
APPENDIX B

THE JOIN IN AFFINE GEOMETRY

In Section II.5 we defined a notion of join for geometrical incidence spaces; specifically, if P and
Q are geometrical subspaces of an incidence space S, then the join P ? Q is the unique smallest
geometrical subspace which contains them both. From an intuitive viewpoint, the name “join”
is meant to suggest that P ? Q consists of all points on lines of the form xy, where x ∈ P and
y ∈ Q. If S is a projective n-space over some appropriate scalars F, this is shown in Exercise
16 for Section III.4, and the purpose of this Appendix is to prove a similar result for an affine
n-space over some F.

Formally, we begin with a generalization of the idea described above.

Definition. Let (S,Π, d) be an abstract geometrical incidence n-space, and let X ⊂ S. Define
J(X) to be the set

X ∪ { y ∈ S | y ∈ uv for some u, v ∈ X } .

Thus J(X) is X together with all points on lines joining two points of X. Note that the con-
struction of J(X) from X can be iterated to yield a chain of subsets X ⊂ J(X) ⊂ J

(

J(X)
)

· · · .

The preceding discussion and definition lead naturally to the following:

Question. If S is a geometrical incidence n-space and P and Q are geometrical subspaces of

S, what is the relationship between P ? Q and J(P ∪Q)? In particular, are they equal, at least

if S satisfies some standard additional conditions?

The exercise from Section III.4 shows that the two sets are equal if S is a standard projective
n-space. In general, the next result implies that the two subsets need not be equal. but one is
always contained in the other.

Theorem B.1. In the setting above, we have J(P ∪Q) ⊂ P ?Q. However, for each n ≥ 2 there
is an example of a regular geometrical incidence spaces such that, for some choices of P and Q,
the set J(P ∪ Q) is strictly contained in P ? Q.

Proof. The inclusion relationship follows from G(-2) and the fact that P ? Q is a geometrical
subspace of S. On the other hand, if we take the affine incidence space structure associated to
Z

n
2

for n ≥ 2, then for every subset X ⊂ Z
n we automatically have J(X) = X because every line

consists of exactly two points. Thus if W and U are vector subspaces of Z
n
2

such that neither
contains the other, then J(W ∪ U) is not a vector subspace. Since 0 ∈ W ∩ U , we know that
W ?U is the vector subspace W +U by Theorem II.36, and it follows in this case that J(W ∪U)
is strictly contained in W ? U .�

Note that the examples constructed in the proof are in fact affine incidence spaces. The main
objective of this appendix is to prove that J(P ∪Q) = P ?Q if V is a vector space of dimension
≥ 2 over a field F which is not (isomorphic to) Z2.
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Theorem B.2. Let V be a vector space of dimension ≥ 2 over a field F which is not (isomorphic
to) Z2, and suppose that P = a + U and Q = b + W are geometrical subspaces of V . Then the
following hold:

(i) The join P ? Q is the affine span of P ∪ Q.

(ii) P ? Q = J(P ∪ Q).

Proof. FIRST STATEMENT. If R is the affine span of P and Q, then R is am affine subspace
containing P and Q by Theorem II.19, Theorem II.16 and Exercise 1 for Section II.2 (this is
where we use the assumption that F is not isomorphic to Z2). Therefore it follows that R also
contains P ?Q. On the other hand, if R′ is a geometrical subspace containing P and Q, then by
Theorem II.18 it contains all affine combinations of points in P ∪Q, and hence R ′ must contain
R. Combining these observations, we conclude that R must be equal to P ? Q.

SECOND STATEMENT. By the previous theorem we know that J(P ∪Q) ⊂ P ?Q, so it suffices
to show that we also have the converse inclusion P ? Q ⊂ J(P ∪ Q).

Let x ∈ P ?Q, and let {d0, · · · ,dp} and {c0, · · · , cq} be affine bases for P and Q respectively.
Then by the conclusion of the first part of the theorem we may write

x =

p
∑

i=0

ridi +

p
∑

j=0

sjcj

where
∑

i ri +
∑

j sj = 1. Let t =
∑

i ri, so that
∑

j sj = 1− t. There are now two cases,
depending upon whether either or neither of the numbers t and 1 − t is equal to zero. If t = 0
or 1 − t = 0 (hence t = 1), then we have x ∈ P ∪ Q. Suppose now that both t and 1 − t are
nonzero. If we set

α =

p
∑

i=0

ri

t
· di β =

q
∑

j=0

sj

(1 − t)
· cj

then α ∈ P , β ∈ Q, and x = t α + (1 − t)β; therefore it follows that x ∈ J(P ∪ Q).�


