
APPENDIX C

REVERSAL OF MULTIPLICATION IN SKEW-FIELDS

If (S,Π, d) is a geometrical incidence n-space, then the methods and results of Section IV.4
show that there is a dual geometrical incidence n-space (S,Π, d) is a geometrical incidence
whose points are the hyperplanes of S, and such that there is a canonical 1–1 correspondence
between the k-planes of S∗ and the (n − k − 1)-planes of S for all k such that −1 ≤ k ≤ n. If
F is a (commutative) field and S = FPn, then the material on analytic projective geometry in
Sections V.1 and VI.1 these notes shows that S∗ is also isomorphic to S = FPn.

Isomorphisms between the projective n-space FPn and its dual are called polarities, and they
play important roles in projective geometry; one class of examples is discussed in Chapter VII
of these notes. By the preceding discussion, we know that polarities exist if F is commutative,
and it is natrual to ask if this generalizes:

Let S = FPn be a projective n-space, where n ≥ 2 and F is a skew-field which is

not necessarily commutative. Is there an incidence space ieomorphism from S to

its dual projective n space S∗?

The purpose of this Appendix is to discuss this problem and the related algebraic questions.
Unfortunately, the discussion ultimately involves algebraic input that goes far beyond the un-
dergraduate level, so we shall merely sketch the main ideas and give references for additional
information on the underlying algebra.

We begin by summarizing a point that is mentioned in Example 2 from Section IV.4 and is
discussed further in Sections V.1 and VI.1. If F is a skew-field and n ≥ 2 is an integer, then
the dual projective n-space (FPn)∗ associated to FPn is isomorphic to (FOP)Pn, where FOP is
the skew-field obtained from F by reversing the order of multiplication in F. Of course, if F

is commutative, then the multiplications in F and FOP are identical, and therefore it follows
that S∗ is isomorphic to S in such cases. In order to handle the general situation, we must
describe the relationship between the two skew-fields F and FOP in the noncommutative case
and derive its implications for the relationship between FPn and the isomorphic dual objects
(FOP)Pn ∼= (FPn)∗.

In Appendix A we described a skew-field K called the quaterions which is not commutative, and
thus it is natural to ask whether KPn and (KOP)Pn ∼= (KPn)∗ are isomorphic. By the general
classification results, this will happen if and only if there is an algebraic isomorphism between
K and KOP; note that since K is not commutative this map cannot be the identity.

In fact, there is an operation on K called quaternionic conjugation which is defined by

(a1 + a2i + a3j + a4k)∗ = a1 − a2i − a3j − a4k

(see Birkhoff and MacLane, pp. 222–225, especially Exercise 5, p. 224) which has the following
properties:

(

x∗
)

∗

= x (x + y)∗ = x∗ + y∗ (x · y)∗ = y∗
· x∗

Note that conjugation, like matrix transposition, reverses the order of multiplication. This
conjugation map is 1–1 and onto by the first identity in the display, and the other two identities
imply it defines an isomorphism from K to KOP.
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More generally, by Theorem V.10 we have the following:

Theorem C.1. Let F be a skew-field and let S = FPn, where n ≥ 2. Then S is isomorphic to
its projective dual space S∗ if and only if F is isomorphic to FOP.

Therefore the existence of projective incidence n-spaces that are not isomorphic to their projec-

tive duals will follow if there are skew-fields F such that F is not isomorphic to FOP.

Although there are many examples of skew-fields F for which F and FOP are not isomorphic,
describing them is quite nontrivial. The simplest example of this type is given on pages 31–
38 of the book by Blanchard listed below; in fact, the exercises on pages 37–38 yield a direct
proof that F and FOP are not isomorphic in this case. However, we shall also outline a more
comprehensive approach which yields this fact for Blanchard’s example and allows one to find
systematic infinite families of such skew-fields.

Given a skew-field L, its center consists of all a ∈ L such that a · x = x · a for all x ∈ L.
This center is always nontrivial, and in particular it contains the smallest subfield containing
the unit element (which is isomorphic to either the rational numbers Q or one of the finite fields
Zp). Furthermore, it is immediate that the center is a commutative subfield that we shall call
F, and it also follows that L is a vector space over F. For example, if L is the quaternions, then
F is the real numbers. Conversely, given a field F we can consider all skew-fields L with center
F such that L is a finite-dimensional vector space over F. Since each such L is isomorphic to a
subring of a finite-dimensional matrix algebra over F (see Birkhoff and MacLane, pp. 226–227),
the isomorphism classes of such objects form a set. A basic construction in algebra makes this
set into an abelian group called the Brauer group of F and written Br(F). The details of the
definition appear in the books by Adamson, Herstein, and Jacobson, and also in the papers by
Serre (all of which are listed below), and the book by Gille and Szamuely covers the subject
thoroughly (but at an extremely high level). The following online references might also be
helpful:1

http://en.wikipedia.org/wiki/Division ring

http://en.wikipedia.org/wiki/Field theory (mathematics)

http://en.wikipedia.org/wiki/Quaternion

http://en.wikipedia.org/wiki/Brauer group

(Note that there are two underscore characters separating words in these links.)

The construction of Br(F) has the following immediate consequence:

Theorem C.2. Suppose that the commutative field F admits no automorphisms other than the
identity (for example, this holds if F is the rational numbers Q or the real numbers R). Let
L be a skew-field L which is finite-dimensional over its center F, and assume further that L is
isomorphic to Lop. Then L determines an element of order 2 in the Brauer group Br(F).�

1In any citation of Wikipedia articles, it is important to recognize concerns about the accuracy of articles that

are submitted by volunteers and subject to editing by a vast number of individuals whose views or understanding

may be controversial or unreliable. This issue has been noted explicitly by Wikipedia in its article on itself, where

the issue is discussed in some detail. However, for our purposes such questions do not cause problems because I

have seen the articles cited below and found them to be accurate.
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Thus the proof that L is not isomorphic to LOP for Blanchard’s example reduces to showing the
following:

(i) The center of L is the rational numbers Q.

(ii) The order of L in the Brauer group is greater than 2.

The first assertion is verified in Blanchard’s book, and the second one follows from two easily
stated facts:

(iii) By construction, the dimension of L over Q is equal to 9.

(iv) By the results on pages 93–95 of Artin, Nesbitt and Thrall, the order m of L in Br(F)
satisfies m2 = dimQ L, so that m = 3. In particular, L determines an element of odd
order in the Brauer group of Q and hence cannot be isomorphic to LOP.

In fact, very powerful methods exist for calculating Brauer groups, and these objects turn out
to be fundamentally important to an algebraic subject called class field theory . Numerous
references are given below. One consequence is that elements of order p exist in Br(Q) for every
prime p (compare Adamson, pp. 220–221).
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