
CHAPTER III

CONSTRUCTION OF PROJECTIVE SPACE

In this chapter we describe the classical process of adding points at infinity to an affine plane or a

3-dimensional affine space. The objects obtained in this manner are called projective planes or pro-

jective spaces, and predictably they are some of the main objects studied studied in projective geometry.

1. Ideal points and lines

Extending the space ... [is a] fruitful method for extracting understandable results from

the bewildering chaos of special cases. — J. Dieudonné (1906–1992)1

In calculus — particularly in the study of limits — it is frequently convenient to add one or two
numbers at infinity to the real number system.2 Among the reasons for this are the following:

(i) It allows one to formulate otherwise complicated notions more understandable (for
example, infinite limits).

(ii) It emphasizes the similarities between the infinite limit concept and the ordinary limit
concept.

(iii) It allows one to perform formal manipulations with limits much more easily.

For example, suppose we add a single point at infinity (called ∞ as usual) to the real numbers. If
f is a real-valued rational function of the form f(t) = p(t)/q(t), where p and q are polynomials
with no common factors and q is not identically zero, then strictly speaking f is not definable at
the roots of q. However, an inspection of the graph of f suggests defining its value at these points
to be ∞, and if this is done the function is also continuous at the roots of q (in an appropriate
sense). Proceeding further along these lines, one can even define f(∞) in such a way that f is
continuous at ∞; the limit value may be a finite number or ∞, depending upon whether or not
the degree of p is less than or equal to the degree of q (in which case the limit value is finite;
see Exercise 6 for more on this) or the degree of p is greater than the degree of q (in which case
the limit value is infinite).

1
Jean Dieudonné is known for his work in algebra, his participation in major projects which provided

systematic accounts of the foundations for several branches of mathematics, and his later writings on the history
of mathematics, mainly covering the past two centuries.

2Of course, if this is done then one must also recognize that the numbers at infinity do not necessarily have
all the useful properties of ordinary real numbers. The existence of such difficulties has been recognized since
ancient times, and in particular some of these issues are implicit in the celebrated paradoxes which are attributed
to Zeno of Elea (c. 490 B.C.E. – c. 425 B.C.E.).
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46 III. CONSTRUCTION OF PROJECTIVE SPACE

The discussion above illustrates the ideas presented in the following quotation from previously
cited the book by R. Winger.3

Such exceptions are not uncommon in mathematics but they can frequently be avoided
by aid of appropriate expedients. Often it suffices to modify definitions or merely adopt
contentions of language. But sometimes new postulates or assumptions are required.
This in algebra we might say that the quadratic equation x2 −2ax+a2 = 0 has only one
root a. For the sake of uniformity however it is customary to say that the equation has
two equal roots. Here a change of language is all that is needed. On the other hand if
the equation x2 + x + 1 = 0 is to have any root it is necessary to extend the domain of
numbers to include the imaginary numbers. With these conventions — that a repeated
root counts for two and that imaginary roots are to be accepted equally with real — we
can say every quadratic equation has two roots.

Again we might say that a circle cuts a line of its plane in two points, one point

or no point. But with the proper modifications we can make the geometry conform

to the algebra. Thus a tangent is considered as meeting the curve in “two coincident

points.” But in order that the statement shall be true universally it is necessary to

introduce a new class of points, the “imaginaries.” Imaginary points correspond to the

imaginary numbers of algebra [i.e., their coordinates are given by complex numbers]. If

in solving the equations of line and circle the roots turn out to be imaginary, the points

of intersection are said to be imaginary. “No point” is now replaced by “two imaginary

points” when without exception sl a line cuts a circle in two points — real and distinct,

coincident or imaginary. The new statement not only serves every purpose of the old

but is really more descriptive of the true relation of line and circle.

The preceding quotation illustrates that “imaginary numbers” in algebra have geometric analogs
which can be viewed as “imaginary points.” Similarly, the previously discussed algebraic and
analytic notions of “numbers at infinity” have geometric analogs which can be viewed as
“points at infinity,” and these play a fundamental role in projective geometry.

One intuitive motivation for considering such points at infinity arose in connection with the
mathematical theory of perspective drawing which was developed in the 15th and 16th centuries.
In modern and informal terms, the goal of this theory is to describe the photographic images of
physical objects on a planar surface such as a projection screen, and artist’s canvas, or a sheet
of paper. Everyday experience with viewing photographs shows that some properties of objects
are faithfully reflected by a photographic image while others are not. For example, distances
often change drastically and two physical objects with the same measurements usually project
to images with quite different measurements. On the other hand, the photographic images of a
physical line will be contained in a line on the image plane.

We shall be particularly interested in a curious phenomenon involving parallel lines.4 If one
sees enough examples, it becomes apparent that the images of parallel lines are not necessarily
parallel, and if the images are not parallel then the images of all lines parallel to the two given
lines appear to meet at some point on the horizon; furthermore, all these horizon points lie
appear to lie on a single line which defines the horizon (see Figure III.15 below). It is possible to

3Winger, Introduction to Projective Geometry , pp. 31–32.
4This was known in ancient times and is mentioned in the work of Marcus Vitruvius Pollio (c. 80 B. C. E.

– 25 B. C. E.) titled De Architectura.
5Source: http://www.math.nus.edu.sg/aslaksen/projects/perspective/alberti.htm
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give a mathematical explanation for these empirical observations, but we shall not do so here.
A more detailed discussion appears in Section IV.2 of the online reference

http://math.ucr.edu/∼res/math133/geometrynotes4a.pdf

that was cited in the Preface.

 

Figure III.1

Such pictures lead to speculation whether we should think of lines as having points at infinity ,
such that every line has exactly one such point, two parallel lines have the same point at infinity,
and the points at infinity for lines on a given plane all lie on a line at infinity . These ideas emerged
near the beginning of the 17th century, and in particular they were developed and extended in
the writings of G. Desargues6 (1591–1661) and J. Kepler7 (1571–1630).

The main purpose of this section is to provide a mathematical setting for Desargues’ and Kepler’s
intuitive ideas. In particular, the following continuation of the previous quotation contains the
main motivation for the construction of projective space (and much of projective geometry):

To say that two parallel lines do not meet is like saying that certain lines have no point

of intersection with a circle. There we found that the exception could be removed by

introducing imaginary intersections. In an exactly analogous fashion we may introduce

a second new class of points into geometry, points at infinity , which will serve for the

“intersections of parallel lines.”

The formal process for adding points at infinity to the Euclidean plane is best described as
follows:

Definition. Let (P,L) be an affine plane, and let L be a line in P . The L-direction in P (or
the direction of P ) consists of L and all lines parallel to L.

Note. We are using the notation for incidence plane described in Section II.1 rather than
the more general notation in Section II.5. The translation is straightforward: If (P,L) is one
description and (P,Π, d) is the other, then d(P ) = 2, Π = L ∪ {P} and d = 1 on L.

6
Girard Desargues is mainly known for transforming the theory of geometrical perspective into the subject

now called projective geometry, and he also did work on conic sections and other geometrical problems motivated
by practical considerations.

7
Johannes Kepler is best known for discovering the basic laws of planetary motion, but he also made some

important contributions to mathematics.
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Theorem III.1. Two directions in P are either disjoint or identical.

Proof. Consider the binary relation ∼ on lines defined by L ∼ M if and only if L = M or
L||M . By Theorem II.7 this is an equivalence relation. The L-direction is merely the equivalence
class of L with respect to this relation and will be denoted by [L].�

Definition. If P is an affine plane, the projective extension pf P , denoted by P ∧∧∧, consists of
P together with all directions in P . An element of P∧∧∧ is an ordinary point if it is a point in P
and an ideal point or point at infinity if it is a direction in P . It follows that a point in is either
ordinary or ideal but not both.8

If L is a line in P , then its projective extension to P∧∧∧ consists of all points of L together with
the direction [L], and it is denoted by L∧∧∧. The ideal line in P∧∧∧ consists of all ideal points in P∧∧∧

and is denoted by L∞ (the line of points at infinity or the line at infinity).

EXAMPLES INVOLVING USES OF POINTS AT INFINITY. The most immediate reason for
introducing points at infinity is that they can be used to simplify some of the statements which
appeared in earlier chapters. For example, the statement

The lines L, M and N are either concurrent (pass through a single point) or are
parallel in pairs.

in the conclusion of Theorem II.25 translates to

The projective extensions of the lines L, M and N contain a common point (i.e.,
the extended lines L∧∧∧, M∧∧∧ and N∧∧∧ are concurrent).

Furthermore, the statement

There is a point C which lies on line AB or else there are two lines L, and M
such that L||AB and M ||AB,

which is the conclusions of Theorem II.28 and II.29, translates to

There are three lines AB, L and M such that either (i) L and M meet at a point
C ∈ AB, or else the lines L and M are both parallel to and their common point
at infinity lies on the projective extension of AB (i.e., if the projective extensions
of L and M meet at the point C, then C lies on the projective extension of the
line AB).

Since the hypotheses of Theorems II.27–29 are very similar (the only difference being parallelism
assumptions about these lines) the second translated statement illustrates a corresponding sim-
ilarity in the conclusions that one might suspect (or at least hope for). In fact, the conclusion of
Theorem II.27 (that one has three pairs of parallel lines) fits into the same general pattern, for
in this case the conclusion reduces to the collinearity of the directions A∧∧∧, B∧∧∧ and C∧∧∧, where
these directions contain the pairs {L, L′ }, {M, M ′ }, and {N, N ′ } respectively.

8A rigorous proof of this fact requires some technical propositions from set theory. The details of this
justification are not important for the rest of these notes, but for the sake of completeness here is the proof:
Suppose that x = [L] for suitable x and L. Then there is a line M such that x ∈ M and L is parallel to M

or equal to M . This would imply that x ∈ M and [M ] = [L] = x, so we would have objects a and b such that
a ∈ b and b ∈ a; the standard mathematical foundations for set theory contain an assumption (the Axiom of
Foundation/Regularity) which implies that such situations never arise. For further information, see Proposition
4.2 in the following online notes: http://math.ucr.edu/∼res/math144/setsnotes3.pdf
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One conceivable objection to ideal points or points at infinity is the impossibility of visualizing
such entities. The mathematical answer to such objection is contained in the following quotation
from an article by O. Veblen (1880–1960):9

Ordinary points are just as much idealized as are the points at infinity. No one has ever

seen an actual point [with no physical width, length or thickness] or realized it by an

experiment of any sort. Like the point at infinity it is an ideal creation which is useful

for some of the purposes of science.

Here is a slightly different response:10

[With the introduction of points at infinity,] The propositions of projective geometry
acquire a simplicity and a generality that they could not otherwise have. Moreover,
the elements at infinity give to projective geometry a degree of unification that greatly
facilitates the thinking in this domain and offers a suggestive imagery that is very helpful
... On the other hand, projective geometry stands ready to abandon these ... whenever
that seems desirable, and to express the corresponding propositions in terms of direction
of a line ... to the great benefit of ... geometry. ...

The extra point which projective geometry claims to add to the Euclidean [or affine] line

is [merely] the way in which projective geometry accounts for the property of a straight

line which Euclidean [or affine] geometry recognizes as the “direction” of the line. The

difference between the Euclidean [or affine] line and the projective line is purely verbal.

The geometric content is the same. ... Such a change in nomenclature does not constitute

an [actual] increase in the geometric content.

To summarize the preceding quotations, sometimes it is convenient to work in a setting where
one has points at infinity, and in other cases it is more convenient to work in a setting which does
not include such objects. This is very closely reflects the standard usage for numbers at infinity.
They are introduced when they are useful — with proper attention paid to the differences
between them and ordinary numbers — and not introduced when it is more convenient to work
without them.

EXERCISES

In the exercises below, assume that P is an affine plane and that x∧∧∧ (where x = P
or a line in P ) is defined as in the notes.

1. Prove that every pair of lines in P∧∧∧ (as defined above) has a common point in P∧∧∧. [Hint:
There are three cases, depending upon whether one has extensions of two ordinary lines that have
a common point in P , extensions of two ordinary lines that are parallel in P , or the extension
of one line together with the line at infinity.]

2. Suppose that L1, L2, L3, M1, M2, M3 are six distinct lines in an affine plane P . Write out
explicitly what it means (in affine terms) for the three points determined by L∧∧∧

i ∩ M∧∧∧

i (where
i = 1, 2, 3) to be collinear in P∧∧∧. Assume that the three intersection points are distinct.

9Encyclopædia Britannica, 14th Edition (1956),Vol. 18, p.173 (article on Projective Geometry). Oswald

Veblen made several important contributions to geometry and topology.
10N. Altshiller Court (1881–1968), Mathematics in Fun and in Earnest , pp. 110, 112
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3. Suppose that x1, x2, x3, y1, y2, y3 are six distinct points in an affine plane P . Write out
explicitly what it means (in affine terms) for the three extended lines (xiyi)

∧∧∧ (where i = 1, 2, 3)
to be concurrent in P∧∧∧. Assume that the three ordinary lines xiyi are distinct.

4. Prove that every line in P∧∧∧ contains at least three points. There are two cases, depending
upon whether the line is the extension of an ordinary line or the line at infinity, and the latter
requires more work than the former.

5. Suppose that we are given four distinct lines L1, L2, L3, L4 in P such that no three of the
projective extensions L∧∧∧

i contain a common point in P∧∧∧. Translate this into a statement about
L1, L2, L3, L4 which does not involve ideal points or projective extensions.

6. Suppose that f is real-valued rational function of the form f(t) = p(t)/q(t), where p and
q are nonzero polynomials, and write

p(t) = antn + · · · + a0 , q(t) = bmtm + · · · + b0

where an 6= 0, bm 6= 0, and the degrees m and n satsify m ≤ n. How should one define f(∞)?
There are two cases, depending on whether m < n or m = n.

7. In the setting of the previous exercise, explain why the value of f + g at ∞ is equal to
f(∞)+g(∞) if f and g are rational functions such that f(∞) and g(∞) are finite, and the value
is equal to ∞ if one of the values f(∞), g(∞) is finite and the other is infinite. Give examples
of f and g such that f(∞) = g(∞) = ∞ for which (a) the value of f + g at ∞ is equal to ∞,
(b) the value of f + g at ∞ is equal to 0, (c) the value of f + g at ∞ is equal to 1. — The
point of this exercise is that sometimes familiar statements generalize when one adds elements
at infinity, but in other instances such familiar statements definitely cannot be generalized.
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2. Homogeneous coordinates

If F is a field and F2 is the coordinate affine plane described in Chapter II, then the construction
in the previous section can of course be applied to F

2. The purpose of this section is to introduce
coordinates for the projective extension (F2)∧∧∧ that are consistent with the usual coordinates
for ordinary points. Since every point in F

2 is specified by two scalars (the first and second
coordinates), we shall not be able to describe a point entirely in terms of two coordinates.
Instead, it will be necessary to use three coordinates to specify a point in (F2)∧∧∧, with the
understanding that different triples of scalars may represent the same point. This can
be inconvenient sometimes, but it is an issue that already arises in elementary analytic geometry;
specifically, when we try to specify a point in the ordinary plane R

2 by polar coordinates, it is
always necessary to remember that (r, θ), (−r, θ + π) and (r, θ + 2π) represent the same point
in R

2 if r 6= 0 (and of course all pairs of the form (0, θ) represent the origin!).

To be more specific about the meaning of compatibility, we would like our coordinates for (F2)∧∧∧

to have the following properties:

(i) The ordinary coordinates for a point (x, y) ∈ F
2 should be easily retrievable from the

systems of coordinates we shall introduce on (F2)∧∧∧, and vice versa.

(ii) If we are given a line L in F
2 defined by an equation of the form ax + by + c = 0 where

a and b are not both zero, the coefficients a and b should be easily retrievable from the
coordinates of the associated point at infinity L∧∧∧, and vice versa.

Of course, in the second part the coefficients a, b , c are not uniquely defined, and any nonzero
multiple of these equations yields an equivalent equation for the line. This sort of ambiguity
up to multiplication by some common nonzero factor is the key idea behind the definition of
homogeneous coordinates for points in (F2)∧∧∧.

Suppose first that L is a line through 0 in F
2. Then points on this line have the form (tx1, tx2),

where x = (x1, x2) is a fixed nonzero vector. With some imagination, one might speculate about
trying to define the coordinates for the point at infinity on L by something like (∞x1, ∞x2) or
equivalently by ( x1

0
,

x2

0

)
.

Of course, we cannot näıvely do this in a logically sound manner (for example, if F = R then
1/0 = 2/0 = ∞ and 0/0 is indeterminate), but we can express the concept using an ordered
triple

(v1, v2, 0)

which is meant to suggest that we would divide the first two coordinates by zero if this made
sense. As already noted, if we use such notation then we must also be ready to agree that every
ordered triple of the form (tv1, tv2, 0), where t 6= 0, is also a valid description fot the original line
L. We can formalize this by saying that every such triple is a set of homogeneous coordinates
for the point at infinity L∧∧∧.

For the sake of uniformity, we would also like to describe coordinates for ordinary points as
ordered triples (y1, y2, y3) such that if t 6= 0 and (y1, y2, y3) is a valid set of coordinates for a
point, then so is (ty1, ty2, ty3). We do this by agreeing that if x ∈ F

2, then every ordered triple
of the form (tx1, tx2, t), where t 6= 0, is a set of homogeneous coordinates for x.
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The next result states that the preceding definitions of homogeneous coordinates for points
of (F2)∧∧∧ have the desired compatibility properties and that every ordered triple (y1, y2, y3) 6=
(0, 0, 0) is a valid set of coordinates for some point in (F2)∧∧∧.

Theorem III.2. Every nonzero element of F
3 is a set of homogeneous coordinates for some

point in (F2)∧∧∧. Two nonzero elements are homogeneous coordinates for the same point if and
only if each is a nonzero multiple of the other.

Proof. Let (y1, y2, y3) 6= (0, 0, 0) in F
3. If y3 6= 0 then (y1, y2, y3) is a set of homogeneous

coordinates for the ordinary point (
y1

y3

,
y2

y3

)
.

On the other hand, if y3 = 0 then either y1 6= 0 or y2 6= 0 and the point has the form (y1, y2, 0);
the latter is a set of homogeneous coordinates for the point at infinity on the line joining the
two distinct ordinary points 0 and (y1, y2); these points are distinct because at least one of the
yi is nonzero.

By definition, if t 6= 0 then (y1, y2, y3) and (ty1, ty2, ty3) are sets of homogeneous coordinates
for the same point, so it is only necessary to prove the converse statement. Therefore suppose
that (x1, x2, x3) and (y1, y2, y3) are homogeneous coordinates which represent the same point.
There are two cases, depending upon whether or not this point is an ordinary point or an ideal
point.

Suppose the point under consideration is the ordinary point (z1, z2) ∈ F
2. Then there exist

nonzero constants a and b such that

(x1, x2, x3) = (az1, az2, a) (y1, y2, y3) = (bz1, bz2, b) .

It follows immediately that (y1, y2, y3) = ba−1 (x1, x2, x3).

Suppose now that the point under consideration is an ideal point, and choose v ∈ F
2 so that

v 6= 0 and the ideal point is contained in the line 0v (the existence of such a line is guaranteed
by the Euclidean Parallelism Property, which holds in F

2). Let v = (v1, v2), so that the ideal
point has homogeneous coordinates (v1, v2, 0). In this case there exist nonzero constants a and
b such that

(x1, x2, x3) = (av1, av2, 0) (y1, y2, y3) = (bv1, bv2, 0) .

It follows immediately that y3 = x3 = 0 and hence the vectors x = (x1, x2) and y = (y1, y2)
satisfy x = av and y = bv; the latter implies that y = ba−1x and hence again in this case we
conclude that (x1, x2, x3) and (y1, y2, y3) are nonzero multiples of each other.�

Theorem III.3. There is a 1 − 1 correspondence between the points of the projective extension
(F2)∧∧∧ and the 1-dimensional vector subspaces of F

3 such that a point x in the former corresponds
to a 1-dimensional subspace V if and only if the set of all possible homogeneous coordinates for
x is the set of nonzero vectors in V .

Proof. Given x ∈ (F2)∧∧∧, let V (x) denote the vector space spanned by all the homogeneous
coordinates for x. By the preceding result, we know that V (x) is a 1-dimensional vector subspace
because it contains a nonzero vector and every pair of nonzero vectors in V (x) are nonzero scalar
multiples of each other. Theorem 2 also implies that the correspondence sending x to V (x) is
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onto (every 1-dimensional vector space is spanned by some nonzero vector). Thus it remains to
show that the correspondence is 1–1.

Suppose that x and y are such that V (x) = V (y). There are three possible cases, depending
upon whether both points are ordinary points, both points are ideal points, or one point is
ordinary and the other is ideal.

