

is a projective n-space which is isomorphic to S1(F
1,n+1).

Since Theorem 4 is basically a restatement of Theorem 3, we shall not give a proof. However, a
few remarks on Theorem 5 are in order.

Proof of Theorem 5. By Theorem 1 we have a 1–1 correspondence between ( FP
n )∗ and

S1(F
1,n+1). Furthermore, the argument used to prove Theorem 2 shows that r-dimensional

varieties of hyperplanes correspond to set of the form S1(V ), where V is an (r+ 1)-dimensional
left subspace of F

1,n+1 (merely interchange the roles of left and right in the proof, switch the
orders of the factors in products, and switch the orders of double subscripts). But r-dimensional
linear bundles correspond to r-dimensional linear varieties of hyperplanes by Theorems 3 and 4.
Combining these, we see that r-dimensional linear bundles of hyperplanes correspond to r-planes
in S1(F

1,n+1) under the 1–1 correspondence between ( FP
n )∗ and S1(F

1,n+1).�

By the Coordinatization Theorem (Theorem IV.18), this result implies the first half of Theorem
IV.16. On the other hand, if we interchange the roles of left and right, column vectors and row
vectors, and the orders of multiplication and indices in the reasoning of this section, we find
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that the dual of S1(F
1,n+1) is isomorphic to FP

n+1. In fact, this isomorphism h : S1(F
1,n+1)∗ →

S1(F
n+1,1) is readily seen to have the property that the composite h of∗ oe given by

FPn e−−−−→
∼=

(FPn)∗∗
f∗

−−−−→ S1(F
1,n+1)∗

h−−−−→ FPn

is the identity (here f ∗ is an isomorphism of dual spaces induced by f as in Exercise IV.3.4).
This establishes the second half of Theorem IV.16 and allows us to state the Principle of
Duality in Higher Dimensions:

Metatheorem VI.6. A theorem in projective geometry in dimension n ≥ 2 remains true if
we interchange the expressions point and hyperplane, the phrases r-planes in an n-space and
(n− r − 1)-planes in an n-space, and the words contains and is contained in.�

We shall now assume that F is commutative. Since F = F
OP in this case, the dual of FP

n

is isomorphic to FP
n. Hence the metatheorem may be modified in an obvious way to treat

statements about projective n-spaces over fields.

The cross ratio of four hyperplanes four hyperplanes in FP
n containing a common (n− 2)-plane

may be defined in complete analogy with the case n = 2, which was treated in Section V.2. In
particular, Theorem V.14 generalizes as follows.

Theorem VI.7. Let H1, H2, H3 be distinct hyperplanes through an (n − 2)-plane K in FP
n,

and let H4 6= H1 be another hyperplane through K. Let L be a line disjoint from K, and let Xi

be the unique point where L meets Hi for 1 = 1, 2, 3. Then the point X4 ∈ L lies on H4 if and
only if we have

XR(X1, X2, X3, X4) = XR(H1,H2,H3,H4) .

The proof of this result is formally identical to the proof of Theorem V.1.�

EXERCISES

1. Let F be a field, and let X, Y, Z ∈ FP
3 be noncollinear points. Suppose that homogeneous

coordinates for these points are respectively given as follows:

ξ =




x1

x2

x3

x4


 η =




y1

y2

y3

y4


 ζ =




z1
z2
z3
z4




Prove that the plane they determine has the following homogeneous coordinates:


∣∣∣∣∣∣

x2 x3 x4

y2 y3 y4

z2 z3 z,4

∣∣∣∣∣∣
, −

∣∣∣∣∣∣

x1 x3 x4

y1 y3 y4

z1 z3 z,4

∣∣∣∣∣∣
,

∣∣∣∣∣∣

x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣
, −

∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣




By Theorem A.11, not all of the four determinants vanish because ξ, η and ζ are
linearly independent. To see that X, , Y, Z lie on the above hyperplane, consider
the determinants of the three 4× 4 matrices whose rows are given by Tω, Tξ, Tη
and Tζ, where ω runs through the three vectors in the set ξ, η, ζ.
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2. Explain why four points pi = (xi, yi, zi) ∈ F
3 (where 1 ≤ i ≤ 4) are coplanar if and only

if the 4× 4 determinant ∣∣∣∣∣∣∣∣

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

∣∣∣∣∣∣∣∣
is zero, where F is a field. Formulate an analogous statement for n dimensions. [Hint: For both
parts, use the properties of determinants as described in Appendix A and the characterization
of hyperplanes in terms of n-dimensional vector subspaces of F

1,n+1.]

3. Write out the 3-dimensional projective duals of the following concepts:

(a) A set of collinear points.

(b) A set of concurrent lines.

(c) The set of all planes through a given point.

(d) Four coplanar points, no three of which are collinear.

(e) A set of noncoplanar lines.

4. What is the 3-dimensional dual of Pappus’ Theorem?

5. Let {A, B, C, D} and {A′, B′, C ′′, D′} be two triples of noncoplanar points in a projective
3-space, and assume that the lines AA′, BB′, CC ′ and DD′ are concurrent. Prove that the lines
of intersection

G = plane(ABC) ∩ plane(A′B′C ′)
H = plane(ABD) ∩ plane(A′B′D′)
K = plane(ACD) ∩ plane(A′C ′D′)
L = plane(BCD) ∩ plane(B ′C ′D′)

are coplanar, and state and prove the converse.

6. Find the equations of the hyperplanes through the following quadruples of points in RP
4.

(a) 


2
3
1
0
1







4
2
0
1
0







1
0
1
0
1







0
1
0
2
0




(b) 


3
4
0
0
2







1
1
1
0
0







2
0
5
1
2







1
0
2
1
0



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2. Projective coordinate systems

Theorems V.6 and V.7, which provided particularly convenient choices for homogeneous coor-
dinates in one or two dimensions, proved to be extremely useful in Chapter V. We shall prove
a corresponding result for higher dimensions in this section; as one might expect, this result
has corresponding importance in higher dimensional projective geometry. All the results of this
section (except for Exercise 1) are valid if F is an arbitrary skew-field.

Theorem VI.8. Let {B0, · · · , Br} be a set of independent points in FP
n, and let U be a point in

the r-plane B0 · · · Br such that every proper subset of {B0, · · · , Br, U} is independent. Then
homogeneous coordinates βi and ψ can be chosen for these points may be chosen such that

(‡) ψ = β0 + · · · + βr .

Furthermore, if β ′
i and ψ′ is another collection of homogeneous for these points such that (‡)

holds, then there is a nonzero a ∈ F such that ψ = ψ ′ a and βi = β′i a for i = 0, · · · , r.

Proof. . Since the points Bi are independent, if we take arbitrary homogeneous coordinates β̃i

and ψ then there exist unique scalars ci such that

ψ̃ = β̃0 c0 + · · · + β̃r cr .

None of the coefficients ci can be equal to zero, for otherwise a proper subset of {B0, · · · , Br, U}
would be independent, contradicting our assumption about such proper subsets. If we now take

βi = β̃i ci for each i, we then have the desired relation (‡).�

Conversely, suppose that (‡) is satisfied. If we are given arbitrary homogeneous coordinates β ′
i

and ψ′ for the points Bi and U , then there exist nonzero scalars a and qi such that ψ = ψ′ a
and βi = β′i qi. The new homogeneous coordinate vectors satisfy a relation of the form

ψ′ = β′0 q0 a
−1 + · · · + β′

r qr a
−1

and if (‡) is valid then all the coefficients on the right hand side must be equal to 1. In other
words, we must have bi a

−1 = 1 for all i or equivalently bi = a for all i, which is exactly what
we wanted to prove.�

Assume now that (‡) is valid, and let X be any point of the r-plane L = B0 · · · Br. A set
of homogeneous coordinates ξ for X is then a linear combination of the form ξ =

∑
i βi xi.

Since ξ is defined up to multiplication by a scalar factor and the vectors βj are defined up to
multiplication by a common scalar factor, it follows that the coefficients xi are also determined
up to multiplication by a common scalar factor, and such an ordered (r+ 1)-tuple (x0, · · · , xr)
of coefficients is called a set of homogeneous coordinates for X ∈ L relative to the projective

coordinate system (B0 · · · Br |U). It is frequently denoted by notation such as ~X(B0 · · · Br |U).
The set {B0, · · · , Br} is often called the coordinate simplex or fundamental simplex, the points
Bi are said to be the vertices of this coordinate simplex, and the point U is often called the unit
point because homogeneous coordinates for this point in the projective coordinate system are
given by (1, · · · , 1).

The homogeneous coordinates given in the definition of projective space may be viewed as a
special case of the preceding construction; specifically, if the unit vectors in F

n+1,1 are given by
ei, then the appropriate corrdinate simplex has vertices ei · F and the corresponding unit point
is d · F, where d =

∑
i ei. This is often called the standard coordinate system.
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The next result describes the change in homogeneous coordinates which occurs if we switch from
one projective coordinate system to another.

Theorem VI.9. Let (B0 · · · Br |U) and (B∗
0 · · · B∗

r |U∗) be two projective coordinate systems
for an r-plane in FP

n, and let X be a point in this r-plane. Then the homogeneous coordinates
xi and x∗i of X relative to these respective coordinate systems are related by the coefficients of
an invertible matrix A = ( ai,j ) as follows:

x∗i · ρ =

r∑

k=0

ai,k xk

Here ρ is a nonzero scalar in F.

Proof. Suppose that the coordinate vectors are chosen as before so that ψ =
∑

i βi and
ψ′ =

∑
i β

′
i. If ξ is a set of homogeneous coordinates for X, then homogeneous coordinates

for ξ are defined by the two following two equations:

ξ =
∑

i

βi xi ξ∗ =
∑

i

β∗i x
∗
i

Since the points lie in the same r-plane, we have

β∗i =
∑

k

βk ai,k

for sutiable scalars ai,k, and the matrix A with these entries must be invertible because the set
{B0 · · · Br} is independent. Straightforward calculation shows that

ξ =
∑

k

βk xk +
∑

i,k

β∗i ai,k xk =
∑

i

β∗i x
∗
i

which implies that x∗i =
∑

k ai,k xk. These are the desired equations; we have added a factor
ρ because the homogeneous coordinates are defined only up to a common factor.�

EXERCISES

1. Take the projective coordinate system on RP
3 whose fundamental simplex points Bi have

homogeneous coordinates

β0 =




1
1
0
0


 , β1 =




0
0
1
1


 , β2 =




0
1
1
0


 , β3 =




0
0
0
1




and whose unit point U has homogeneous coordinates

ψ =




1
0
0
0


 .
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Find the homogeneous coordinates of the point A with respect to the system (B0B1B2B3 | U)
where ordinary homogeneous coordinates α for A are given below; there are two parts to this
exercise corresponding to the two possibilities for A.

α =




2
1
4
1


 ,




1
1
3
0


 .

2. Let T be an invertible linear transformation on F
n+1,1 with associated invertible matrix A,

let T∗ be the associated geometric symmetry of FP
n, let (B0 · · · Bn | U) define the standard

homogeneous coordinate system, and let X ∈ FP
n have homogeneous coordinates given by

x0, · · · , xn. What are the homogeneous coordinates of X with respect to the coordinate system
(
T∗(B0) · · · T∗(Bn) | T∗(U)

)
?
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3. Collineations

At the beginning of Section II.6, we noted that an appropriate notion of isomorphism for figures
in Euclidean space is given by certain 1–1 correspondences with special properties. If one
analyzes the situation further, it turns out that the relevant class of 1–1 correspondences is
given by maps which extend to isometries of the Euclidean n-space R

n. Specifically, these are
1–1 mappings T from R

n to itself with the following two properties:

(i) If x and y are distinct points in R
n, then T satisfies the identity

d(x, y) = d
(
T (x), T (y)

)
;

in other words, T preserves distances between points.

(ii) If x, y and z are distinct points in R
n, then T satisfies the identity

measure(∠xyz) = measure
(
∠T (x)T (y)T (z)

)
;

in other words, T preserves angle measurements.

Further information on such mappings and closely related issues can be found in the Addendum
to Appendix A and the references cited there. For our purposes here, one important point is
that one can describe all such isometries of R

n in a very simple and explicit manner. Specifically,
every such isometry of R

n ∼= R
n,1 is given by a mapping of the form T (x) = Ax + b, where

b ∈ R
n ∼= R

n,1 and A is an n × n matrix which is orthogonal; the latter means that TA is
equal to A−1 or equivalently that the rows and columns of A define orthonormal sets of vectors.
In this section we shall prove similar results for symmetries of projective spaces, showing that
all geometric symmetries of FP

n are also given by some fairly basic constructions using linear
algebra.

Frequently in this section we shall use the term collineation to denote an isomorphism from
one n-dimensional incidence space to another (assuming n ≥ 2). This name dates back to the
19th century, and at the time collineations were the first types of incidence space isomorphisms
to be considered abstractly.

Algebraic automorphisms and geometric symmetries

We have seen that every invertible (n + 1) × (n + 1) matrix A determines a collineation fA of
FP

n which is defined by the formula

fA(x · F) = Ax · F .

However, for many choices of F there are examples which do not have this form. In particular,
if F is the complex numbers C and χ denotes the map on F

n+1,1 which takes a column vector
with entries zj to the column vector whose entries are the complex conjugates1 zj, then there is
a well-defined collineation gχ on CP

n such that

gχ(x · C) = χ(x) · C
that can also be defined, but it turns out that such a map is not equal to any of the maps fA

described previously. The proof that gχ is a collineation depends upon the fact that complex
conjugation is an automorphism; i.e., we have z1 + z2 = z1 + z2, z1 · z2 = z1 · z2, and
conjugation is a 1–1 correspondence to C to itself because this map is equal to its own inverse.

1Recall that if a complex number is given by u + vi, where i
2 = −1, then its conjugate is equal to a − bi.
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More generally, if F is an arbitrary skew-field and χ is an automorphism of F, then one can
construct a similar collineation gχ on FP

n that is not expressible as fA for some A. One major
objective of this section is to prove that mappings of the form fA and gχ for the various choices
of A and χ determine all collineations of FP

n. In order to simplify the arguments, for the rest
of this section we shall assume that the skew-field F is commutative; at the end of the section
we shall discuss some aspects of the noncommutative case.

In fact, one of the most important prepreties of a collineation f from one coordinate projective
space to another (perhaps over a different field) is that the collineation determines an isomor-
phism Φf of the underlying fields; if the two projective spaces are identical, this isomorphism
becomes an automorphism. The first result of this section establishes the relationship between
collineations and field isomorphisms.

Theorem VI.10. Let f be a collineation from the projective space FP
n to the projective space

EP
n, where F and E are fields and n ≥ 2. Then there is an isomorphism

Φf : F −→ E

characterized by the equation

Φf

(
XR(Y1, Y2, Y3, Y4)

)
= XR

(
Φf (Y1), Φf (Y2), Φf (Y3), Φf (Y4)

)

where Y1, Y2, Y3, Y4 is an arbitrary sequence of collinear points such that the first three are
distinct and Y4 6= Y2.

There are three basic steps in the proof; namely, defining a map from F to E which dependes
upon some choices, showing that such a map is an isomorphism of fields, and finally showing
that the map is independent of the choices that were made at the first step. The second part
of the proof uses the results from Section V.5, and the third part — which is by far the longest
— relies heavily on results from Chapter V on cross ratios.

Proof of Theorem 10. Construction of a mapping from F to E. Let X0, X1 and U be
three distinct collinear points, and let q ∈ F. Then there is a unique point Q ∈ X0X1 such that
Q 6∈ P0 and XR(X0, X1, U,Q) = q. Define Φf (q) = XR

(
f(X0), f(X1), f(U), f(Q)

)
. Strictly

speaking, one should write this as Φf,X0,X1,U to indicate that it depends upon the choices of X0,
X1 and U .

We claim that the map Φf,X0,X1,U defines an isomorphism from F to E. — Since the elements of
E are in 1–1 correspondence with the elements of f(X0)f(X1)−{f(X0)} and f mapsX0X1−{X0}
bijectively to f(X0)f(X1) − {f(X0)}, it follows that Φf,X0,X1,U is 1–1 and onto. Furthermore,
to see that the latter map is an isomorphism, take another line L through X0, coplanar points
Z0 and D, and points A, B ∈ X0X1 as in Section V.3. Let f(Xi) = X ′

i, f [L] = L′, f(Z0)− Z ′
0,

f(A) = A′, f(D) = D′, and f(B) = B ′. If X is any point constructed from the unprimed point
as in Section V.5, let X ′ be the corresponding point constructed from the primed points. Since
f is a collineation, it is easy to verify that f(X) = X ′ for all point X constructed in Section V.5.
In particular, f(C) = C ′ and f(K) = K ′. But the latter equalities combined with Theorem
V.28 and V.29 imply that

Φf,X0,X1,U(a+ b) = Φf,X0,X1,U(a) + Φf,X0,X1,U (b) .
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Proof that the map Φf,X0,X1,U depends only on the line M containing X0, X1 and U . — It
suffices to show that

Φf,X0,X1,U

(
XR(A,B,C,D)

)
= XR

(
f(A), f(B), f(C), f(D)

)

for every quadruple of distinct points on X0X1. There are several cases to be considered.

Case 1. None of the points A, B, C, D is X0. If we choose homogeneous coordinates ξi for
Xi and ψ for U such that ξ0 + ξ1 = ψ, then homogeneous coordinates α, β, γ and δ for A, B,
C and D are given as follows:

α = XR(X0, X1, U,A)ξ0 + ξi
β = XR(X0, X1, U,B)ξ0 + ξi
γ = XR(X0, X1, U, C)ξ0 + ξi
δ = XR(X0, X1, U,D)ξ0 + ξi

and therefore we have

Φf,X0,X1,U

(
XR(A,B,C,D)

)
= XR

(
f(A), f(B), f(C), f(D)

)

by the formula established in Theorem V.13 and the fact that Φf,X0,X1,U is an isomorphism of
fields.

Case 2. One of the points is X0. We claim it suffices to consider the case A = X0. For by
Theorem V.12 there is a reordering

(
σ(A), σ(B), σ(C), σ(D)

)
of (A,B,C,D) such that σ(A) =

X0 and

XR
(
σ(A), σ(B), σ(C), σ(D)

)
= XR(A,B,C,D) .

If the assertion is correct for quadruples whose first term is X0, then

Φf,X0,X1,U

( (
σ(A), σ(B), σ(C), σ(D)

) )
=
(
σ
(
f(A)

)
, σ
(
f(B)

)
, σ
(
f(C)

)
, σ
(
f(D)

) )
.

Since the right hand side is equal to Φf,X0,X1,U

(
XR(A,B,C,D)

)
and the right hand side is equal

to XR
(
f(A), f(B), f(C), f(D)

)
, the cases where X0 is one of B, C or D follow.

By the preceding discussion, we might as well assume that X0 = A in Case 2. The remainder
of the argument for Case 2 splits into subcases depending upon whether X1 is equal to one of
the remaining points.

Subcase 2.1. Suppose that A = X0 and B = X1. Then by Theorem V.11 we have

XR(A,B,C,D) =
XR(A,B,U,D)

XR(A,B,U,C)
=

XR(X0, X1, U,D)

XR(X0, X1, U, C)
.

Note that the cross ratio XR(A,B,U,C) is nonzero because B 6= C. The assertion in this case
follows from the formula above and the fact that Φ is an automorphism.

Subcase 2.2. Suppose that A = X0 and C = X1. Then XR(A,B,C,D) = 1−XR(A,C,B,D),
and hence the assertion in this subcase follows from Subcase 2.1 and the fact that Φ is an
automorphism.

Subcase 2.3. Suppose that A = X0 but neither B nor C is equal to X1. Let

b = XR(X0, X1, U,B)
c = XR(X0, X1, U, C)
d = XR(X0, X1, U,D)
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so that homogeneous coordinates β, ξ0 and ξ1 for the points B, X0 and X1 can be chosen such
that β = bξ0 + ξ1, and hence the corresponding homogeneous coordinates γ = cξ0 + ξ1 for C
satisfy

γ = cξ0 + ξ1 = (c− b)ξ0 + (bξ0 + ξ1) .

Since B 6= C, it follows that c− b = 0. Therefore homogeneous coordinates δ for D are given by

δ = dξ0 + ξ1 =
d− b
c− b (c− b)ξ0 + (bξ0 + ξ1) .

Therefore we have the identity

XR(A,B,C,D) =
d− b
c− b .

The assertion in this subcase follows from the above formula and the fact that Φ is an isomor-
phism. This concludes the proof that Φ only depends upon the line L = X0X1.

Proof that the isomorphism Φf = Φf,M does not depend upon the choice of the line M . —
Once again, there are two cases.

Case 1. Suppose we are given two lines M and M ′ which have a point in common; we claim
that Φf,M = Φf,M ′ . Let V be a point in the plane of M and M ′ which is not on either line. If
X ∈M , let X ′ ∈M ′ ∩ V X; then

f(X ′) ∈ f [M ′] ∩ f(V )f(X)

because f is a collineation. Thus two applications of Theorem 15 imply

XR(A,B,C,D) = XR(A′, B′, C ′, D′)

XR
(
f(A), f(B), f(C), f(D)

)
= XR

(
f(A′), f(B′), f(C ′), f(D′)

)
.

On the other hand, we also have

Φf,M

(
XR(A,B,C,D)

)
= XR

(
f(A), f(B), f(C), f(D)

)
and

Φf,M ′

(
XR(A′, B′, C ′, D′)

)
= XR

(
f(A′), f(B′), f(C ′), f(D′)

)
.

Since every element of F has the form XR(A,B,C,D) for suitable points, the equations above
imply that Φf,M = Φf,M ′ .

Case 2. Suppose we are given two lines M and M ′ which have no points in common; we claim
that Φf,M = Φf,M ′ . Let M ′′ be a line joining one point in M to one point in M ′. Then two
applications of the first case imply that Φf,M = Φf,M ′′ = Φf,M ′ .�

The characterization of Φf in terms of the cross ratio implies some useful properties of the
construction Φ which sends a collineation FP

n → EP
n to the field isomorphism Φf : F→ E.

Theorem VI.11. If f : P → P ′ and f ′ : P ′ → P ′′ are collineations of coordinate projective
n-spaces (where n ≥ 2), then Φgf = Φg

oΦf . If f : P → P is the identity, then Φf is the
identity on the underlying field. Finally, if g : P ′ → P is equal to f−1, then Φg = (Φf )−1.

Proof. If f is the identity, then we have

Φf

(
XR(A,B,C,D)

)
= XR

(
f(A), f(B), f(C), f(D)

)
= XR(A,B,C,D)

because f(X) = X for all X. If g and f are collineations then

Φg
oΦf

(
XR(A,B,C,D)

)
= Φg

(
XR
(
f(A), f(B), f(C), f(D)

) )
=
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XR
(
g of(A), g of(B), g of(C), g of(D)

)
= Φgf

(
XR(A,B,C,D)

)
.

To prove that Φf−1 = (Φf )−1, note that f of−1 = identity and f−1 of = identity combine
with the first two identities to show that the composites Φf−1

oΦf and Φf
oΦf−1 are both identity

maps, and these identities imply that Φf−1 = (Φf )−1.�

Collineations of FP
1

Of course, an incidence-theoretic definition of collineations for coordinate projective lines is
meaningless. However, if 1+1 6= 0 in F, then as in Section V.4 it is possible to define collineations
of FP

1 as 1–1 correspondences which preserve harmonic quadruples. With this definition, an
analog of Theorem 10 is valid. Details appear on pages 85–87 of the book by Bumcrot listed in
the bibliography (this is related to the discussion of von Staudt’s Theorem at the end of Section
V.4).

Examples

We have already noted that every invertible (n+1)×(n+1) matrix A over F defines a geometric
symmetry fA of FP

n, and by a straightforward extension of Exercise V.2.10 the mapping fA

preserves cross ratios; therefore, the automorphism ΦfA
is the identity. On the other hand, if χ

is an automorphism of F as above and gχ is defined as at the beginning of this section, then for
all distinct collinear points A, B, C, D in FP

n we have

χ
(
XR(A,B,C,D)

)
= XR

(
gχ(A), gχ(B), gχ(C), gχ(D)

)

and therefore Φgχ = χ. In particular, the latter implies the following:

For every field F, every automorphism χ of F, and every n > 0, there is a
collineation g from FP

n to itself such that Φg = χ.�

Later in the section we shall prove a much stronger result of this type.

The Fundamental Theorem of Projective Geometry

Before stating and proving this result, we need to state and prove some variants of standard
results from linear algebra. Let V and W be vector spaces over a field F, and let α be an
automorphism of F. A mapping T : V → V is said to be an α-semilinear transformation if it
satisfies the following conditions:

(1) T (x + y) = T (x) + T (y) for all x, y ∈ V .

(2) T (cx + y) = α(c)T (x) for all x ∈ V and c ∈ F.

If α is the identity mapping, this reduces to the usual definition of a linear transformation.

Theorem VI.12. Let V, W, F, α be as above. If v1, · · · ,vn is a basis for V and w1, · · · ,wn ∈
W , then there is a unique α-semilinear transformation T : V → W such that T (vi) = wi for
all i.
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Proof. Suppose that v ∈ V and that T and S are α-semilinear transformations from V to W
satisfying the conditions of the theorem. Write v as a linear combination

∑
i civi. Then we

have

T (v) = T

(
∑

i

civi

)
=
∑

i

α(ci)T (vi) =
∑

i

α(ci)wi =

∑

i

α(ci)S(vi) = S

(
∑

i

civi

)
= S(v)

and hence S = T . Conversely, if v is given as above, then T (v) =
∑

i α(ci)wi is a well-defined
α-semilinear transformation.�

This result has the following basic consequence:

Theorem VI.13. In the setting above, the mapping T is 1 − 1 and onto if and only if the
vectors w1, · · · ,wn form a basis for W . In this case the inverse map T −1 is an α−1-semilinear
transformation.

Proof. Since the image of T is contained in the subspace spanned by the vectors wi, it follows
that T cannot be onto if these vectors do not span W . Conversely, suppose that these vectors do
form a basis. Then by the previous result there is an α−1-semilinear transformation S : W → V
such that S(wi) = vi for all i. It follows that S oT is an α−1 oα-semilinear (hence linear)
transformation from V to itself which sends vi to vi for all i, and hence S oT . Reversing the
roles of V and W and also the roles of S and T in this argument, we conclude similarly that
T oS is the identity. Therefore the α-semilinear map S is an inverse to T and the latter is 1–1
and onto.�

If F and n are as in Theorem 12 and T is an invertible α-semilinear transformation from F
n+1,1

to itself, then as in Section 4.3 there is a collineation fT from FP
n to itself defined by

fT (X) = T (ξ) · F
where ξ is an arbitrary set of homogeneous coordinates for X; this does not depend upon the
choice of homogeneous coordinates, for if ξ ′ = cξ is another set of homogeneous coordinates for
X we have

T (cξ) · F = α(c) · T (ξ) · F = T (ξ) · F .

The proof that this map defines a collineation proceeds exactly as in the case of linear trans-
formations, the only change being the need to substitute T (cv) = α(c) · T (v) in place of
T (cv) = c · T (v) when the latter appears.

The Fundamental Theorem of Projective Geometry is a converse to the preceding construction,
and it shows that every collineation of FP

n to itself has the form fT for a suitably chosen
invertible α-linear mapping T from F

n+1,1 to itself.

Theorem VI.14. (Fundamental Theorem of Projective Geometry) Let {X0, · · · , Xn, A} and
{Y0, · · · , Yn, B} be two sets of (n+ 2) points in FP

n (where n ≥ 2) such that no proper subset
of either is dependent, and let χ be an automorphism of F. Then there is a unique collineation
f of FP

n to itself satisfying the following conditions:

(i) f(Xi) = Yi for 0 ≤ i ≤ n.
(ii) f(A) = B.

(iii) Φf = χ.
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The theorem (with the proof given here) is also valid if n = 1 and 1 + 1 6= 0 in F, provided
collineations of FP

1 are defined in the previously described manner (i.e., preserving harmonic
quadruples).

Proof. EXISTENCE. According to Theorem 8 we can choose homogeneous coordinates ξ for
Xi, ηi for Yi, α for A, and β for B so that α =

∑
i ξi and β =

∑
i ηi. The hypotheses

imply that the vectors ξi and ηi form bases for F
n+1,1, and therefore there is an invertible α-

semilinear transformation of the latter such that T (ξi) = ηi for all i. Then fT is a collineation
of FP

n sending Xi to Yi and A to B. In order to compute the automorphism induced by f ,
let Q1, Q2, Q3, Q4 be distinct collinear points with homogeneous coordinates θi for Qi chosen
such that θ3 = θ1 + θ2 and θ4 = qθ1 + θ2, where q = XR(Q1, Q2, Q3, Q4). We then have
T (θ3) = T (θ1) +T (θ2) and T (θ4) = χ(q) · T (θ1) + T (θ2), so that

χ
(

XR
(
Q1, Q2, Q3, Q4)

)
= XR

(
fT (Q1), fT (Q2), fT (Q3), fT (Q4)

)
.

It follows that ΦfT
= χ.�

UNIQUENESS. Suppose that f and g are collineations of FP
n which satisfy f(Xi) = g(Xi) = Yi

for 0 ≤ i ≤ n, f(A) = g(A) = B, and Φf = Φg = χ. Then h = g−1 of is a collineation
which satisfies h(Xi) = Xi for 0 ≤ i ≤ n, h(A) = A, and Φh is the identity. If suffices to show
that a collineation h satisfying these conditions must be the identity.

Let h be a collineation such that Φh is the identity, and suppose that h leaves three distinct points
on a line fixed; we claim that h leaves every point on the line fixed. To see this, suppose that
X1, X2 and X3 are distinct collinear points such that h(Xi) = Xi for all i, and let Y ∈ X1X2.
Then we have

XR
(
X1, X2, X3, h(Y )

)
= Φh

(
XR(X1, X2, X3, Y )

)
= XR(X1, X2, X3, Y )

and hence h(Y ) = Y by Theorem V.10.

Now assume that h satisfies the conditions in the first paragraph of this argument. We shall
prove, by induction on r, that h fixes every point in the r-plane X0 · · · Xr. The statement
is trivially true for r = 0, so assume that it is true for r − 1, where r ≥ 1. By the dimension
formula, the intersection of the subspaces X0 · · · Xr and AXr+1 · · · Xn is a point which we
shall call Br. In fact, homogeneous coordinates βr for Br are given by

βr = ξ0 + · · · + ξr

because the right hand side is set of homogeneous coordinates for a point in the intersec-
tion. Since h(Xi) = Xi and h(A) = A, it follows that h maps the subspaces X0 · · · Xr

and AXr+1 · · · Xn into themselves. Thus the intersection of these subspaces (namely, the one
point set {Br}) must be mapped into itself and hence h(Br) = Br.

We claim that h fixes every point on the line XrBr fixed. By hypothesis h(Xr) = Xr, and by the
preceding paragraph h(Br) = Br. Hence h maps XrBr into itself. Since XrBr and X0 · · · Xr−1

are both contained in X0 · · · Xr, the dimension formula implies that they intersect in a point
W . Since W ∈ X0 · · · Xr−1, the induction hypothesis implies that h(W ) = W . Homogeneous
coordinates ω for W are given by

ω = βr − ξr = ξ0 + · · · + ξr−1

and hence the points Xr, Vr and W are distinct collinear points. Since each is left fixed by h, it
follows that every other point in XrBr is also left fixed by h.
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Figure VI.1

(r = n = 3)

Now let Z be any point of X0 · · · Xr not on either X0 · · · Xr−1 or XrBr. We claim that
h(Z) = Z. Since XrBr and X0 · · · Xr−1 are both contained in X0 · · · Xr, the dimension
formula implies that X0 · · · Xr−1 and the plane ZXrBr intersect in a line we shall call L. The
assumption that Z 6∈ X0 · · · Xr−1 implies that Z 6∈ L.

Let M1 and M2 be two distinct lines in ZXrBr containing Z; since there are at least three lines
in the plane ZXrBr containing Z, we may choose M1 and M2 such that neither line contains
the point Br in which L meets XrBr; in particular, this means that the intersections of Mi with
L and XrBr are distinct points.

Let Si ∈Mi ∩ L, and let Di ∈M2 ∩XrBr (here i = 1 or 2). Then h(Ci) = Ci and h(Di) = Di.
Since the intersections of Mi with L and XrBr are distinct points, it follows that h leaves two
distinct points of Mi fixed and hence h maps each line Mi into itself. Therefore it also follows
that h maps M1 ∩M2 = {Z} into itself, so that h(Z) = Z.

The preceding argument shows that h leaves every point of X0 · · · Xr fixed, completing the
inductive step of the argument. Therefore, by induction we conclude that h is the identity on
FP

n = X0 · · · Xn.�

One immediate consequence of the Fundamental Theorem is particularly worth stating at this
point:

Theorem VI.15. Let f be a collineation of FP
n, and let Φf = α. Then there is an invertible

α-semilinear transformation T of F
n+1,1 such that if X ∈ FP

n and ξ is a set of homogeneous
coordinates for X then f(X) = T (ξ) · F.

Proof. Let {X0, · · · , Xn, A} be a set of of (n+ 2) points in FP
n such that no proper subset

is dependent. By the proof of existence in the Fundamental Theorem there is an invertible
α-semilinear transformation T such that the associated collineation fT satisfies the following
conditions:

(i) f(Xi) = fT (Xi) for 0 ≤ i ≤ n.

(ii) f(A) = fT (A).

Also, by construction the maps f and fT determine the same automorphism of F. We may now
apply the uniqueness portion of the Fundamental Theorem to conclude that f = fT .�

Definition. A collineation f of FP
n is projective if the associated automorphism Φf is the

identity. Theorem 11 implies that the set of projective collineations is a subgroup — in fact,
a normal subgroup — of the collineation group, and by the previous construction of examples
we know that the quotient of the collineation group by the subgroup of projective collineations
is equal to the automorphism group of F. Further information along these lines is discussed in
Exercise 9 below.�

Special cases

We conclude this section with some remarks on collineations if F is the real or complex numbers.
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Theorem VI.16. For each n ≥ 2, every collineation of real projective n-space RP
n is projective.

By the previous results of this section, the proof of Theorem 15 reduces to showing the following:

Theorem VI.17. The only automorphism of the real numbers is the identity map.

Proof(s). If χ is an isomorphism of R, then χ(0) = 0 and χ(0) = 1. Suppose χ(r) = r for
r ≥ 1. Then χ(r + 1) = χ(r) + χ(1) = r + 1, and hence χ agrees with the identity on all
nonnegative integers. If k is a negative integer and k = −m, then

χ(k) = χ(−m) = −χ(m) = −m = k

and hence χ is the identity on integers. If r is a rational number, write r = m/n where m is an
integer and n is a positive integer. Then n = rm implies that

m = χ(m) = χ(nr) = χ(n) · χ(r) = n · χ(r)

which implies that χ(r) = m/n = r, and hence we see that χ fixes every rational number.

Suppose now that x is an arbitrary nonnegative real number. We claim that χ(x) ≥ 0. Re-
call that x ≥ 0 if and only if x = y2 for some y. Therefore x ≥ 0 and x = y2 imply that
χ(x) = χ(y)2 ≥ 0. Similarly, if a and b are real numbers such that a ≥ b, then

χ(a) − χ(b) = χ(a− b) ≥ 0

implies that χ(a) ≥ χ(b). Since χ is 1–1 it also follows that a > b implies χ(a) > χ(b).

Finally, suppose that we have an element r ∈ R such that χ(r) 6= r. If χ(r) < r, then there
is a rational number q such that χ(r) < q < r. But this implies χ(r) < χ(q) = q, and this
contradicts the conclusion χ(r) > χ(q) which follows from the previous paragraph. Therefore
χ(r) < r is impossible, so that χ(r) ≥ r for all real numbers r.

Now χ−1 is also an automorphism of R, and if we apply the previous reasoning to this automor-
phism we conclude that χ−1(r) ≥ r for all r. Since we had previously shown that automorphisms
are strictly increasing functions, if we apply χ to the previous inequality we obtain

r = χ oχ−1(r) ≥ χ(r)

and if we combine this with the final inequality of the preceding paragraph we conclude that
χ(r) = r for all real numbers r.�

The analog of Theorem 16 does not hold for the complex numbers. In particular, at the beginning
of this section we showed that the map gχ of CP

n given by conjugating homogeneous coordinates
is a collineation that is not projective. Further information on automorphisms of the complex
numbers and their applications to projective geometry appears in Appendix D.

EXERCISES

In the problems below, assume that F is a field and χ is an automorphism of F.
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1. Let A be an invertible n × n matrix over F, and let fA be the projective collineation
of FP

n defined by A (in other words, if ξ are homogeneous coordinates for X, then Aξ · F are
homogeneous coordinates for fA(X)). IfH is a hyperplane in FP

n with homogeneous coordinates
θ, prove that T [H] has homogeneous coordinates θ ·A−1 (compare Exercise V.1.5).

2. In the notation of Exercise 1, suppose that a collineation T is defined such that if ξ are
homogeneous coordinates for X, then Aχ(ξ) are homogeneous coordinates for T (X). Express
homogeneous coordinates for T [H] in terms of θ, A−1 and χ. You may use the product formula
χ(A ·B) = χ(A) · χ(B) for matrix multiplication. Also, recall that χ(0) = 0.

3. Suppose that f is a collineation of FP
n with induced automorphism Φf , and suppose that

H1, H2, H3, H4 are distinct hyperplanes containing a common (n − 2)-plane. Prove that the
cross ratio formula

Φf

(
XR(H1,H2,H3,H4)

)
= XR

(
f [H1], f [H2], f [H3], f [H4]

)

holds without using Exercise 2.

4. Suppose that T is an invertible χ-semilinear transformation of F
n+1,1 where n ≥ 1 such

that the associated collineation fT of FP
n is the identity. Prove that T is a scalar multiple of

the identity. [Hint: By assumption, for each nonzero vector x there is a nonzero scalar cx such
that T (x) = cx · x. If cx 6= cy, explain why x and y must be linearly independent. Consider
T (x + y) in this case.]

5. (a) Let T be an invertible χ-semilinear transformation of F
n where n ≥ 1, and let z ∈ F

n.
Show that

G(x) = T (x) + z

is a geometric symmetry of the affine incidence n-space Fn. [Hint: Compare this statement to
the examples following Theorem II.39.]

(b) Prove that G extends to a collineation g of FP
n for which Φg = χ; in other words, we have

g oJ = J oG on F
n. [Hint: Compare Exercise IV.4.14.]

(c) If n ≥ 2, prove that every geometric symmetry f of F
n is given by a transformation of the

type described in (a). [Hint: By Exercise 2 at the end of Chapter IV, the map f extends to
a collineation g of FP

n. Since the collineation leaves the hyperplane at infinity fixed, certain
entries of an (n+ 1) × (n+ 1) matrix inducing g must vanish. But this implies the matrix has
the form of one constructible by (b).]

(d) Determine whether Aff(Fn) is the entire group of geometric symmetries of F
n when F is the

real and complex numbers respectively.

6. Suppose that A is an invertible m×m matrix over a field F such that 1+1 6= 0 in F. Prove
that F

m,1 contains two vector subspaces W+ and W− with the following properties:

(i) Ax = x if x ∈W+ and Ax = −x if x ∈W−.

(ii) W+ + W− = F
m,1 and W+ ∩ W− = {0}.

[Hint: Let W± be the image of A ± I. This yields the first part. To prove the rest, use the
identity

I = 1
2(A+ I) − 1

2(A− I) .]
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Definition. An involution of FP
n is a collineation f such that f of is the

identity but f itself is not the identity. If f(X) = X, then X is called a fixed
point of the involution.

7. (a) Let T be an invertible χ-semilinear transformation of F
n+1,1 such that the induced

collineation fT of FP
n is an involution. Prove that T 2 is a scalar multiple of the identity. [Hint:

Use Exercise 4.]

(b) Suppose that T is an involution of RP
n. Prove that T is induced by an invertible (n+ 1)×

(n+ 1) matrix A such that A2 = ± 1.

(c) In the previous part, prove that T has no fixed points if A2 = −I. Using Exercise 6, prove
that T has fixed points if A2 = 1. [Hint: For the first part, suppose that X is a fixed point with
homogeneous coordinates ξ such that A · ξ = c · ξ for some real number c. However, A2 = −I
implies that c2 = −1.] — NOTATION. An involution is called elliptic if no fixed points exist
and hyperbolic if fixed points exist.

(d) Using Exercise 6, prove that the fixed point set of a hyperbolic involution of RP
n has the

form Q1 ∪Q2, where Q1 and Q2 are disjoint n1- and n2-planes and n1 + n2 + 1 = n.

8. Suppose that A 6= B, and that A and B are the only two points of the line AB left fixed by
an involution f of RP

n. Prove that XR
(
A,B,C, f(C)

)
= −1 for all points C on AB−{A,B}.

[Hint: Find an equation relating XR
(
A,B,C, f(C)

)
and XR

(
A,B, f(C), C

)
.]

9. Let Coll (FP
n) denote the group of all collineations of FP

n, let Aut(F) denote the group of
(field) automorphisms of F, and let Φ : Coll (FP

n)→ Aut(F) denote the homomorphism given
by Theorem VI.10.

(a) Why is the kernel of Φ the group Proj (FP
n) of all projective collineations, and why does

this imply that the latter is a normal subgroup of Coll (FP
n)?

(b) Show that Coll (FP
n) contains a subgroup Γ isomorphic to Aut(F) such that the restricted

homomorphism Φ|Γ is an isomorphism, and using this prove that every element of Coll (FP
n)

is expressible as a product of an element in Proj (FP
n) with an element in Γ. [Hint: Look

at the set of all collineations of the form gχ constructed at the top of the second page of this
section, where χ ∈ Aut(F), and show that the set of all such collineations forms a subgroup of
Coll (FP

n) which is isomorphic to Aut(F).]

(c) Suppose that A is an invertible (n+1)× (n+1) matrix over F and χ is an automorphism of
F, and let fA and gχ be the collineations of FP

n defined at the beginning of this section. By the
previous parts of this exercise and Theorem 15, we know that gχ

ofA
o(gχ)−1 has the form fB for

some invertible (n+ 1) × (n+ 1) matrix B over F. Prove that we can take B to be the matrix
χ(A) obtained by applying χ to each entry of A. [Note: As usual, if two invertible matrices are
nonzero scalar multiples of each other then they define the same projective collineation, and in
particular we know that fB = fcB for all nonzero scalars c; this is why we say that we take B
to be equal to χ(A) and not that B is equal to χ(A).]

10. Let F be a field, let 0 < r ≤ n where n ≥ 2, letQ be an r-plane in FP
n. Let {X0, · · · , Xr, A}

and {Y0, · · · , Yr, B} be two sets of (r + 2) points in Q such that no proper subset of either is
dependent. Then there is a projective collineation f of FP

n to itself such that f(Xi) = Yi for
0 ≤ i ≤ r and f(A) = B. [Hint: Let W be the vector subspace of F

n+1,1 such that Q = S1(W ),
define an invertible linear transformation G on W which passes to a projective collineation of
Q with the required properties as in the proof of the Fundamental Theorem, extend G to an
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invertible linear transformation G of F
n+1,1, and consider the projective collineation associated

to G.]
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4. Order and separation

All of the analytic projective geometry done up to this point is valid for an arbitrary F for
which 1 + 1 6= 0. Certainly one would expect that real projective spaces have many properties
not shared by other coordinate projective spaces just as the field of real numbers has many
properties not shared by other fields. The distinguishing features of the real numbers are that it
is an ordered field and is complete with respect to this ordering. In this section we shall discuss
some properties of projective spaces over arbitrary ordered fields and mention properties that
uniquely characterize real projective spaces.

Given points u, v ∈ R
n, let d(u,v) be the distance from u to v. One characterization of the

statement

y is between x and z

is that it holds if and only if d(x, z) = d(x,y)+d(y, z). Another more algebraic characterization
follows immediately from this.

Theorem VI.18. If x, y, z ∈ R
n are distinct points, then d(x, z) = d(x,y) + d(y, z) holds if

and only if y = tx + (1− t)z for some t satisfying 0 < t < 1.

Proof. Recall that d(u,v) is the square root of

(u− v) · (u− v) = |u− v|2 .
The proof of the Triangle Inequality for inner (or dot) products is a consequence of the Cauchy-
Schwarz inequality

(x− y) · (y − z) ≤
∣∣(x− y) · (y − z)

∣∣ ≤ |x− y| · |y − z|
and equality holds in the Triangle Inequality if and only if the end terms of the Cauchy-Schwarz
inequality are equal.2 However, the Cauchy-Schwarz inequality states that the middle term and
right hand term are equal if and only if x− y and y− z are linearly dependent. Since both are
nonzero, this means that (y − z) = k(x− y) for some k 6= 0. On the other hand, the left and
right hand terms are equal if and only if both are nonnegative. Consequently, if the end terms
are equal, then (y− z) = k(x−y) and also k|x−y| ≥ 0. This implies that k must be positive.
Conversely, if k > 0 then the end terms of the Cauchy-Schwarz inequality are equal.

Thus d(x, z) = d(x,y) + d(y, z) if and only if y − z is a positive multiple of x − y. But if
y − z = k(x− y), then

y =
k

k + 1
x +

1

k + 1
z .

Since k > 0 implies

0 <
k

k + 1
< 1

it follows that if d(x, z) = d(x,y) + d(y, z) then y = tx + (1 − t)z for some t satisfying
0 < t < 1.

Conversely, if y = tx + (1− t)z for some t satisfying 0 < t < 1, then

y − z =
t

1− t (x− y) .

2See pp. 177–178 of Birkhoff and MacLane or pp. 277–278 of Hoffman and Kunze for further details.
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Since t/(1 − t) is positive if 0 < t < 1, it follows that d(x, z) = d(x,y) + d(y, z).�

With this motivation, we define betweenness for arbitrary vector spaces over arbitrary ordered
fields.

Definition. Let F be an ordered field, let V be a vector space over F, and let x, y, z be
distinct points of V . We shall say that y is between x and z, written BBB(x,y, z), if there is
some t ∈ F such that 0 < t < 1 and y = tx + (1 − t)z. Frequently we shall also say that the
points x, y, z satisfy the ordering relation BBB(x,y, z). The closed segment [x; z] consists of x,
z, and all y such that y is between x and z. In Exercise 1 below this is compared to the usual
definition of closed interval in R.

 
 

 

Figure VI.2

The open segment (x; z) consists of all y such that y is between x and z.

The next results show that our definition of betweenness satisfies some properties that are
probably very apparent. However, since we are dealing with a fairly abstract setting, it is
necessary to give rigorous proofs.

Theorem VI.19. Let F be an ordered field, let V be a vector space over F, and let a, b, c
be distinct vectors in V . If BBB(a,b, c) is true, then so is BBB(c,b,a). However, each of the four
statements BBB(b,a, c), BBB(c,a,b), BBB(a, c,b), BBB(b, c,a) is false.

Proof. By assumption b = ta+(1−t)c for some t satisfying 0 < t < 1. The latter inequalities
imply 0 < (1− t) < 1, and since t = 1− (1− t) it follows that BBB(c,b,a) is true.

The equation b = ta + (1 − t)c (where 0 < t < 1) implies that −ta = −b + (1 − t)c, which
in turn means that

t−1b − t−1(1− t)c = t−1b + (1− t−1)c .

Therefore a = sb + (1 − s)c then implies s = t−1. Since 0 < t < 1 implies t−1 > 1, it follows
that BBB(b, c,a) is false. Furthermore, it also follows that BBB(a, c,b) is false, for if the latter were
true then by the preceding paragraph the order relation BBB(b, c,a) would also be true.

Finally, b = ta + (1 − t)c (where 0 < t < 1) implies that (t − 1)c = ta − b, which in turn
implies that

c =
t

t− 1
a +

−1

t− 1
b .

Now 0 < t < 1 implies t− 1 < 0, so that

t

t− 1
< 0 .
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The latter means thatBBB(c,a,b) is false, and as in the previous paragraph it follows thatBBB(a, c,b)
is also false.�

Theorem VI.20. Let F and V be as above, and let a and b be distinct vectors in V . Then c ∈ V
lies on the line ab if and only if one of c = a, c = b, BBB(a,b, c), BBB(c,a,b) or BBB(b, c,a) is true.
Furthermore, these conditions are mutually exclusive.

Proof. We know that c ∈ ab if and only if c = ta + (1 − t)b for some t. We claim the five
conditions are equivalent to t = 1, t = 0, t < 0, t > 1 and 0 < t < 1 respectively. Thus it will
suffice to verify the following:

(1) BBB(a,b, c) is true if and only if c = ta + (1− t)b for some t < 0.

(2) BBB(c,a,b) is true if and only if c = ta + (1− t)b for some t > 1.

PROOF OF (1). The condition c = ta + (1− t)b with t < 0 is equivalent to

b =
t

t− 1
a +

−1

t− 1
c .

The conclusion in this case follows because the map sending t to t/(t − 1) is a 1–1 corre-
spondence from the unbounded set { u ∈ F | u < 0 } to the bounded open interval
{ v ∈ F | 0 < v < 1 }.�

PROOF OF (2). The condition c = ta + (1− t)b with t > 1 is equivalent to

a =
1

t
c +

(
1− 1

t

)
b .

The conclusion in this case follows because the map sending t to 1/t is a 1–1 correspondence from
the unbounded set { u ∈ F | u > 1 } to the bounded open interval { v ∈ F | 0 < v < 1 }.�

Betweenness and cross ratios

Not surprisingly, there are important relationships between the concept of betweenness and the
notion of cross ratio. Here is the most basic result.

Theorem VI.21. Let F be an ordered field, and let J : F
n → FP

n be the usual projective extension
mapping. Then three collinear points a, b and c of V satisfy the order relation BBB(a, c,b) if and
only if

XR
(
J(a), J(b), J(c), L∞

)
< 0

where L∞ is the ideal point of the line L containing a, b and c.

Proof. By Theorem V.17, if c = ta + (1− t)b then

XR
(
J(a), J(b), J(c), L∞

)
=

t− 1

t
.

This is negative if 0 < t < 1 because t− 1 < 0 < t. We claim that the cross ratio is positive if
either t < 0 or t > 1. If t > 1, then t− 1 > 0 and therefore the cross ratio is positive. Similarly,
if t < 0, then t− 1 < t < 0 implies that the cross ratio is positive.�

Affine transformations obviously preserve betweenness (see Exercise 10 below). However, if
BBB(a,b, c) in F

n and T is a projective collineation of FP
n such that the images a′, b′, c′ of
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a, b, c under T lie in (the image of) F
n, then BBB(a′,b′, c′) is not necessarily true. Specific

examples are given by projective collineations which interchange a and b, and send c to itself.

If one wants some aspect of order and betweenness which IS preserved by projective collineations,
it is natural to try something involving the cross ratio, and the preceding result may be viewed
as motivation for the following definition and theorem:

Definition. Let F be an ordered field, let V be a vector space over F, and let a, b, c, d be
collinear vectors in V . Then a and b separate c and d if one of {c,d} is between a and b but
the other is not. We shall write this as sep(a,b : c,d). It is trivial to see that sep(a,b : c,d) is
equivalent to sep(a,b : d, c) and sep(c,d : a,b) (and one can also derive several other equivalent
cross ratio statements from these).

There is a very simple and important characterization of separation in terms of cross ratios.

Theorem VI.22. Let F be an ordered field, let V be a vector space over F, and let a, b, c, d
be collinear vectors in V . Then sep(a,b : c,d) is true if and only if

(
J(a), J(b), J(c), J(d)

)
< 0 .

Proof. Suppose that sep(a,b : c,d) is true. Without loss of generality, we may assume that
BBB(a, c,b) is true but BBB(a,d,b) is false (either this holds or else the corresponding statement
with c and d interchanged is true – in the latter case, reverse the roles of the two points). Under
these conditions we have c = ta + (1 − t)b where 0 < t < 1 and d = sa + (1 − s)b where
s < 0 or s > 1. By Theorem V.17 we have

XR
(
J(a), J(b), J(c), J(d)

)
=

s(1− t)
t(1− s) .

The sign of this cross ratio equals the sign of s/(1− s), and the latter is negative if either s < 0
or s > 1.�

Suppose that the cross ratio is negative. We need to show that one of s and t satisfies 0 < u < 1
and the other does not. To do this, we eliminate all the other possibilities.

Case 1. Suppose we have 0 < s, t < 1. Then all the factors of the numerator and denominator
are positive.

Case 2. Suppose neither satisfies 0 < u < 1. Then the previous argument shows that one of s
and 1− s is positive and likewise for t and 1− t. Therefore the formula above implies that the
cross ratio must be positive.�

We thus make the general definition in FP
n that two points A and B separate two points C

and D on AB if and only if XR(A,B,C,D) < 0. If all four of these points are ordinary, then
Theorem 22 provides a geometrical description of separation. The cases where one point is ideal
can be described using the following two special cases:

(1) sep
(
J(a), J(b) : ∞, J(c)

)
and sep(J(a), J(b) : J(c),∞) hold if and only if BBB(a, c,b) is

true (see Theorems V.12 and V.17).

(2) sep
(
J(a),∞ : J(c), J(d)

)
and sep

(
∞, J(a) : J(c), J(d)

)
hold if and only if BBB(c,a,d) is

true because

XR
(
J(a),∞ : J(c), J(d)

)
= XR

(
J(d), J(c) :∞, J(a)

)
.



4. ORDER AND SEPARATION 135

The following observation is an immediate consequence of the definitions:

Let A, B, C, D be distinct collinear points in FP
n, and let T be a projective

collineation of FP
n. Then sep(A,B : C,D) is true if and only if sep

(
T (A), T (B) :

T (C), T (D)
)

is true.�

A comprehensive visualization of separation for points on a real projective line may be given as
follows:

As indicated in the picture below, there is a standard 1–1 correspondence (stereographic pro-
jection) between the points of RP1 and the points on the circle Γ in R2 which is tangent to the
x-axis at the origin and whose center is (0, 1

2). An ordinary point with standard affine coordinate
u is sent to the intersection of Γ with the line joining (u, 0) to (0, 1), and the point at infinity is
sent to (0, 1). It is straightforward to check that this map σ defines a 1–1 correspondence from
RP

1 to Γ.3 
 

 

Figure VI.3

With respect to this correspondence, separation has the following interpretation. If a, b ∈ RP
1,

then Γ − {σ(a), σ(b)} consists of two open arcs, and separation means that each arc contains
exactly one of the points {c, d}.

We now summarize some basic properties of separation by means of the following theorem:

Theorem VI.23. If F is an ordered field and A, B, C, D are distinct collinear points of FP
n,

then the following hold:

(a) sep(A,B : C,D) implies sep(A,B : D,C) and sep(C,D : A,B).

(b) One and only one of the relations sep(A,B : C,D), sep(B,C : D,A), or and sep(C,A : B,D)
is true.

(c) If sep(A,B : C,D) and sep(B,C : D,E) are true, then so is sep(C,D : E,A).

(d) If L is a line meeting AB, Y is a coplanar point on neither line, and X ′ is the intersection
point of PX and L for X = A, B, C, D, then sep(A,B : C,D) implies sep(A′, B′ : C ′, D′).

3If we rotate the above picture about the y-axis in R
3 we obtain a similar 1–1 correspondence between the

complex projective line CP
1 and the sphere of diameter 1 tangent to the xz-plane at the origin.
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The proof is straightforward and is left as an exercise.�

One reason for listing the preceding four properties is that they come close to providing a
complete characterization of separation.

Theorem VI.24. Let P be a Desarguian projective n-space, where n ≥ 2, and suppose that P
has an abstract notion of separation Σ(· · · , · · · || · · · , · · · ) which satisfies the four properties in
the previous theorem. Assume that some (hence every) line contains at least four points. Then
P is isomorphic to FP

n, where F is an ordered skew-field, and the ordering of F has the property
that sep(A,B : C,D) is true if and only if Σ(· · · , · · · || · · · , · · · ) is.

In principle, this result is proved on pages 239–244 of Artzy, Linear Geometry . We say “in
principle” because the result is only stated for projective planes in which Pappus’ Theorem
holds. However, the latter is not used explicitly in the argument on these pages,4 and the
restriction to planes is easily removed.

We would need only one more axiom to give a completely synthetic characterization of the real
projective plane (and similarly for higher dimensional real projective spaces). Fairly readable
formulations of the required continuity condition (as it is called) may be found in Coxeter, The
Real Projective Plane, pages 161–162, and Artzy (op. cit.), page 244.

EXERCISES

Throughout these exercises F denotes an ordered field, and the ordering is given
by the usual symbolism.

1. In the real numbers R, prove that the closed interval [a, b], consisting of all x such that
a ≤ x ≤ b, is equal to the closed segment [a; b] joining a to b as defined here, and likewise for
their open analogs (a, b) and (a; b). [Hint: If a ≤ c ≤ b and t = (b − a)/(c − a), consider
ta + (1− t)b. If c = ta+(1− t)b for 0 ≤ t ≤ 1, why does this and a ≤ b imply that a ≤ c ≤ b?]

Definition. A subset K ⊂ F
n is convex if x and y in K imply that the closed

segment [x;y] is contained in K. — In physical terms for, say, R
2 or R

3, this
means that K has “no dents or holes.”

2. Prove that the following subsets of F are convex for an arbitrary b ∈ F:

(i) The set { x ∈ F | x > b}.
(ii) The set { x ∈ F | x < b}.
(iii) The set { x ∈ F | x ≥ b}.
(iv) The set { x ∈ F | x ≤ b}.

3. Prove that the intersection of an arbitrary family of convex subsets of F
n is also convex.

4. Let f : F
n → F be a linear function of the form f(x) =

∑
i ai xi − b.

4An explicit recognition that Pappus’ Theorem is unnecessary appears in Forder, Foundations of Euclidean

Geometry, pp. 196–197 and 203–206.
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(a) Prove that for all t ∈ F we have f
(
tx + (1− t)y ) = t · f(x) + (1− t)f(y).

(b) Prove that if K ⊂ F
n is convex, then so is its image f [K].

(c) Prove that if C ⊂ F is convex, then so is its inverse image f−1[C].

5. Let f be as in Exercise 4. Then the subsets of F
n on which f is positive and negative are

called the (two) sides of the hyperplane Hf defined by f or the (two) half-spaces determined by
the hyperplane Hf . Prove that each half-space is (nonempty and) convex, and if we have points
x and y in F

n such that x lies on one of the half-spaces and y lies on the other, then the closed
segment [x;y] contains a point of the hyperplane Hf defined by the equation f(z) = 0. —
This statement is called the hyperplane separation property for F

n. 
 

 

Figure VI.4

Also, explain why the hyperplane and its two sides are three pairwise disjoint subsets whose
union is all of F

n.

6. Formulate and prove a similar result to Exercise 5 for the set of all points in a k-plane
M ⊂ F

n which are not in a (k − 1)-plane Q ⊂M .

7. Suppose that x, y, z are noncollinear points in F
2. Define the classical triangle ∆cxyz

to be the union of the closed segments [x;y], [x; z], and [y; z]. Prove the Theorem of Pasch:5

A line L containing a point w in an open side (x;y) of ∆c xyz either passes through z or else
meets one of the other open sides (x; z) or (x; z). [Hint: Explain why x and y are on opposite
sides of the L through w. What can be said about z if it does not lie on this line?] 

 

 

Figure VI.5

5Moritz Pasch (1843–1930) is mainly known for his work on the foundations of geometry, and especially for
recognizing the logical deficiencies in Euclid’s Elements and developing logically rigorous methods for addressing
such issues. The theorem in the exercise is one example of a geometrical result that is tacitly assumed – but not
proved — in the Elements.
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7. If x, y, z, w are distinct points in F
2 such that no three are noncollinear, then the classical

quadrilateral �
c xyzw is the set

[x;y] ∪ [y; z] ∪ [z;w] ∪ [w;x] .

It is called a convex quadrilateral if the following conditions hold:

x and y lie on the same side of zw .
y and z lie on the same side of wx .
z and w lie on the same side of xy .
w and x lie on the same side of yz .

The diagonals of a classical quadrilateral �
c xyzw are the segments [x; z] and [y;w]. Prove that

the diagonals of a convex quadrilateral have a point in common. Why must this point lie on
(x; z) ∩ (y;w)?

 

 

Figure VI.6

8. Give an explicit formula for the map defined by Figure VI.3 and the accompanying discus-
sion.

9. Prove Theorem 24.

10. Suppose that x, y, z are points in F
n such that BBB(x,y, z) is true and T ∈ Aff(Fn). Prove

that BBB
(
T (x), T (y), T (z)

)
is also true.

11. In the notation of Exercise 5, let y1, · · · ,yn be an affine basis for the hyperplane H under
consideration, and let y0 6∈ H. Prove that x ∈ F

n lies on the same side of H as y0 if the 0th

barycentric coordinate of x with respect to y0, y1, · · · ,yn (an affine basis for F
n) is positive.

What is the condition for x and y0 to lie on opposite sides?



CHAPTER VII

HYPERQUADRICS

Conic sections have played an important role in projective geometry almost since the beginning of the

subject. In this chapter we shall begin by defining suitable projective versions of conics in the plane,

quadrics in 3-space, and more generally hyperquadrics in n-space. We shall also discuss tangents to such

figures from several different viewpoints, prove a geometric classification for conics similar to familiar

classifications for ordinary conics and quadrics in R
2 and R

3, and we shall derive an enhanced duality

principle for projective spaces and hyperquadrics. Finally, we shall use a mixture of synthetic and analytic

methods to prove a famous classical theorem due to B. Pascal (1623–1662)1 on hexagons inscribed in

plane conics, a dual theorem due to C. Brianchon (1783–1864),2 and several other closely related results.

1. Definitions

The three familiar curves which we call the “conic sections” have a long history ... It

seems that they will always hold a place in the curriculum. The beginner in analytic

geometry will take up these curves after he has studied the circle. Whoever looks at

a circle will continue to see an ellipse, unless his eye is on the axis of the curve. The

earth will continue to follow a nearly elliptical orbit around the sun, projectiles will

approximate parabolic orbits, [and] a shaded light will illuminate a hyperbolic arch. —

J. L. Coolidge (1873–1954)

In classical Greek geometry, conic sections were first described synthetically as intersections of
a plane and a cone. On the other hand, today such curves are usually viewed as sets of points
(x, y) in the Cartesian plane which satisfy a nontrivial quadratic equation of the form

Ax2 + 2Bxy + Cy2 + 2D + 2E + F = 0

where at least one of A, B, C is nonzero. In these notes we shall generally think of conics and
quadrics in such terms. Here are some online references which relate the classical and modern
approaches to these objects. The first contains some historical remarks, the second is a fairly
detailed treatment which shows the equivalence of the classical and modern definitions only using
material from elementary geometry, and the third contains a different proof that the definitions
are equivalent using standard results from trigonometry.

http://xahlee.org/SpecialPlaneCurves dir/ConicSections dir/conicSections.html

http://mathdl.maa.org/convergence/1/?pa=content&sa=viewDocument&nodeId=196&bodyId=60

1Incidentally, he proved this result when he was 16 years old.
2This result was originally discovered without using duality.

139
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http://math.ucr.edu/∼res/math153/history04Y.pdf

The corresponding notion of quadric surface in R
3 is generally defined to be the set of zeros of

a nontrivial quadratic polynomial p(x, y, z) in three variables (nontriviality means that at least
one term of degree two has a nonzero coefficient). One can similarly define a hyperquadric in
R

n to be the set of zeros of a nonzero quadratic polynomial p(x1, · · · , xn). Such an equation
has the form ∑

i,j

ai,jxixj + 2 ·
∑

k

bkxk + c = 0

where at least one of the coefficients ai,j = 0.

One obvious question about our definitions is to give a concise but useful description of all the
different types of conics, quadrics or hyperquadrics that exist in R

n. Using linear algebra, in
each dimension it is possible to separate or classify such objects into finitely many types such
that

if Σ1 and Σ2 are hyperquadrics that are affinely equivalent (so that there is an
affine transformation T of R

n such that T [Σ1] = Σ2, then Σ1 and Σ2 have the
same type. — In fact, one can choose the affine transformation to have the form
T1

oT0, where T0 is a linear transformation and T1 is given by a diagonalizable
invertible linear transformation; in other words, there are nonzero scalars di such
that for each i we have T1(ei) = diei, where ei is the ith standard unit vector
in R

n.

For n = 2 and 3, the details of this classification are described explicitly in Section V.2 of the
following online document:

http://math.ucr.edu/∼res/math132/linalgnotes.pdf

The case of conics in R
2 is summarized in the table on page 82 of this document, and the case

of quadrics in R
3 is summarized in the table on page 83 of the same document. In particular,

there are fewer than 10 different types of possible nonempty figures in R
2 (including degenerate

cases of sets with one point or no points) and fewer than 20 different types of possible nonempty
figures in R

3 (also including an assortment degenerate cases). Later in this chapter we shall
describe the analogous classification for R

n (with n ≥ 3 arbitrary) in one of the exercises.

Projective extensions of hyperquadrics

We are now faced with an obvious question:

How does one define a hyperquadric in projective space?

Let us consider the analogous situation in degree one. The sets of solutions to nontrivial linear
equations p(x1, · · · , xn) = 0 are merely hyperplanes. If p(x1, · · · , xn)s =

∑
i aixi + b, then

this hyperplane is just the set of ordinary points in RP
n whose homogeneous coordinates satisfy

the homogeneous linear equation
n∑

i=1

aixi + bxn+1 = 0 .

This suggests the following: Consider the quadratic polynomial

p(x1, · · · , xn) =
∑

i,j

ai,jxixj + 2 ·
∑

k

bkxk + c
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and turn it into a homogeneous quadratic polynomial by multiplying each degree 1 monomial
in the summation by xn+1 and multiplying the constant term by x2

n+1. We then obtain the
modified quadratic polynomial

p(x1, · · · , xn) =
∑

i,j

ai,jxixj + 2 ·
∑

k

bkxkxn+1 + cx2
n+1

which is homogeneous and has the following compatibility properties:

Theorem VII.1. (i) If X is a point in RP
n and ξ and ξ′ are homogeneous coordinates for X,

then p(ξ) = 0 if and only if p(ξ ′) = 0.

(ii) The set of zeros for p is equal to the set of ordinary points in RP
n whose homogeneous

coordinates are zeros of p.

Proof. We shall proof the two parts separately.

PROOF OF (i). Observe that p(kξ) = k2 · p(ξ) by direct computation. Therefore ξ ′ = kξ for
some k 6= 0 implies that p(ξ ′) = 0 if and only if p(ξ) = 0.�

PROOF OF (ii). If x ∈ R
n,1, then the transpose of (x1, · · · , xn, 1) is a set of homogeneous

coordinates for J(x) ∈ RP
n, and it is elementary to check that the solutions to the equa-

tion p = 0 contained in the intersection of the set of ordinary points and the points in RP
n

whose homogeneous coordinates are solutions to the equation p = 0 (in particular, we have
p(x1, · · · , xn) = p(x1, · · · , xn, 1)). Conversely, if p(x1, · · · , xn, xn+1) = 0 where xn+1 6= 0,
then we also have

0 =
1

x2
n+1

· p(x1, · · · , xn, xn+1) = p

(
x1

xn+1
, · · · , xn

xn+1
, 1

)
= p(x1, · · · , xn)

and hence the solutions to p = 0 in the image of J are all ordinary points which are solutions to
p = 0.�

All of the preceding discussion makes at least formal sense over an arbitrary field F; of course,
the mathematical value of the quadrics considered depends strongly upon the solvability of
quadratic equations within the given field.3 Define a hyperquadric Σ in FP

n to be the set of
zeros of a homogeneous quadratic equation:

n+1∑

i,j=1

ai,jxixj = 0

In the study of hyperquadrics we generally assume that 1+1 6= 0 in F. This condition allows us
to choose the n2 coefficients ai,j so that ai,j = aj,i; for if we are given an arbitrary homogeneous
quadratic equation as above and set bi,j = 1

2(aj,i + ai,j), then it is easy to see that

n+1∑

i,j=1

ai,jxixj = 0 if and only if

n+1∑

i,j=1

bi,jxixj = 0

because we have

n+1∑

i,j=1

bi,jxixj = 1
2




n+1∑

i,j=1

ai,jxixj +
n+1∑

i,j=1

aj,ixixj


 .

3All fields in this chapter are assumed to have commutative multiplications.
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For these reasons, we shall henceforth assume 1 + 1 6= 0 in F and ai,j = aj,i for all i and j.

It is natural to view the coefficients ai,j as the entries of a symmetric (n+ 1) × (n+ 1) matrix
A. If we do so and Σ is the hyperquadric in FP

n defined by the equation
∑

i,j ai,jxixj = 0,
then we may rewrite the defining equation for Σ as follows: A point X lies on Σ if and only if
for some (equivalently, for all) homogeneous coordinates ξ representing X we have

TξAξ = 0 .

If we have an affine quadric in F
n defined by a polynomial p as above, then an (n+ 1)× (n+ 1)

matrix defining its projective extension is given in block form by
(
A Tb
b c

)

where the symmetric matrix A = ( ai,j ) gives the second degree terms of p, the row vector 2 ·b
gives the first degree terms bi (note the coefficient!), and c gives the constant term.

Hypersurfaces of higher degree

The reader should be able to define projective hypercubics, hyperquartics, etc., as well as the
projective hyper—ic associated to an affine hyper—ic. Subsets of these types are generally called
projctive algebraic varieties; they have been studied extensively over the past 300 years and
have many interesting and important properties. The mathematical study of such objects has
remained an important topic in mathematics ever since the development of projective geometry
during the 19th century, but it very quickly gets into issues far beyond the scope of these notes.
In particular, the theory involves a very substantial amount of input from multivariable calculus
and the usual approaches also require considerably more sophisticated algebraic machinery than
we introduce in these notes. The rudiments of the theory appear in Sections V.4–V.6 of the
book by Bumcrot, and a more complete treatment at an advanced undergraduate level is given in
Seidenberg, Elements of the Theory of Algebraic Curves, as well as numerous other introductory
books on algebraic geometry.

Projective algebraic varieties also turn out to have important applications in various directions,
including issues in theoretical physics, the theory of encryption, and even the proof of Fermat’s
Last Theorem during the 1990s which was mainly due to Andrew Wiles (the word “mainly” is
included because the first complete proof required some joint work of Wiles with R. Taylor, and
Wiles’ work starts with some important earlier results by others). A reader who wishes to learn
more about some of these matters may do so by going to the final part of Section IV.5 in the
online document

http//:math.ucr.edu∼res/math133/coursenotes4b.pdf
and checking the traditional and electronic references cited there.

EXERCISES

1. Consider the conics in R
2 defined by the following equations:

(i) The circle defined by x2 + y2 − 1 = 0.

(ii) The hyperbola defined by xy − 1 = 2.

(iii) The parabola defined by y − x2 = 0.
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Show that the associated projective conics have 0, 1 and 2 points at infinity respectively, and
give homogeneous coordinates for these points.

2. Find which points (if any) at infinity belong to the projective conics associated to the conics
in R

2 defined by the following equations.

(i) x2 − 2y2 − 2xy = 0

(ii) 3x2 + 4y2 − 4x+ 2 = 0

(iii) x2 + y2 − 4y = 4

(iv) x2 − 4xy − 4y2 − 2y = 4

3. Find the points at infinity on the projective quadrics associated to the quadrics in R
3

defined by the following equations.

(i) x2 + y2 − z2 = 1

(ii) x2 + y2 − z2 − 6x− 8y = 0

(iii) x2 + y2 = 2z

(iv) x2 − y2 − z2 = 1

(v) x2 + y2 = z

(vi) x2 + y2 = z2

4. For each of the following affine quadrics σ in R
3, find a symmetric 4 × 4 matrix such that

the projective extension P(Σ) of Σ is defined by the equation TξAξ = 0.

(i) Σ is defined by the affine equation 4x2 + 3y2 − z2 + 2x+ y + 2z − 1 = 0.

(ii) Σ is defined by the affine equation 3x2 + y2 + 2z2 + 3x+ 3y + 4z = 0.

(iii) Σ is defined by the affine equation 2x2 + 4z2 − 4x− y − 24z + 36 = 0.

(iv) Σ is defined by the affine equation 4x2 + 9y2 + 5z2 − 4xy + 8yz + 12xz + 9z − 3 = 0.
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2. Tangents

Tangent lines to circles play an important role in classical Euclidean geometry, and their gener-
alizations to other conics we also known to classical Greek mathematicians such as Archimedes
(287 B. C. E. – 212 B. C. E.) and Apollonius of Perga (c. 262 B. C. E. – c. 190 B. C. E.). In
modern mathematics they are generally defined using concepts and results from single variable
or multivariable differential calculus. Of course, the latter is designed to work primarily in
situations where the coordinates are real or complex numbers, and since we want to consider
more general coordinates we need to develop an approach that is at least somewhat closer to
the classical viewpoint.

In these notes we shall concentrate on the following two ways of viewing tangents to conics in
R

2 or quadrics in R
3.

1. SYNTHETIC APPROACH. A line is tangent to a hyperquadric if and only if it lies wholly
in the hyperquadric or has precisely one point of intersection with the hyperquadric.

2. ANALYTIC APPROACH. Let X ∈ Σ ∩ L, where Σ is a hyperquadric and L is a line.
Then L is tangent to Σ if and only if there is a differentiable curve γ : (a; b)→ R

n lying
totally in Σ such that γ(t0) = x for some t0 ∈ (a; b) and L is the line x + R · γ ′(t0).

For our purposes the first viewpoint will be more convenient; in Appendix E we shall show
that the analytic approach is consistent with the synthetic viewpoint, at least in all the most
important cases. Actually, the viewpoint of calculus is the better one for generalizing tangents
to cubics, quartics, etc., but a correct formulation is too complicated to be given in these notes.

We begin with a result on solutions to homogeneous quadratic equations in two variables:

Theorem VII.2. Suppose that F is a field in which 1 +1 6= 0, and (x1, y1), (x2, y2), (x3, y3) are
solutions to the homogeneous quadratic equation

ax2 + bxy + cy2 = 0 .

Then either a = b = c = 0 or else one of (x1, y1), (x2, y2), (x3, y3) is a nonzero multiple of
another.

Proof. If the hypothesis holds, then in matrix terminology we have



x2
1 x1y1 y2

1

x2
2 x2y2 y2

2

x2
3 x3y3 y2

3



·




a

b

c




=




0

0

0




.

Suppose not all of a, b, c are nonzero. Then the given 3× 3 matrix is not invertible and hence
has a zero determinant. But the determinant of such a matrix may be computed directly, and
up to a sign factor it is equal to

∣∣∣∣
x1 y1

x2 y2

∣∣∣∣ ·
∣∣∣∣
x1 y1

x3 y3

∣∣∣∣ ·
∣∣∣∣
x2 y2

x3 y3

∣∣∣∣
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The vanishing of this determinant implies that one of the 2×2 determinants in the factorization
must be zero, and the latter implies that the rows of the associated 2×2 matrix are proportional
to each other.�

The preceding result has the following important geometric application:

Theorem VII.3. Let Σ be a hyperquadric in RP
n, let X ∈ Σ, and let L be a line containing X.

Then Σ ∩ L is either {X}, two points, or all of L.

Proof. Let Y 6= X where Y ∈ L, let ξ and η denote homogeneous coordinates for X and Y
respectively, and suppose that Σ is defined by the equation

TωAω = 0

where A is a symmetric (n+ 1)× (n+ 1) matrix and ω represents W ∈ RP
n.

If Z ∈ L and is represented by the homogeneous coordinates ζ, then ζ = uξ + vη for some
u, v ∈ F that are not both zero. By construction, Z ∈ Σ if and only if

0 = TζAζ = T(uξ + vη)A(uξ + vη) =

u2TξAξ + 2uv TηAξ + v2TηAη = u2p + 2uvq + v2q

for suitable constants p, q, r. We claim that Σ ∩ L has at least three points if and only if
L ⊂ Σ. The “only if” implication is trivial, so we shall focus on the “if” direction. — Suppose
that Z1, Z2, Z3 are points on Σ∩L, and take homogeneous coordinates ζi = uiξ + viη for Zi.
By Theorem 2, either p = q = r = 0 (in which case L ⊂ Σ) or else one of the pairs (ui, vi) is
proportional to the other, say (uj , vj) = m(uk, vk) for some m 6= 0. In this case we have that
Zj = Zk and hence Z1, Z2, Z3 are not distinct.�

Definition. Let Σ be a hyperquadric, let X ∈ Σ, and let L be a line containing X. We shall
say that L is a tangent line to Σ at X if either Σ ∩ L− {X} or L ⊂ Σ. In the remaining case
where Σ∩L consists of two points, we shall say that L is a secant line through X. The tangent
space to Σ at X is equal to the union of all tangent lines to Σ at X.

Singular and nonsingular points

If we consider the conic in R
2 defined by the eqution x2 − y2 = 0 we see that the structure of

the conic at the origin is different than at other points, for the conic is given by a pair of lines
which intersect at the origin. Some words which may be used to describe this difference are
exceptional, special or singular. A concise but informative overview of singular points for plane
curves appears in the following online reference:

http://mathworld.wolfram.com/SingularPoint.html

There are corresponding theories of singularities for surfaces in R
3, and more generally for

hypersurfaces in R
n. Not surprisingly, if one is only interested in hyperquadrics as in these

notes, then everything simplifies considerably. We shall explain the relationship between the
theory of singular and nonsingular points for hyperquadrics and the general case in Appendix
E.

We have given a purely synthetic definition of the tangent space to a hyperquadric Σ ⊂ FP
n at

a point X ∈ Σ. The first step is to give an algebraic description of the tangent space in terms
of homogeneous coordinates.
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Theorem VII.4. Let F and Σ ⊂ FP
n be as above, and let X ∈ Σ. Then the tangent space

to Σ at X is either a hyperplane in FP
n or all of FP

n. In the former case, X is said to be a
nonsingular point, and in the latter case X is said to be a singular point. Furthermore, if Σ is
defined by the symmetric matrix A and ξ is a set of homogeneous coordinates for X, then in the
nonsingular case TξA is a (nonzero) set of homogeneous coordinates for the tangent hyperplane,
but in the singular case we have TξA = 0.

EXAMPLES. Suppose we consider the projectivizations of the circle x2 + y2 = 1, the hyperbola
x2 − y2 = 1, the parabola y = x2, and the pair of intersecting lines x2 = y2. Then the
corresponding projective conics are defined by the following homogeneous quadratic equations:

x2
1 + x2

2 − x2
3 = 0, x2

1 − x2
2 − x2

3 = 0

x2
1 − x2x3 = 0, x2

1 − x2
2 = 0

In the first three cases the associated 3×3 symmetric matrix A is invertible, and hence TξA 6= 0
for all nonzero ξ, so that every point of these projective conics will be a nonsingular point. — On
the other hand, in the fourth example, the symmetric matrix A is not invertible, and in fact its
kernel (either on the left or right side!) consists of all vectors whose first and second coordinates
are equal to zero. This implies that all points on the conic except J(0) are nonsingular but
J(0) is singular. These examples are all consistent with our intuition that the first three curves
behave regularly (or are nonsingular) at all points and the fourth curve behaves regularly at all
points except the origin.

Proof. In the proof of the preceding theorem, we noted that if Y ∈ FP
n with homogeneous

coordinates η and Z ∈ XY has homogeneous coordinates ζ = uξ + vη, then Z ∈ Σ if and only
if

u2
(
TξAξ

)
+ 2uv

(
TξAη

)
+ v2

(
TηAη

)
= 0

and the number of points on XY ∩ Σ depends upon the equivalence classes of solutions to this
equation, which we shall call the INTERSECTION EQUATION.

CLAIM: The line XY is tangent to Σ if and only if TξAη = TηAξ = 0.

Suppose first that XY is tangent to Σ. If XY is contained in Σ, then we have
TξAξ = TηAη = T(ξ + η)A(ξ + η) = 0

and elementary manipulations of these equations show that 2 ·TηAξ = 0. On the other hand, if
XY ∩Σ = {X}, then TηAη = 0 and the only solutions to the Intersection Equation in the first
paragraph of the proof are pairs (u, v) which are nonzero scalar multiples of (1, 0). Therefore,
the Intersection Equation evaluated at (1, t) is equal to zero if and only if t = 0. However, it is
easy to check that the ordered pair (

1, −
TξAη
TηAη

)

solves the Intersection Equation because
TξAξ = 0

and therefore we must have TξAη = TηAξ = 0.�

Conversely, suppose that TξAη = TηAξ = 0. Since TξAξ = 0, the Intersection Equation
reduces to

v2
(
TηAη

)
= 0 .



2. TANGENTS 147

This equation means that either TηAη = 0, in which case we have L ⊂ Σ, or else v = 0,
in which case every solution (u, v) of the Intersection equation is proportional to the known
solution (1, 0), so that Σ ∩XY = {X}.

To conclude the proof, we have shown that the tangent space at X is the set of all points Y
such that TξAη = 0. If TξA = 0, this is all of FP

n, and if TξA 6= 0, this is the hyperplane
with homogeneous coordinates TξA.�

We shall say that a hyperquadric Σ is nonsingular if for each X ∈ Σ the tangent space at X
is a hyperplane (algebraically, this means that if ξ represents X then TξA 6= 0.

Theorem VII.5. If Σ is a hyperquadric defined by the symmetric matrix A, then Σ is nonsingular
if and only if A is invertible.

Proof. Suppose first that A is invertible. Then ξ 6= 0 implies that TξA is nonzero, and by the
preceding result it follows that the tangent space at every point must be a hyperplane.�

Conversely, suppose that A is not invertible. Then there is some ξ 6= 0 such that TξA = 0,
and if ξ represents X it follows that X ∈ Σ and X is a singular point of Σ.�

By definition, each symmetric matrix A determines a hyperquadric ΣA. This is not a 1–1
correspondence, for if c is a nonzero scalar then clearly ΣA = ΣcA. We shall now use the notion
of tangent hyperplane to show that, in many cases, this is the only condition under which two
matrices can define the same hyperquadric. Further discussion of this question is given in Section
2 of Appendix E.

Theorem VII.6. Let A and B be symmetric (n+1)× (n+1) matrices over the field F in which
1+1 6= 0, and suppose they define the same nonempty hyperquadric in FP

n. Assume that Σ has
at least one nonsingular point. Then B is a scalar multiple of A.

Proof. We are given that Σ has a nonsingular point X; let ξ be a set of homogeneous
coordinates forX. Then both TξA and TξB define the same hyperplane and hence TξA = k·TξB
for some nonzero scalar k.

Suppose now that Y does not lie on this tangent hyperplane, and let η be a set of homogeneous
coordinates for Y . Then the line XY meets Σ in a second point which has homogeneous
coordinates of the form uξ + η for some u ∈ F. This scalar satisfies the following equations:

2uTξAη + TηAη = 0, 2uTξBη + TηBη = 0

Since TξA = k · TξB the equations above imply that

TηAη = k · TηBη
for all Y whose homogeneous coordinates satisfy TξAη 6= 0 (i.e., all vectors in F

n+1,1 except
those in the n-dimensional subspace defined by the tangent hyperplane to Σ and X).

To prove that TηAη = k ·TηBη if Y lies in the tangent hyperplane at X, let Z be a point which
is not on the tangent hyperplane. Then

TωAω = k · TωBω
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for ω = ζ, η + ζ, η − ζ. Let C = A or B, and write ΨC(γ, δ) = TγCδ. We then have the
following:

ψC(η, ζ) = 1
4ΨC(η + ζ, η + ζ) − 1

4ΨC(η − ζ, η − ζ)

ΨC(η, η) = ΨC

(
(η + ζ)− ζ, (η + ζ)− ζ

)

By the first of these and the preceding paragraph, we have ΨA(η, ζ) = k ·ΨB(η, ζ). Using this,
the second equation above and the preceding paragraph, we see that ΨA(η, η) = k ·ΨB(η, η) if η
represents a point Y in the tangent hyperplane to Σ at X. Applying this and the first displayed
equation to arbitrary nonzero vectors η, ζ ∈ F

n+1,1, we see that ΨA(η, ζ) = k ·ΨB(η, ζ). Since
ci,j is the value of ΨC(ei, ej) if ei and ej are the standard unit vectors (the kth coordinate of
ek is 1 and the rest are 0), we see that ai,j = k · bi,j for all i and j, and hence we see that
B = k ·A.�

EXERCISES

In all these exercises F denotes a (commutative) field in which 1 + 1 6= 0.

1. Find the singular points (if any) of the projective conics given in Exercise 3 of the previous
section.

2. Find the equations of the tangent lines tot he following conics in RP
2 at the indicated

points:

(i) The conic defined by x2
1 + 2x1x2 + 4x1x3 + 3x2

2 − 12x1x3 + 2x2
3 = 0 at the points




1
1
1


 and




1
1
3


 .

(ii) The conic defined by x2
1 − 2x1x2 + 4x2

2 − 4x2
3 = 0 at the points




2
2
−1


 and




2
0
1


 .

Definition. Let Σ be a hyperquadric in FP
n defined by the (n + 1) × (n + 1)

matrix A such that Σ has at least one nonsingular point. Two points X and
Y in FP

n are said to be conjugate with respect to Σ if they have homogeneous
coordinates ξ and η respectively such that TξAη = 0. By Theorem 6, this
definition does not depend upon any of the choices (including A). Moreover, a
point is self-conjugate if and only if it lies on Σ.

3. In the setting above, assume that X 6∈ Σ and Y is conjugate to P with respect to Σ.
Suppose that XY ∩Σ consists of two points, say A and B. Prove that XR(X,Y,A,B) = −1.
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Note. If Σ is nonsingular and nonempty (hence A is invertible by Theorem
5) and X ∈ FP

n, then a hyperplan with homogeneous coordinates TξA is called
the polar hyperplane of X with respect to Σ. The map P sending X to its polar
hyperplane is a collineation from FP

n to its dual
(
FP

n
)∗

is called a polarity,
and it has the property that the composite

FP
n P−−−−→

∼=
(FP

n)∗
P∗

−−−−→
∼=

(FP
n)∗∗

is the identity.

4. Let Σ be an affine hyperquadric in F
n, where n ≥ 3, and suppose that L is a line in F

n such
that L ⊂ Σ. Denote the projective extension of Σ by Σ∗. Prove that the ideal point L∞, and in
fact the entire projective line

J[L] ∪ {L∞}
is contained in Σ∗. [Hint: The field F contains at least three elements. What does this imply
about the number of points on L, and how does this lead to the desired conclusion?]



150 VII. HYPERQUADRICS

3. Bilinear forms

At this point it is convenient to discuss a topic in linear algebra which is generally not covered
in first courses on the subject. For the time being, F will be a (commutative field with no
assumption on whether or not 1 + 1 = 0 or 1 + 1 6= 0.

Definition. Let V be a vector space over F. A bilinear form on F is a function

Φ : V × V −→ F

with the following properties:

(Bi–1) Φ(v + v′,w) = Φ(v,w) + Φ(v′,w) for all v, v′, w ∈ V .

(Bi–2) Φ(v,w + w′) = Φ(v,w) + Φ(v,w′) for all v, w, w′ ∈ V .

(Bi–3) Φ(c · v,w) = c · Φ(v,w) = Φ(v, c ·w) for all v, ,w ∈ V and c ∈ F.

The reader will notice the similarities between the identities for Φ and the identities defining
the dot product on R

n. Both are scalar valued, distributive in both variables, and homogeneous
(of degree 1) with respect to scalars. However, we are not assuming that Φ is commutative —
in other words, we make no assumption about the difference between Φ(v,w) and Φ(w,v) —
and we can have Φ(x,x) = 0 even if x is nonzero.

EXAMPLES. 1. Let F = R and V = R
2, and let Φ(x,y) = x1y2 − x2y1, where by convention

a ∈ R
2 can be written in coordinate form as (a1, a2). Then Φ(y,x) = −Φ(x,y) for all x and

y and we also have Φ(z, z) = 0 for all z ∈ R
2.

2. Let F and V be as above, and Φ(x,y) = x1y1−x2y2. In this case we have the commutativity
identity Φ(y,x) = Φ(x,y) for all x and y, but if z = (1, 1), or any multiple of the latter, then
Φ(z, z) = 0.

3. Let A be an n×n matrix over F, and let V be the vector space of all n×1 column matrices.
Define a bilinear form ΦA on V by the formula

ΦA(x,y) = TxAy .

Examples of this sort appeared frequently in the preceding section (see also Appendix E). Actu-
ally, the first two examples are special cases of this construction in which A is given as follows:

(
0 1
−1 0

) (
1 0
0 −1

)

In fact, the following theorem shows that, in principle, the preceding construction gives all
possible bilinear forms on finite-dimensional vector spaces.

Theorem VII.7. Let v be ann-dimensional vector space over F, and let A = {a1, · · · ,an}
be an ordered basis for V . If Φ is a bilinear form over F, let [Φ]A be the n × n matrix whose
(i, j) entry is equal to Φ(ai,aj). Then the map sending Φ to [Φ]A defines a 1−1 correspondence
between bilinear forms over V and n× n matrices over F.
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The matrix [Φ]A is called the matrix of Φ with respect to the ordered basis A.

Proof. The mapping is 1 − 1. Suppose that we are given two bilinear forms Φ and Ψ such
that Φ(ai,aj) = Ψ(ai,aj) for all i and j (this is the condition for [Φ]A and [Ψ]A to be equal).
If v, w ∈ V , express these vectors as linear combinations of the basis vectors as follows:

v =
∑

i

xiai w =
∑

j

yjbj

Then by (Bi–1) — (Bi–3) we have

Φ(v,w) =
∑

i,j

xiyjΦ(ai,aj) =
∑

i,j

xiyjΨ(ai,aj) = Ψ(v,w)

and since v and w are arbitrary we have Φ = Ψ.�

The mapping is onto. If B is an n×n matrix and v, w ∈ V are as in the preceding paragraph,
define

fB,A =
∑

i,j

xiyjbi,j .

This is well-defined because the coefficients of v and w with respect to A are uniquely deter-
mined. The proof that fB,A satisfies (Bi–1) — (Bi–3) is a sequence of routine but slightly
messy calculations, and it is left as an exercise. Given this, it follows immediately that B is
equal to [fBA]A.�

CHANGE OF BASIS FORMULA. Suppose we are given a bilinear form Φ on an n-dimensional
vector space V over F, and let A and B be ordered basis for V . In several contexts it is useful
to understand the relationship between the matrices [Φ]A and [Φ]B. The equation relating these
matrices are given by the following result:

Theorem VII.8. Given two ordered bases A and B, define a transition matrix by the form

bj =
∑

i

pi,jai .

If Φ is a bilinear form on V as above, then we have

[Φ]B = TP [Φ]A P .

Proof. We only need to calculate Φ(bi,bj); by the equations above, we have

Φ(bi,bj) = Φ

(
∑

k

pk,iak,
∑

m

pm,jam

)
=

∑

k

(
pk,i

(
∑

m

pm,k Φ(ak,am)

) )
.

However, the coefficient of pk,i is just the (k, j) entry of [Φ]A P , and hence the entire summation

is just the (i, j) entry of TP [Φ]A P , as claimed.�

Definition. A bilinear form Φ is symmetric if Φ(x,y) = Φ(y,x) for all x and y.

Theorem VII.9. Let Φ and A be as in Theorem 7. Then Φ is symmetric if and only if [Φ]A is
a symmetric matrix.
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Proof. Suppose that Φ is symmetric. Then Φ(ai,aj) = Φ(aj,ai) for all i and j, and this
implies that [Φ]A is a symmetric matrix.

Conversely, if [Φ]A is symmetric and v, w ∈ V (the same notation as in Theorem 7), then by
Theorem 7 we have

Φ(v,w) =
∑

i,j

([Φ]A)i,j xiyj Φ(w,v) =
∑

i,j

([Φ]A)j,i xiyj .

Since [Φ]A is symmetric, the two summations are equal, and therefore we must have

Φ(y,x) = Φ(x,y)

for all x and y.�

We have introduced all of the preceding algebraic machinery in order to prove the following
result:

Theorem VII.10. Let F be a field in which 1 + 1 6= 0, and let A be a symmetric n× n matrix
over F. Then there is an invertible matrix P such that TPAP is a diagonal matrix.

This will be a consequence of the next result:

Theorem VII.11. Let Φ be a symmetric bilinear form on an n-dimensional vector space V
over a field F for which 1 + 1 6= 0. Then there is an ordered basis v1, · ,vn of V such that
Φ(vi,vj) = 0 if i 6= j and Φ(vi,vi) = di for suitable scalars di ∈ F.

Proof that Theorem 11 implies Theorem 10. Define a bilinear form ΦA as in Example
1 above. By construction [ΦA]U = A, where U is the ordered basis obtained of standard unit
vectors. On the other hand, if V is the ordered basis obtained from Theorem 11, then [ΦA]V is
a diagonal matrix. Apply Theorem 8 with Φ = ΦA, A = U , and B = V.�

Proof of Theorem 11. If dimV = 1, the result is trivial. Assume by induction that the
result holds for vector spaces of dimension n− 1.

CASE 1. Suppose that Φ(x,x) = 0 for all x. Then Φ(x,y) = 0 for all x and y because we
have

Φ(x,y) = 1
2Φ(x + y,x + y) − Φ(x,x) − Φ(y,y)

and consequently [Φ]A = 0 for every ordered basis A.�

CASE 2. Suppose that Φ(v,v) 6= 0 for some v. Let W be the set of all x ∈ V such that
Φ(x,v) = 0.4 We claim that W + F · v = V and W ∩F · v = {0}. — The second assertion
is trivial because Φ(v, c · v) = 0 implies that c · Φ(v,v) = 0. Since Φ(v,v) 6= 0, this can
only happen if c = 0, so that c · v = 0. To prove the first assertion, we must observe that for
arbitrary v ∈ V the vector

Π(x) = x − Φ(x,v)

Φ(v,v)
v

4If Φ is the usual dot product on R
n, then this is the hyperplane through 0 that is perpendicular to the line

0v.
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lies in W (to verify this, compute Φ
(
Π(x), v

)
explicitly).5 The conditions on W and F · v

together with the dimension formulas imply that dimW = n− 1.

Consider the form Ψ obtained by restricting Φ to W ; it follows immediately that Ψ is also
symmetric. By the induction hypothesis there is a basis w1, · · · ,wn−1 for W such that
Φ(wi,wj) = 0 if i 6= j. If we adjoin v to this set, then by the conditions on W and F · v we
obtain a basis for V . Since Φ(v,wj) is zero for all j by the definition of W , it follows that the
basis for V given by v together with w1, · · · ,wn−1 will have the desired properties.�

The proof above actually gives and explicit method for finding a basis with the required proper-
ties: Specifically, start with a basis v1, · · · ,vn for V . If some vi has the property Φ(vivi) 6= 0,
rearrange the vectors so that the first one has this property. If Φ(vi,vi) = 0 for all i, then either
Φ = 0 or else some value Φ(vi,vj) is nonzero (otherwise Φ = 0 by Theorem 10). Rearrange
the basis so that Φ(v1,v2) 6= 0, and take a new basis { vi } with v′

1 = v1 + v2 and v′
i = vi

otherwise. Then Φ(v′
1,v

′
1) 6= 0, and thus in all cases we have modified the original basis to one

having this property.

Now we modify v′
i such that v′′

1 = v′
1 and Φ(v′′

i ,v
′′
1) = 0 if i > 1. Specifically, if i ≥ 2 let

v′′
i = v′

i −
Φ(v′

i,v
′
1)

Φ(v′
1,v

′
1)

v′
1 .

Having done this, we repeat the construction for w1, · · · ,wn−1 for W with wi = v′′
i+1. When

computing explicit numerical examples, it is often convenient to “clear the denominator of
fractions” and multiply v′′

i by Φ(v′
1,v

′
1). This is particularly true when the matrix Φ(vi,vj) are

integers (as in Exercise 2 below).

EXERCISES

1. Prove that the map sending bilinear forms to matrices in Theorem 7 is surjective.

2. Find an invertible matrix P such that TPAP is diagonal, where A is the each of the following
matrices with real entries:


1 0 1
0 0 1
1 1 1







1 0 1
0 1 1
1 1 2







2 1 3
1 0 1
3 1 1







0 1 0
0 1 1
0 1 1


 .

3. A symmetric bilinear form Φ on an n-dimensional vector space V over a field F is said to be
nondegenerate if for each nonzero x ∈ V there is some y ∈ V such that Φ(x,y) 6= 0. Given an
ordered basis A for V , show that Φ is nondegenerate if and only if the matrix [Φ]A is invertible.
[Hint: Suppose that x satisfies Bx = 0, where B is the matrix in the previous sentence, and
let v =

∑
i xiai. If w =

∑
j yjzj , explain why TyBx = Φ(x,y) and how this is relevant.]

5If Φ is the ordinary dot product, then Π(x) is the foot of the perpendicular dropped from x to the plane
determined by W , and hence 0Π(x) is perpendicular to W .
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4. Projective classification of hyperquadrics

A standard exercise in plane and solid analytic geometry is the classification of conics and
quadrics up to changes of coordinates given by rotations, reflections and translations. Stated
differently, the preceding is the classification up to finding a rigid motion sending on to the other.
An account of the classification for arbitrary dimensions appears on pages 257–262 of Birkhoff
and MacLane, Survey of Modern Algebra (3rd Ed.). A related classification (up to finding
an affine transformation instead of merely a rigid motion) is discussed in Exercise 4 below.
In this section we are interested in the corresponding projective problem involving projective
hyperquadrics and (projective) collineations.

Throughout this section we assume that F is a field in which 1+1 6= 0. Furthermore, if Σ ⊂ FP
n

is a hyperquadric, then we shall use SingSet(Σ) to denote its subset of singular points.

We shall begin with an important observation.

Theorem VII.12. Let g be a projective collineation of FP
n. Then a subset Σ ⊂ FP

n is a
hyperquadric if and only if g[Σ] is. Furthermore, the singular sets of these hyperquadrics satisfy

g [ SingSet(Σ) ] = SingSet (T [Σ] )

and if TangX(Σ) denotes the tangent hyperplane to Σ at a nonsingular point X, then

g [ TangX(Σ) ] = Tangg(X) ( T [Σ] ) .

Proof. Let A be a symmetric (n+ 1)× (n+ 1) matrix which defines the hyperquadric Σ.

According to Theorem VI.14, there is an invertible linear transformation C of F
n+1,1 such that

T (F · ξ) = F · C(ξ) for all nonzero vectors ξ ∈ F
n+1,1. Let B be the matrix of C in the

standard basis. Then X lies in T [Σ] if and only if T −1(X) lies in Σ. If ξ is a set of homogeneous
coordinates for X, then the conditions in the preceding sentence are equivalent to

TξTB−1AB−1ξ − 0

and the displayed equation is equivalent to saying that X lies on the hyperquadric associated to
the (symmetric) matrix TB−1AB−1.

To check the statement about singular points, note that a point X lies on SingSet(Σ) if and only
if X has homogeneous coordinates ξ such that TξA = 0, and the latter is equivalent to

TξTBTB−1AB−1 = 0

which in turn is equivalent to
T(Bξ) ·

(
TB−1AB−1

)
= 0 .

To check the statement on tangent hyperplanes, note that Y lies on the tangent hyperplane to Σ
at X if and only if there are homogeneous coordinates ξ for X and η for Y such that TξAη = 0,
and the latter is equivalent to

TξTBTB−1AB−1Bη = 0

which in turn is equivalent to
T(Bξ) ·

(
tpB−1AB−1

)
η) = 0 .
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The latter is equivalent to saying that T (Y ) is in the tangent hyperplane to T [Σ] at T (X).�

Definition. Two hypequadrics Σ andΣ′ are projectively equivalent if there is a projective
collineation T such that T [Σ] = Σ′. We sometimes write this relation as Σ ∼ Σ′. It is clearly
an equivalence relation, and the main goal of this section is to understand this relation when F

is the real or complex numbers.

We shall first describe some necessary and sufficient conditions for the projective equivalence of
hyperquadrics.

Theorem VII.13. Let Σ be a hyperquadric in FP
n, and let T be a projective collineation of FP

n.
Then the following hold:

(i) The dimensions of the geometrical subspaces of singular points of Σ and T [Σ] must be equal.

(ii) If Σ contains no geometrical subspace of dimension r, then neither does T [Σ].

Proof. (i) By definition, SingSet(Σ) is the set of all X whose homogeneous coordinates ξ
satisfy TξA = 0, and hence SingSet(Σ) is a geometrical subspace. Now Theorem 12 implies
that T [SingSet(Σ)] = SingSetT [Σ], and hence

dimSingSet(Σ) = dimT [SingSet(Σ)] = dimSingSetT [Σ] .�

(ii) Suppose Q ⊂ T [Σ] is an r-dimensional geometrical subspace. Since T −1 is also a projective
collineation, the set

T−1[Q] ⊂ T−1 [T [Σ] ] = Σ

is also an r-plane.�

Theorem VII.14. Suppose that Σ and Σ′ are hyperquadrics which are defined by the symmetric
matrices A and B respectively. Assume that there is an invertible matrix C and a nonzero
constant k such that B = TCAC. Then Σ and Σ′ are projectively equivalent.

Proof. Let T be the projective collineation defined by C−1, and if X ∈ FP
n let ξ be a set of

homogeneous coordinates for X. Then by Theorem 12 we have

T [Σ] = { x | TξTCACξ = 0 } = { x | Tξ(k−1B)ξ = 0 } = { x | k−1
(
TξBξ

)
= 0 } = Σ′ .�

NOTATION. Let Dr be the n× n diagonal matrix (n ≥ r) with ones in the first r entries and
zeros elsewhere, and let Dp,q denote the n×n diagonal matrix (n ≥ p+ q) with ones in the first
entries, (−1)’s in the next q entries, and zeros elsewhere.

REMARKS. 1. IfA is a symmetric matrix over the complex numbers, then for some invertible
matrix P the product TPAP is Dr for some r. For Theorem 10 guarantees the existence of an
invertible matrix P0 such that A1 = TP0AP0 is diagonal. Let P1 be the diagonal matrix whose
entries are square roots of the corresponding nonzero diagonal entries of A1, and ones in the
places where A1 has zero diagonal entries. Then the product P = P0P

−1
1 has the desired

properties. This uses the fact that every element of the complex numbers C has a square root
in C, and in fact the same argument works in every field F which is closed under taking square
roots.
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2. If A is a symmetric matrix over the complex numbers, then for some invertible matrix P
the product TPAP is Dp,q for some p and q. As in the preceding example, choose an invertible

matrix P0 such that A1 = TP0AP0 is diagonal. Let P1 be the diagonal matrix whose entries
are square roots of the absolute values of the corresponding nonzero diagonal entries of A1,
and ones in the places where A1 has zero diagonal entries. Then the product P = P0P

−1
1 has

the desired properties. The need for more complicated matrices arises because over R one only
has square roots of nonnegative numbers, and if x ∈ R then either x or −x is nonnegative.

The preceding remarks and Theorems 12–14 yield a complete classification of hyperquadrics in
FP

n up to projective equivalence if F is either R or C. We shall start with the complex case,
which is easier.

Theorem VII.15. Let Γr ⊂ CP
n defined by the matrix Dr described above. Then every nonempty

hyperquadric in CP
n is projectively equivalent to Γr for some uniquely determined value of r.

Proof. By Remark 1 above and Theorem 14, we know that Σ is projectively equivalent to Γr

for some r. It suffices to show that if Γr and Γs are projectively equivalent then r = s.

By the preceding results we know that dimSingSet(Γr) is the dimension of the subspace of all
X whose homogeneous coordinates ξ satisfy TξDr = 0, and the dimension of that subspace
is equal to n − r + 1. Therefore, if Γr and Γs are projectively equivalent then we must have
n− r + 1 = n− s+ 1, which implies that r = s, so there is only one such hyperquadric that
can be equivalent to Σ and thus uniqueness follows.�

The preceding argument goes through if C is replaced by an arbitrary field F which is closed
under taking square roots.

Over the real numbers, the classification is somewhat more complicated but still relatively simple.

Theorem VII.16. Let Γp,q ⊂ RP
n defined by the diagonal matrix Dp,q described above. Then

every nonempty hyperquadric in RP
n is projectively equivalent to Γp,q for some uniquely deter-

mined values of p and q such that p ≥ q.

Proof. As in the proof of the preceding theorem, by Theorem 14 and Remark 1 we know
that an arbitrary projective hyperquadric is projectively equivalent to Γp,q for some p and q.
This hyperquadric is represented by Dp,q; if we permute the homogeneous coordinates, we see
that Γp,q is projectively equivalent to the hyperquadric defined by the matrix −Dq,p, and since
the negative of this matrix defines the same hyperquadric it follows that Γp,q is projectively
equivalent to Γq,p. Since either p ≥ q or q ≥ p, it follows that every hyperquadric is projectively
equivalent to Γu,v for some u ≥ v.

To complete the proof, it will suffice to show that if Γp,q is projectively equivalent to Γu,v where
p ≥ q and u ≥ v, then p+q = u+v and p = u. To see the first equality, note that the dimension
of SingSet(Γa,b) is equal to n− (a+ b) + 1 by the argument in the preceding theorem, and as in
that proof we conclude that p+ q = u+ v.

To see the second equality, we shall characterize the integer p in Γp,q as follows.
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(‡) The hyperquadric Γp,q contains a geometric subspace of dimension n− p but
no such subspace of higher dimension.

This and the second part of Theorem 13 will combine to prove that if Γp,q is projectively
equivalent to Γu,v where p ≥ q and u ≥ v, then we also have p = u.

An explicit geometrical subspace S of dimension N − p is given by the equations

xi − xp+i = 0 1 ≤ i ≤ q,
xi = 0 q ≤ i ≤ p .

Consider the geometrical subspace T defined by

xp+1 = xp+2 = · · · = xn+1 = 0 .

This geometrical subspace is (p− 1)-dimensional. Furthermore, if X ∈ T ∩Σ has homogeneous
coordinates (x1, · · · , xn+1) we have xi = 0 for i > p, so that

∑

i≤p

x2
i = 0 .

The latter implies that xi = 0 for i ≤ p, and hence it follows that xi = 0 for all i; this means
that the intersection T ∩ Σ is the empty set.

Suppose now that S ′ ⊂ Σ is a geometrical subspace of dimension ≥ n−p+1. Then the addition
law for dimensions combined with dim(S ′ ? T ) ≤ n shows that S ′ ∩ T 6= ∅, and since S ′ ⊂ Σ
we would also have Σ ∩ T 6= ∅. But we have shown that the latter intersection is empty, and
hence it follows that Σ cannot contain a geometrical subspace of dimension greater than (n−p),
which is what we needed to show in order to complete the proof.�

COMPUTATIONAL TECHNIQUES. Over the real numbers, there is another standard method
for finding an equivalent hyperquadric defined by a diagonal matrix. Specifically, one can use the
following diagonalization theorem for symmetric matrices to help find a projective collineation
which takes a given hyperquadric to one of the given type:

Let A be a symmetric matrix over the real numbers. Then there is an orthogonal
matrix P (one for which TP = P−1) such that TPAP is a diagonal matrix.
Furthermore, if λi is the ith entry of the diagonal matrix, then the ith column of
P is an eigenvector of A whose associated eigenvalue is equal to λi.�

This statement is often called the Fundamental Theorem on Real Symmetric Matrices,
and further discussion appears on pages 51–52 of the following online notes:

http://math.ucr.edu/∼res/math132/linalgnotes.pdf

If we combine the Fundamental Theorem on Real Symmetric Matrices with other material from
this section, we see that the construction of a projective collineation taking the hyperquadric
ΣA defined by A to a hyperquadric defined by an equation of the form

Σi dix
2
i = 0

reduces to finding the eigenvalues and eigenvectors of A. This approach is probably the most
effective general method for solving problems like those in Exercise 3 below.

SPECIALIZATION TO THE REAL PROJECTIVE PLANE. We shall conclude this section by
restating a special case of Theorem 16 that plays a crucial role in Section 6.



158 VII. HYPERQUADRICS

Theorem VII.17. All nonempty nonsingular conics in RP
2 are projectively equivalent. In fact,

they are equivalent to the affine unit circle which is defined by the homogeneous coordinate
equation x2

1 + x2
2 − x2

3 = 0.

Proof. We must consider all Γp,q with p ≥ q and p + q = 3 (this is the condition for the
singular set to be empty). The only possibilities for (p, q) are (2, 1) and (3, 0). However, Γ3,0 —
the set of points whose homogeneous coordinates satisfy x2

1 +x2
2 +x2

3 = 0 — is empty, so there
is a unique possibility and it is given by Γ2,1, which is the affine unit circle.�

EXERCISES

1. For each projective quadric in Exercise VII.1.3, determine the quadric in RP
3 to which it is

projectively equivalent.

2. Show that the number of projective equivalence classes of hypequadrics in RP
n is equal to

1
4(n+ 2)(n+ 4) if n is even and 1

4(n+ 3)2 if n is odd.

3. For each of the examples below, find a projective collineation of RP
2 that takes the

projectivizations of the following affine conics into the unit circle (with affine equation x2 +y2 =
1).

(i) The hyperbola xy = 4.

(ii) The parabola y = x2.

(iii) The ellipse 4x2 + 9y2 = 36.

(iv) The hyperbola 4x2 − 9y2 = 36.

4. (a) What should it mean for two affine hyperquadrics in R
n to be affinely equivalent?

(b) Prove that every affine hyperquadric in R
n is equivalent to one defined by an equation from

the following list:

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r = 0 (r ≤ n)

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r + 1 = 0 (r ≤ n)

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r + xr+1 = 0 (r < n)

See Birkhoff and MacLane, pp. 261–264, or Section V.2 of the online notes

http://math.ucr.edu/∼res/math132/linalgnotes.pdf
for further information on this topic.
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5. Duality and projective hyperquadrics

In this section we shall show that the duality properties for geometrical subspaces of coordinate
projective spaces are part of a larger pattern of duality which includes hyperquadrics. As in
most other sections of these notes, F will denote a (commutative) field in which 1 + 1 6= 0.

Definition. A hypersurface of the second class in (FP
n)∗ is the set F of all hyperplanes H

whose homogeneous coordinates θ satisfy a homogeneous quadratic equation

θBTθ = 0.

If we write θ = (u1, · · · , un+1) and B has entries bi,j, this is equivalent to the scalar equation∑
i,j bi,juiuj = 0.

The dual of a tangent line is a cotangent (n−2)-subspace V contained in a hyperplane H which
belongs to the hypersurface F. The cotangent condition becomes an assertion that exactly one
of the following two statements is valid:

(i) H is the only hyperplane in F containing V .

(ii) Every hyperplane in F contains V .

In the first case we say that H is a nonsingular hyperplane in F, and in the second we say that
H is a singular hyperplane in F.

By duality the set of all cotangent (n − 2)-spaces at a nonsingular hyperplane is the set of all
(n−2)-spaces through a point called the point of contact of F at H. This point has homogeneous
coordinates BTθ.

Nonsingular hyperquadrics and nonsingular hypersurfaces of the second class satisfy the following
useful interrelationship:

Theorem VII.18. (i) The set of all hyperplanes TΣ tangent to a nonsingular hyperquadric Σ
is a hypersurface of the second class.

(ii) The set of all points of contact KF to a nonsingular hypersurface F of the second class is a
nonsingular hyperquadric.

(iii) In the setting of the preceding two statements, we have KTΣ = Σ and TKF = F.

Proof. (i) Suppose Σ is defined as the set of all X whose homogeneous coordinates satisfy
TξAξ = 0. We claim that H lies in TΣ if and only if its homogeneous coordinates θ satisfy
θA−1 Tθ = 0.

Suppose that H ∈ TΣ. Let X be a point such that H is the tangent hyperplane to X, and let
θ and ξ be homogeneous coordinates for H and X respectively. Then we have θ = TξA, and
hence

θA−1Tθ =
(
TξA

)
θA−1(Aξ) = TξAξ = 0

which is what we wanted to prove.

Conversely, suppose that homogeneous coordinates θ for H satisfy the equation

θA−1 Tθ = 0 .
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Let ξ = A−1Tθ, and let X have homogeneous coordinates ξ. Then θ = TξA and
TξAξ = TξAA−1Aξ = θA−1 Tθ = 0

so that H lies in TΣ.

Finally, note that TΣ is nonsingular because it is defined by the invertible matrix A−1.�

(ii) The statement about KF follows by duality. It remains to show that KTΣ = Σ. Howver,
if Σ is defined by the invertible matrix A, then TΣ is defined by the inverse matrix A−1, and
therefore by duality it follows that KTΣ is defined by the matrix

(
A−1

)−1
= A

and hence it must be equal to Σ.

Finally, the assertion TKF = F follows by duality.�

Extending duality to nonsingular hyperquadrics. The preceding theorem implies the
following general principle:

Augmented Principle of Duality. A statement about coordinate projective n-spaces over
fields remains true if — in addition to the previously specified interchanges involving geomet-
rical subspaces — one interchanges the phrases point on a nonsingular hyperquadric and tangent
hyperplane to a nonsingular hyperquadric.�

Important examples of this extended dualization will be given in the next (and final) section of
these notes.

EXERCISES

1. Find the equations defining the tangent lines to the projectivizations of the following affine
conics:

(i) The parabola y2 = 4ax.

(ii) The ellipse a2x2 + b2y2 = a2b2.

(iii) The hyperbola a2x2 − b2y2 = a2b2.

(iv) The hyperbola xy = a.

2. Find the equation defining the conic in RP
2 whose tangent lines satisfy the equation

u2
1 − 2u1u2 + u2

2 2u2u3 + 2u1u3 + u2
3 = 0 .

[Hint: Look at the proof of Theorem 18.]

3. Write out the plane dual to the following statements about conics in the projective plane
P:

(i) At the points X and Y on the nonsingular conic Γ, the respective tangent lines L and M
meet at a point Z.

(ii) No three points of the nonsingular conic Γ are collinear.
(iii) There are two lines in the (projective) plane P that are tangent to both of the nonsingular
conics Γ1 and Γ2.
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6. Conics in the real projective plane

Projective conics have a great many interesting properties, the most famous of which is Pas-
cal’s Theorem (see Theorem 24 below). A thorough discussion of projective conics appears in
Coolidge, A History of the Conic Sections and Quadric Surfaces. In this section we shall limit
ourselves to proving a few of the more important and representative theorems in the subject.

Throughout this section we shall be considering coordinate projective planes over a fixed field F

in which 1 + 1 6= 0. We shall also assume that F is not isomorphic to Z3 after Theorem 22. Of
course, this means that all the results in this section are valid in the real and complex projective
planes.

Theorem VII.19. Given any five points in FP
2, no three of which are collinear, there is a unique

conic containing them. Furthermore, this conic is nonsingular.

Proof. Let A, B, C, D, E, V be five points, no three of which are collinear. We shall first
prove the result in a special case and then prove that it holds more generally.

Case 1. Suppose that homogeneous coordinates α, β, γ, δ for A, B, C, D are given by
standard values:

α =




1
0
0


 β =




0
1
0


 γ =




0
0
1


 δ =




1
1
1




Since no three of the five points are collinear, homogeneous coordinates for V are given by
a0α+b0β+c0γ, where none of a0, b0, c0 is equal to zero. Dividing by a0, we can find homogeneous
coordinates ψ for V such that ψ = α + bβ + cγ. Since V 6∈ AD, the scalars b and c must be
distinct.

Suppose there is a conic Γ containing A, B, C, D, E, V and that it is defined by the symmetric
3 × 3 matrix P . We need to determine the entries pi,j from the equations TξPξ = 0, which
should hold for ξ − α, β, γ, δ, ψ. If ξ = α, then direct substitutions implies that p1,1 = 0.
Likewise, if we make the substitutions ξ = β and ξ = γ we find that p2,2 = p3,3 = 0. Continuing
in this manner, if we make the substitution ξ = δ and use the previously derived values for the
diagonal entries, we find that

2 · (p1,2 + p2,3 + p1,3) = 0

and if we follow this with the substitution ξ = ψ we also obtain the equation

2 · (b p1,2 + bc p2,3 + c p1,3) = 0 .

Thus the entries of the symmetric matrix P satisfy the following conditions:

p1,1 = p2,2 = p3,3 = 0

p1,2 =
(1− b)c
b− c p2,3 p1,3 =

(1− c)b
c− b p2,3
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Therefore the coefficients of P are uniquely determined up to a scalar multiple, and it follows
that there is at most one conic containing the given five points. On the other hand, if we set

P =




0 (1− b)c b(c− 1)
(1− b)c 0 b− c
b(c− 1) b− c 0




then the preceding calculations show that the given five points lie in the conic defined by P .

To prove that the conic is nonsingular, it suffices to show that the determinant of the matrix
P defined above is nonzero. First note that V 6∈ CD and V 6∈ BD imply b 6= 1 and c 6= 1
respectively. Thus the determinant of P , which is

2 (1− b)c(b − c)b(b− 1)

must be nonzero, proving that the conic is nonsingular.�

Case 2. Suppose that A, B, C, D, E, V are arbitrary. By the Fundamental Theorem of
Projective Geometry, there is a projective collineation Φ such that

Φ(A), Φ(B), Φ(C), Φ(D), Φ(E), Φ(V )

satisfy the conditions of Case 1. Let Γ0 be the unique nonsingular conic given by Case 1; then
Γ = Φ−1[Γ0] is a nonsingular conic containing A, B, C, D, E, V by Theorem 12, proving
existence. To show uniqueness, suppose that Γ′ is another conic containing the given five points;
then Φ[Γ′] is a conic containing Φ(A), Φ(B), Φ(C), Φ(D), Φ(E), Φ(V ) and therefore by Case
1 we have Φ[Γ′] = Γ0. Consequently, we have Γ′ = Φ−1 oΦ[Γ′] = Φ−1[Γ0] = Γ.�

If F is not isomorphic to Z3 then there is a converse to the preceding theorem; namely, every
nonsingular conic contains at least five points (see Theorem 21). In fact, no three of these points
can be collinear, for the noncollinearity of three arbitrary points on a nonsingular conic will be
a consequence of the next result.

Theorem VII.20. No three points on a nonsingular conic are collinear.

Proof. Let A, B, C be three collinear points. We claim that every conic containing all three
of them is singular. By the Fundamental Theorem of Projective Geometry and Theorem 12, it
suffices to consider the case in which homogeneous coordinates α and β for A and B are the
first two unit vectors in F

3,1.

By Theorem V.7, homogeneous coordinates γ for C may be chosen so that γ = α+ c γ, where
c 6= 0. If the conic Γis defined by the symmetric 3 × 3 matrix P , then computations like those
of Theorem 19 imply that p1,1 = p2,2 = 0 and 2c p1,2 = 0. Thus P has the following form:

P =




0 0 p1,3

0 0 p2,3

p1,3 p2,3 p3,3




However, direct computation shows that such a matrix is not invertible, and therefore the conic
Γ is singular by Theorem 5.�

Here is the other result we need to establish a converse to Theorem 19:
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Theorem VII.21. Let Γ be a nonempty conic in FP
2 containing at least one nonsingular point,

and assume that the field F contains at least n distinct elements. Then Γ contains at least (n+1)
distinct points.

In particular, if F is not isomorphic to Z3, then Γ contains at least five distinct points (note that
F cannot be isomorphic to Z2 because we are assuming that 1 + 1 6= 0 in F).

Proof. Let X ∈ Γ be a nonsingular point, and let L be the tangent line through X. Then
there are at least n other lines through X, say L1, · · · , Ln. Since each Li is not a tangent line
and X ∈ Li ∩ Γ, there must be a second point Xi ∈ Li ∩ Γ. 

 
 

 

Figure VII.1

If i 6= j, then Xi 6= Xj because otherwise Li and Lj would have two points in common and we
know these lines are distinct. Therefore the points X, X1, · · · , Xn must be distinct points of
Γ.�

A synthetic approach to conics

The theorem above give an incidence-theoretic characterization of nonsingular conics and suggest
that synthetic methods might be useful in the study of conics. The next two theorems give a
completely synthetic characterization of nonsingular conics due to J. Steiner.6

From this point on, unless stated otherwise, we shall assume that the field F is not isomorphic
to Z3.

Theorem VII.22. Let A and B be distinct points in FP
2, and let Φ be a projective collineation

of FP
2 sending A to B. Then

K = {X ∈ FP
2 | X = A or X ∈ Φ(L) ∩ L for some line L through A}

is a conic. (Notice that B ∈ K, for we may take L = AB in the definition).

6Jakob Steiner (1796–1863) is known for his work on projective geometry from a strongly synthetic view-
point and for results in other branches of geometry.
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Proof. Let P be an invertible 3× 3 such that if ξ is a set of homogeneous coordinates for X,
then Φ(X) = F · Pξ. Also, let α be a set of homogeneous coordinates for A, and let β be a set
of homogeneous coordinates for B such that β = P · α.

