
APPENDIX D

AUTOMORPHISMS OF THE COMPLEX NUMBERS

This appendix discusses an issue that arose in Section VI.??. It is written at a level somewhat
higher than the notes, but not as high as the level of material in Appendix B. The necessary
background can be found in the graduate algebra text by T. Hungerford and the introductory
graduate level topology text by J. Munkres that are listed in the bibliography.

The Fundamental Theorem of Projective Geometry in Chapter VI (Theorem VI.??) implies that
for each positive integer n there is a group homomorphism from the group Coll(FPn) of geometric
symmetries, or collineations, of FPn to the automorphism group of F, and this mapping is onto.
For some fields such as the rational numbers Q and the real numbers R, the only automorphism is
the identity. On the other hand, in the notes we pointed out that the field C of complex numbers
also has a second automorphism given by complex conjugation. This leads immediately to the
following:

Quesion. Are there any automorphisms of C other than the identity and complex conjutation?

In fact, there are two reasonable ways of answering this question. If we restrict our attention
to automorphisms that are continuous as mappings of C ∼= R2 to itself, then the identity and
complex conjugation are the only possibilities. On the other hand, if we consider arbitrary
automorphisms of C with no continuity requirement, then the automorphism group of C is
huge. One illustration of this is the formula for its cardinality given below.

Continuous automorphisms of C

We shall first prove that there are only two continuous automorphisms.

Theorem D.1. Let ϕ : C → C be an automorphism of the complex numbers that is also

continuous as a function of two variables. Then ϕ is either equal to the identity or to complex

conjugation.

Proof. Every automorphism sends 0 and 1 to themselves, and from this it follows that every
automorphism sends the rational numbers Q ⊂ C to itself by the identity. Furthermore, if a ∈ Q

is nonzero and b ∈ C satisfies b2 = a, then we also have ϕ(b)2 = a, and since ± b are the only
two numbers such that b2 = a we must have ϕ(b) = ± b.

Let Q[i] be the set of all complex numbers of the form a+ bi, where i2 = −1 and a, b ∈ Q. Since
± i are the only two complex numbers whose squares are equal to −1, it follows that ϕ(i) = ± i.
Therefore ϕ agrees with either the identity or conjugation on Q[i].
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Just as the rationals are dense in R, so also the set Q[i] is dense in C.1 Since two continuous
functions from C to itself are equal if they agree on a dense subset,2 it follows that ϕ is equal to
the identity or complex conjugation, depending upon whether ϕ(i) = i or ϕ[i] = −i.�

Arbitrary automorphisms of C

This discussion will rely heavily on the existence of transcendence bases for the C with respect
to its subfield Q; more generally, this notion is defined for any pair of fields F and E such that
F is a subfield of E (equivalently, E is an extension field of F), at least if we have a field of
characteristic zero which contains an isomorphic copy of Q. Formal definitions and the basic
properties of such subsets are contained in Section VI.1 of Hungerford’s book. A brief summary
of some important points is given in the Wikipedia reference:3

http://en.wikipedia.org/wiki/Transcendence degree

For our purposes the main thing to know is that if E is an extension field of F, then different
transcendence bases for E with respect to F have the same cardinality, and in fact one has the
following basic result:

Theorem D.2. Let E and F be as above, assume that E is algebraically closed, let B and B ′

be transcendence bases for E with respect to F, and let h : B → B ′ be a 1 − 1 correspondence.

Then there is an automorphism ϕ of E such that ϕ maps itself to the identity and ϕ(b) = h(b)
for all b ∈ B.�

EXAMPLE. In particular, if B is nonempty, then one can take B ′ to be the set of all negatives of
elements in B and define h(b) = −b. Similarly, if we split B into two nonempty disjoint subsets
B0 ∪ B1, take B′

1
to be the set of all negatives of elements in B1, write B′ = B0 ∪ B′

1
, and

take h : B → B ′ to be the identity on B0 and multiplication by (−1) on B1, then we obtain an
automorphism that is different from the preceding one. In particular, if the cardinality of B is
β, this yields a family of 2β automorphisms of E.

In order to apply the preceding theorem to the complex numbers, we need the following addi-
tional facts.

Theorem D.3. Let E and F be as above, let B be a transcendence base for E over F, let L ⊂ E be

the smallest subfield containing F and B, and suppose that F is a countably infinite set. Denote

the cardinality of B by β. Then the cardinality of L is also equal to β.�

Theorem D.4. Let L be a field of infinite cardinality λ, and let E be the algebraic closure of

L. Then the cardinality of E is also equal to λ.�

The applications to the complex numbers are now immediate.

1See Munkres, Exercise 10, p. 194.
2Munkres, Exercise 5, p. 199, plus (i) the definition of dense subset on p. 191, (ii) the proof that metric spaces

are Hausdorff on p. 129.
3Previous comments about Wikipedia also apply here.
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Theorem D.5. If B is a transcendence base for the complex numbers with respect to the ratio-

nals, then the cardinality of B is equal to c = 2ℵ0 .

Proof. Let L again be the smallest subfield containing both the rationals and B. By definition
of transcendence bases, it follows that every element of C is algebraic over L. Since C is
algebraically closed, it contains an isomorphic copy of the algebraic closure K of L. We claim
that K = C; this is true because the elements of C are all algebraic over L.

Applying the previous results, we see that the cardinalities of C and L must be the same, so the
latter has cardinality c. By another of the theorems stated above, this in turn implies that the
cardinality of the transcendence base B is also equal to c.�

The existence of infinitely many distinct automorphisms of the complex numbers (in fact, 2c of
them) follows immediately, and hence the identity and complex conjutation are far from being
the only ones. In fact, if Γ denotes the automorphism group of the complex numbers, we can
evaluate the cardinality of Γ precisely:

Theorem D.6. In the above setting, the cardinality of Γ is equal to 2c.

Proof. The cardinality γ of Γ is certainly no greater than c
c, which is the cardinality of the

set of (purely set-theoretic) functions from C to itself. On the other hand, we also have

2c
≤ c

c =
(

2ℵ0

)

c

= 2ℵ0·c = 2c

(since c ≤ ℵ0 · c ≤ c · c = c) so that

c
c = 2c

and hence γ ≤ 2c. We had already established the reverse inequality earlier, and thus it follows
that the equation in the theorem is correct.�

FURTHER RESULTS. We should also mention one additional consequence of the preceding ideas
which is mentioned in the Wikipedia article. Namely, there exist field homomorphisms from C

to itself whose images are proper subfields of C; in other words, C is algebraic to proper subfields
of itself.�


