APPENDIX B

THE JOIN IN AFFINE GEOMETRY

In Section II.5 we defined a notion of **join** for geometrical incidence spaces; specifically, if P and Q are geometrical subspaces of an incidence space S, then the join $P \star Q$ is the unique smallest geometrical subspace which contains them both. From an intuitive viewpoint, the name "join" is meant to suggest that $P \star Q$ consists of all points on lines of the form \mathbf{xy} , where $\mathbf{x} \in P$ and $\mathbf{y} \in Q$. If S is a projective *n*-space over some appropriate scalars \mathbb{F} , this is shown in Exercise 16 for Section III.4, and the purpose of this Appendix is to prove a similar result for an affine *n*-space over some \mathbb{F} .

Formally, we begin with a generalization of the idea described above.

Definition. Let (S, Π, d) be an abstract geometrical incidence *n*-space, and let $X \subset S$. Define $\mathbf{J}(X)$ to be the set

 $X \cup \{ \mathbf{y} \in S \mid \mathbf{y} \in \mathbf{uv} \text{ for some } \mathbf{u}, \mathbf{v} \in X \}$.

Thus $\mathbf{J}(X)$ is X together with all points on lines joining two points of X. Note that the construction of $\mathbf{J}(X)$ from X can be iterated to yield a chain of subsets $X \subset \mathbf{J}(X) \subset \mathbf{J}(\mathbf{J}(X)) \cdots$.

The preceding discussion and definition lead naturally to the following:

QUESTION. If S is a geometrical incidence n-space and P and Q are geometrical subspaces of S, what is the relationship between $P \star Q$ and $\mathbf{J}(P \cup Q)$? In particular, are they equal, at least if S satisfies some standard additional conditions?

The exercise from Section III.4 shows that the two sets are equal if S is a standard projective n-space. In general, the next result implies that the two subsets need not be equal. but one is always contained in the other.

Theorem B.1. In the setting above, we have $\mathbf{J}(P \cup Q) \subset P \star Q$. However, for each $n \geq 2$ there is an example of a regular geometrical incidence spaces such that, for some choices of P and Q, the set $\mathbf{J}(P \cup Q)$ is strictly contained in $P \star Q$.

Proof. The inclusion relationship follows from $\mathbf{G}(-2)$ and the fact that $P \star Q$ is a geometrical subspace of S. On the other hand, if we take the affine incidence space structure associated to \mathbb{Z}_2^n for $n \geq 2$, then for every subset $X \subset \mathbb{Z}^n$ we automatically have $\mathbf{J}(X) = X$ because every line consists of exactly two points. Thus if W and U are vector subspaces of \mathbb{Z}_2^n such that neither contains the other, then $\mathbf{J}(W \cup U)$ is not a vector subspace. Since $\mathbf{0} \in W \cap U$, we know that $W \star U$ is the vector subspace W + U by Theorem II.36, and it follows in this case that $\mathbf{J}(W \cup U)$ is strictly contained in $W \star U$.

Note that the examples constructed in the proof are in fact affine incidence spaces. The main objective of this appendix is to prove that $\mathbf{J}(P \cup Q) = P \star Q$ if V is a vector space of dimension ≥ 2 over a field \mathbb{F} which is not (isomorphic to) \mathbb{Z}_2 .

Theorem B.2. Let V be a vector space of dimension ≥ 2 over a field \mathbb{F} which is not (isomorphic to) \mathbb{Z}_2 , and suppose that $P = \mathbf{a} + U$ and $Q = \mathbf{b} + W$ are geometrical subspaces of V. Then the following hold:

- (i) The join $P \star Q$ is the affine span of $P \cup Q$.
- (*ii*) $P \star Q = \mathbf{J}(P \cup Q)$.

Proof. FIRST STATEMENT. If R is the affine span of P and Q, then R is an affine subspace containing P and Q by Theorem II.19, Theorem II.16 and Exercise 1 for Section II.2 (this is where we use the assumption that \mathbb{F} is not isomorphic to \mathbb{Z}_2). Therefore it follows that R also contains $P \star Q$. On the other hand, if R' is a geometrical subspace containing P and Q, then by Theorem II.18 it contains all affine combinations of points in $P \cup Q$, and hence R' must contain R. Combining these observations, we conclude that R must be equal to $P \star Q$.

SECOND STATEMENT. By the previous theorem we know that $\mathbf{J}(P \cup Q) \subset P \star Q$, so it suffices to show that we also have the converse inclusion $P \star Q \subset \mathbf{J}(P \cup Q)$.

Let $\mathbf{x} \in P \star Q$, and let $\{\mathbf{d}_0, \dots, \mathbf{d}_p\}$ and $\{\mathbf{c}_0, \dots, \mathbf{c}_q\}$ be affine bases for P and Q respectively. Then by the conclusion of the first part of the theorem we may write

$$\mathbf{x} = \sum_{i=0}^{p} r_i \mathbf{d}_i + \sum_{j=0}^{p} s_j \mathbf{c}_j$$

where $\sum_i r_i + \sum_j s_j = 1$. Let $t = \sum_i r_i$, so that $\sum_j s_j = 1 - t$. There are now two cases, depending upon whether either or neither of the numbers t and 1 - t is equal to zero. If t = 0 or 1 - t = 0 (hence t = 1), then we have $\mathbf{x} \in P \cup Q$. Suppose now that both t and 1 - t are nonzero. If we set

$$\alpha = \sum_{i=0}^{p} \frac{r_i}{t} \cdot \mathbf{d}_i \qquad \beta = \sum_{j=0}^{q} \frac{s_j}{(1-t)} \cdot \mathbf{c}_j$$

then $\alpha \in P$, $\beta \in Q$, and $\mathbf{x} = t \alpha + (1-t)\beta$; therefore it follows that $\mathbf{x} \in \mathbf{J}(P \cup Q)$.