We need to find a homogeneous quadratic equation which defines K. By Exercise V.1.5, if L is a
line in FP

2 and has homogeneous coordinates λ, then the line Φ[L] has homogeneous coordinates
λP−1. Thus X ∈ K if and only if X = A or its homogeneous coordinates ξ satisfy

ξ = T
(
λP−1

)
× Tλ

for some line L whose homogeneous coordinates λ satisfy λ · α = 0. Equivalently, we have
X ∈K if and only if X = A or

λP−1ξ = λ · ξ = λ · α = 0 .

It follows that X ∈ K if and only if α, ξ and p−1ξ are linearly dependent (the case X 6= A
is immediate from the preceding three equations, while the case X = A is trivial). Since P
defines an invertible linear transformation, the vectors α, ξ and P −1ξ are linearly independent if
and only if β = P ·α, P · ξ and ξ = P P−1ξ are linearly independent. The linear dependence
of the latter is in turn equivalent to the vanishing of the determinant [ξ, P ξ, β]. But the latter
expression is a homogeneous quadratic polynomial in the entries of ξ and hence it is the defining
equation of a conic.�

Conversely, every nonsingular conic is defined by a projective collineation as in Theorem 22.

Theorem VII.23. (Steiner) Let Γ be a nonsingular conic in FP
2 containing at least five

distinct points, and let A and B be distinct points of Γ. Then there is a projective collineation
Φ of FP

2 sending A to B such that

Γ = {X ∈ FP
2 | X = A or X ∈ Φ(L) ∩ L for some line L through A} .

Proof. Let X, Y, Z be three points of Γ which are distinct from A and B. By Theorem
20, no three of the points A, B, X, Y, Z are collinear. Thus there is a unique projective
collineation Φ sending A to B and X, Y, Z to themselves. By Theorem 22, the points A, B
and the collineation Φ determine a conic Γ′ defined by the formula above. By construction the
three points X, Y, Z lie on Γ′, and therefore Γ = Γ′ by Theorem 12.�

NOTATION. If Γ is a conic and A, B ∈ Γ, then the collineation Φ of Theorem 23 is called a
Steiner collineation associated to A, B and Γ. We note that this collineation is not unique, for
different choices of the three points X, Y, Z yield different collineations.

Conics and inscribed polygons

Definition. Let P1, · · · , Pn be n ≥ 3 points in FP
2 such that no three are collinear. The

simple (projective) n-gon P1 · · · Pn is defined to be

P1P2 ∪ · · · ∪ Pn−1Pn ∪ PnP1 .

Dually, if L1, · · · , Ln is a set of n ≥ 3 lines such that no three are concurrent, the dual of a
simple n-gon is the finite set of points determined by the intersections Li ∩ Li+1 and Ln ∩ L1

(i.e., a set of n points such that no three are collinear), and the union of the lines is the simple
n-gon determined by these n points.



6. CONICS IN THE REAL PROJECTIVE PLANE 165

The following result due to B. Pascal7 is one of the most celebrated theorems in projective
geometry:

Theorem VII.24. (Pascal’s Theorem) Suppose that Γ is a nonsingular conic in FP
2 and let

the simple hexagon A1 · · · A6 be inscribed in Γ (in other words, Ai ∈ Γ for all i). Let

X = A1A2 ∩ A4A5 , Y = A2A3 ∩ A5A6 , Z = A3A4 ∩ A6A1 .

Then X, Y and Z are collinear.

The line containing these three points is called the Pascal line of the hexagon.

 

 
 

Figure VII.2

We have stated Pascal’s Theorem for nonsingular conics, but a version of the result is also true
for singular conics given by the union of two lines, provided the hexagon is degenerate in the
sense that {A1, A3, A5} lie on one line and {A2, A4, A6} lie on the other. In such a situation,
the conclusion of Pascal’s Theorem reduces to the conclusion of Pappus’ Theorem, and hence
one can view Pappus’ Theorem as a special case of Pascal’s Theorem.8

SPECIAL CASE. Suppose that Γ in RP
2 is given by the ordinary unit circle and A1 · · · A6

is a regular hexagon which is inscribed in Γ. Then it is clear that A1A2||A41A5, A2A3||A51A6

and A3A4||A61A1 (see the illustration below — note that A1, A2, A3, A4, A5, A6 correspond
to A, B, C, D, E, F in the drawing), so that X, Y and Z are all ideal points and the Pascal
line is equal to the line at infinity.

7Blaise Pascal (1623–1662) is known for contributions to a wide range of areas in the mathematical and
physical sciences as well as philosophy. Aside from the theorem appearing here, he is particularly recognized for
scientific work on fluid mechanics, probability theory, a counting machine which was the prototype for devices
like mechanical odometers, as well as the philosophy of science. Most of his philosophical writings were highly
religious in nature.

8And this is why French and German writers often use phrases translating to “Pascal’s Theorem” when
referring to the result known as Pappus’ (Hexagon) Theorem in the English language.
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Figure VII.3

Proof of Pascal’s Theorem (= Theorem 24). By Steiner’s Theorem there is a projective
collineation Φ such that Φ(A1) = A5 and Φ also has the following properties:

Φ[A1A4] = A5A4 Φ[A1A2] = A5A2 Φ[A1A3] = A5A3

Φ[A1Z = A1A6] = A5A6 = A5Y

As suggested by Figure VII.2, we define B1 to be the point at which A2A3 meets A4A5, and we
define B2 to be the point at which A3A4 meets A1A2. Since Φ is a projective collineation, by
Exercise VI.3.3 we have the following cross ratio equations:

XR (A1A4, A1A3, A1B2, A1Z) = XR ( Φ[A1A4], Φ[A1A3], Φ[A1B2], Φ[A1Z] ) =

XR (A5B1, A5A3, A5A4, A5Y )

By construction, the points Z and B2 are on A3A4, and the points Y and B1 are on A − 2A3.
Therefore Theorem V.14 implies that the first cross ratio in the displayed equation is equal to
XR(A4, A3, B2, Z) and the second is equal to XR(B1, A3, A2, Y ), so that

XR(A4, A3, B2, Z) = XR(B1, A3, A2, Y ) .

Since A4B1 = A4A5 and B2A2 = A1A2 it follows that X ∈ A4B1 ∩ A3X ∩ B2A2. Thus
we also have

XR(B1, A3, A2, Y ) = XR(A4, A3, B2,W )

where W ∈ A3A4 ∩XY . But the right hand side of the equation is also equal to the cross ratio
XR(A4, A3, B2,W ), and therefore W = Z by Theorem V.10. In particular, this implies that

Z ∈ A3A4 ∩ XY

so that X, Y and Z are collinear.�

If we now apply the Augmented Principle of Duality formulated in Section V, we immediately
obtain the following result (Brianchon’s Theorem),9 which was originally established without
using duality:

9Charles Julien Brianchon (1783–1864) worked in mathematics and chemistry; in mathematics he is
known for rediscovering Pascal’s Theorem and proving the result which bears his name.
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Theorem VII.25. (Brianchon’s Theorem) Suppose that Γ is a nonsingular conic in FP
2 and

let the simple hexagon A1 · · · A6 be circumscribed about Γ (in other words, the lines AiAi+1 are
tangent to Gamma for all i, and likewise for A6A1). Then the lines A1A4, A2A3 and A2A3 are
concurrent.�

The point of concurrency is called the Brianchon point.
SPECIAL CASE. Suppose that Γ in RP

2 is given by the ordinary unit circle and A1 · · · A6

is a regular hexagon which is inscribed in Γ. Then the Brianchon point is the center of the circle.
 
 

 

Figure VII.4

There is also a converse to Pascal’s Theorem (and hence, by duality, there is also a converse to
Brianchon’s Theorem).

Theorem VII.26. Let A1 · · · A6 be a simple hexagon, and let X, Y, Z be defined as in Pascal’s
Theorem. If these three points are collinear, then there is a conic Γ such that Ai ∈ Γ for all i.

By Theorem 19, if there is a conic containing the given six points, then it must be nonsingular.

Proof. Let Γ be the unique nonsingular conic containing the first five points A1, · · · , A5 and
let Φ be the Steiner collineation for Γ with Φ(A1) = A5 and Φ[A1Aj ] = A5Aj for j = 2, 3, 4.
It will suffice to prove that Φ[A1A6] = A5A6. Let B1 and B2 be defined as in the proof of

Pascal’s Theorem. Since {A4, A3, B2, Z} and {B1, A3, A2, Y } are quadruples of collinear points
and

X ∈ A4B1 ∩ A3 ∩ A2B2 ∩ Y Z

Theorem V.14 implies that

XR(A4, A3, B2, Z) = XR(B1, A3, A2, Y ) .

This in turn implies the following equation:

XR(A1A4, A1A3, A1B2, A1Z) = XR(A5B1, A5A3, A5A2, A5Y )

Since A1B2 = A1A2, A1Z = A1A6, A5B1 = A5A4 and A5Y = A5A6, the equation above
may be rewritten as follows:

XR(A1A4, A1A3, A1A2, A1A6) = XR(A5A4, A5A3, A5A2, A5A6)



168 VII. HYPERQUADRICS

On the other hand, since Φ is a projective collineation, the right hand side is equal to the
following:

XR
(
Φ[A1A4], Φ[A1A3], Φ[A1A2], Φ[A1A6]

)
= XR(A5A4, A5A3, A5A2,Φ[A1A6] )

Therefore it follows that Φ[A1A6] = A5A6, which is what we needed to verify in order to
complete the proof.�

The statement of the dual theorem to Theorem 26 is left to the reader (see the exercises).�

Degenerate cases of Pascal’s Theorem

There are analogs of Pascal’s Theorem for inscribed simple n-gons where n = 3, 4, 5 (and by
duality there are similar analogs of Brianchon’s Theorem). Roughly speaking, these are limiting
cases in which two consecutive vertices merge into a single point and the line joining the two
points converges to the tangent line at the common point. The proofs of these theorems require
a simple observation about Steiner collineations.

Theorem VII.27. Let Γ be a nonsingular conic, let A and B be points of Γ, and let Φ be a
Steiner collineation for Γ such that Φ(A) = B. If TA is the tangent line to Γ at A, then
Φ[TA] = AB; if TB is the tangent line to Γ at B, then Φ[AB] = TB.

Proof. Since B ∈ Φ[TA], we know that Φ[TA] = BC for some point C. If D ∈ Φ[TA] ∩ BC,
then D ∈ Γ by construction. But the only point in TA ∩ Γ is A itself, and therefore we must
have BC = BA. Since Φ−1 is a Steiner collineation for Γ taking B to X, it follows that
Φ−1[TB ] = AB, which is equivalent to the desired equation Φ[AB] = TB.�

Here are the analogs of Pascal’s Theorem for inscribed pentagons and quadrilaterals; note that
there are two separate analogs for quadrilaterals.

Theorem VII.28. Suppose that Γ is a nonsingular conic in FP
2 and let the simple pentagon

A1 · · · A5 be inscribed in Γ. Let

X = A1A2 ∩ A4A5 , Y = A2A3 ∩ A5A1 , Z = A3A4 ∩ TA1
.

Then X, Y and Z are collinear.

Theorem VII.29. Suppose that Γ is a nonsingular conic in FP
2 and let the simple quadrilateral

A1 · · · A4 be inscribed in Γ. Let

X = TA1
∩ A2A4 , Y = A1A2 ∩ A3A4 , Z = TA2

∩ A1A4 .

Then X, Y and Z are collinear.

Theorem VII.30. Suppose that Γ is a nonsingular conic in FP
2 and let the simple quadrilateral

A1 · · · A4 be inscribed in Γ. Let

D = A1A3 ∩ A2A4 , E = A1A4 ∩ A2A3 , F = TA1
∩ TA2

.

Then D, E and F are collinear.
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The proofs of these theorems are easy variants of the proofs of Pascal’s Theorem and are left to
the reader as exercises.�

Similarly, formulations and proofs of the duals to all these results are left to the reader as
exercises.�

The final degenerate case of Pascal’s Theorem requires a special argument. As noted in Appendix
A, the cross product of vectors in F

3 satisfies the following condition known as the Jacobi Identity
(see Theorem A.21):

a× (b× c) + b× (c× a) + c× (a× b) = 0 .

Theorem VII.31. Let ABC be a (projective) triangle inscribed in the nonsingular conic Γ. Let

D = TA ∩ BC , E = TB ∩ AC , F = TC ∩ AB .

Then D, E and F are collinear.

Proof. By Theorems 5, 10 and 14, the nonsingular conic Γ is projectively equivalent to one
defined by an equation of the form ax2 + by2 + cz2 = 0 where none of the coefficients a, b, c
is equal to zero. Dividing these by a suitable constant, we may assume c = −1. Therefore it
suffices to prove the result for conics defined by equations of the form ax2 + by2 − z2 = 0.

Let ρ be the 1× 3 matrix (0 0 − 2). If X ∈ Γ and has homogeneous coordinates

ξ = T(x1 x2 x3)

then homogeneous coordinates for the tangent line TX to Γ at X are given by ξ# = Tξ + x3 ρ.

Let α, β, γ denote homogeneous coordinates for A, B, C, and let α#, β#, γ# denote corre-
sponding homogeneous coordinates for the tangent lines TA, TB and TC . It will suffice to show
that the vectors

α# × (β × γ) , β# × (γ × α) , γ# × (α× β)

are linearly dependent. However, their sum is equal to

[α × (β × γ) + β × (γ × α) + γ × (α× β)] +

Tρ ×
(
a3 β × γ + b3 γ × α + c3 α× β

)

and we claim that this sum vanishes. The term in square brackets vanishes by the Jacobi
Identity; to analyze the remaining term(s), we may use the “back–cab formula”

Tρ × (η × ζ) = (ρ · ζ)η − (ρ · η)ζ = 2(z3 η − y3ζ)

to see that the expression
Tρ ×

(
a3 β × γ + b3 γ × α + c3 α× β

)

is a sum of six terms that cancel each other in pairs.�

As before, the formulation of the dual theorem is left to the reader as an exercise.�

EXERCISES
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1. Prove that the conclusion of Theorem 21 is still valid if Γ is completely singular, provided
it contains at least two points. [Hint: The set of singular points is a geometrical subspace.]

2. Find the equations of the conics in RP
2 which pass through the following five points: with

the following homogeneous coordinates:

(i) The five points with the following homogeneous coordinates:



1
1
1







1
−1
1







1
−1
−1







1
1
−1







2
0
2




(ii) The five points with the following homogeneous coordinates:



1
1
0







1
0
1







0
1
1







1
2
2







1
2
3




3. Let Φ be the collineation of RP
2 sending the point with homogeneous coordinates T(1 1 2)

to T(2 2 1), and the lines with homogeneous coordinates

(2 0 − 1) (1 − 1 0) (1 1 − 1)

to the lines with homogeneous coordinates

(1 0 − 2) (1 1 − 4) (1 2 − 6)

respectively. Find the equation of the conic Γ for which Φ is a Steiner collineation (using
Theorem 22).

4. Let Γ be the ellipse defined by the affine equation x2 + 3y2 = 4 in R
2 (hence its

projectivization has no ideal points). If T is the unique projective collineation of RP
2 sending

J(±2, 0) and J(0,− 2
3

√
3) to themselves, and sending J(−1, 1) to J(1, 1), then T is a Steiner

collineation for Γ. Likewise, if S is the unique projective collineation of RP
2 sending J(±2, 0)

and J(0, 2
3

√
3) to themselves, and sending J(−1, 1) to J(1, 1), then S is also a Steiner collineation

for Γ. Show that S and T must be distinct projective collineations. [Hint: If S = T , then this
map fixes the four points on Γ where it meets the x- and y-axes. What does the Fundamental
Theorem of Projective Geometry imply about S = T in this case?]

5. State the duals of Theorems 19, 21 and 27–31 (the duality principle implies that these dual
results are automatically valid).

6. Prove Theorems 27–30 and their converses.

7. Let Γ be a nonsingular conic in FP
2, and let {A,B,C} and {A′, B′, C ′} be two disjoint

noncollinear sets of points on Γ. Prove that the lines AA′, BB′ and CC ′ are concurrent. — A
drawing and hints appear on the next page.
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Figure VII.5

[Hint: Define X, Y, Z and X ′, Y ′, Z ′ as suggested in the figure. First prove that AA′, XX ′

and Y Y ′ are concurrent using Pascal’s Theorem. Clearly corresponding results hold for BB ′

and CC ′. Let U ∈ C ′Y ∩BX ′, and prove that Z ′, U and Q are collinear by Pappus’ Theorem.
Also show that ZU , BB ′ and CC ′ are concurrent using Pappus’ Theorem for {C ′, X ′, B} and
{B, Y,C}. Finally, apply Pascal’s Theorem to AB ′C ′A′BC to show that BB ′, CC ′ and ZZ ′

are concurrent. Using similar results for XX ′ and Y Y ′ and the previous concurrency relations
involving AA′, BB′ and CC ′, prove that all six lines are concurrent.]

What is the dual of the preceding result?

8. Let Γ, {A,B,C} and {A′, B′, C ′} be as in Exercise 6. Prove that the six lines determined
by the triangles ABC and A′B′C ′ form the sides of a hexagon that is tangent to another conic.
[Hint: The hexagon is Y ′X ′ZYXZ ′. Apply the converse to Brianchon’s Theorem.]

9. Show that a set of six points on a nonsingular conic Γ determines sixty simple hexagons (in
general these sixty hexagons have distinct Pascal lines, and the footnote on page 152 of Fishback
contains further information on the totality of all such configurations).