CASE 1. Suppose both points are ordinary. Let v = (v1, v2) where v = x or y. If V (x) = V (y),
then we know that (x1, x2, 1) and (y1, y2, 1) span the same 1-dimensional subspace and hence
are nonzero multiples of each other. However, if c is a nonzero scalar such that (x1, x2, 1) =
c (y1, y2, 1), then it follows immediately that c = 1, which implies that x = y.

CASE 2. Suppose both points are ideal. Suppose that the points in question are the ideal
points on the lines joining the origin in F

2 to the nonzero points u = (u1, u2) and v = (v1, v2).
It then follows that the vectors (u1, u2, 0) and (v1, v2, 0) span the same 1-dimensional subspace
and hence are nonzero multiples of each other. But this implies that u and v are also nonzero
multiples of each other, which in turn means that the lines joining 0 to u and v are equal and
hence have the same ideal point. Therefore the map taking x to V (x) is 1–1 on the set of ideal
points.

CASE 3. Suppose one point is ordinary and the other is ideal. If the ordinary point has
homogeneous coordinates given by (x1, x2, 1) and the ideal point has homogeneous coordinates
given by (y1, y2, 0), then once again these two vectors must be nonzero multiples of each other.
Since the third coordinate of the first vector is equal to 1, this is impossible, and thus we see that
ordinary points and ideal points cannot determine the same 1-dimensional subspace of F

3.�

EXERCISES

1. Suppose that the line L in F
2 is defined by the equation

ax + by = c

where not both of a and b are zero. Show that homogeneous coordinates for the point L∧∧∧ are
given by (−b, a, 0). [Hint: What is the equation of the line through (0, 0) which is parallel to
L?]

2. Suppose that F = R (the real numbers), and x = (x1, x2) ∈ R
2 is nonzero. Let (y1, y2, y3)

be a set of homogeneous coordinates for x such that y2
1 + y2

2 = 1. Prove that |y3| is the
reciprocal of the distance from x to the origin. [Hint: Start by explaining why x2

1 + x2
2 > 0.]

Note. Exercise 2 reflects one reason why ideal points are also known as points
at infinity . Their last coordinates always vanish, so a formal candidate for their
difference to the origin would be the reciprocal of 0, which we often think of as
∞, at least informally.
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3. Equations of lines

In Theorem I.7 we noted that lines in F
2 are precisely the subsets defined by linear equations of

the form ax + by + c = 0, where a and b are not both zero. An analogous characterization
for lines in (F2)∧∧∧ will be given in this section.

Theorem III.4. Let L be a line in F
2 defined by the equation ax + by + c = 0 as above,

and let L∧∧∧ be the extension of L to a line in (F2)∧∧∧. Then L∧∧∧ consists of all points x which are
representable by homogeneous coordinates (u1, u2, u3) satisfying

a u1 + b u2 + c u3 = 0 .

Remark. If one set of homogeneous coordinates for a point x satisfies the equation above, then
so does every other set, for every other set has the form (ku1, ku2, ku3) for some k 6= 0 and
hence a u1 + b u2 + c u3 = 0 implies

a(ku1) + b(ku2) + c(ku3) = k(a u1 + b u2 + c u3) = k · 0 = 0 .

Proof. If (x, y) is an ordinary point if (F2)∧∧∧, then it belongs to L and has homogeneous
coordinates (x, y, 1). Therefore every ordinary point of L has homogeneous coordinates which
satisfy the homogeneous linear equation in three variables that is displayed in the theorem.
Furthermore, by Exercise 1 for the preceding section, the ideal point of (F2)∧∧∧ has homogeneous
coordinates given by (−b, a, 0), and hence the ideal point also has homogeneous coordinates
which satisfy the homogeneous linear equation a u1 + b u2 + c u3 = 0.�

Conversely, suppose that (x, y) is an ordinary point not on the line L. Then (x, y) has homo-
geneous coordinates (x, y, 1), and these coordinates do not satisfy the equation a u1 + b u2 +
c u3 = 0. By the remark preceding the proof, it follows that an ordinary point lies on L
(equivalently, (F2)∧∧∧) if and only if it has homogeneous coordinates which satisfy the equation
a u1 + b u2 + c u3 = 0.

Finally suppose z is an ideal point whose homogeneous coordinates satisfy a z1 +b z2 +c z3 = 0.
Since z is an ideal point, we also know that z3 = 0. Therefore we must have a z1 + b z2 = 0.
However, the solution space for this nontrivial equation is 1-dimensional by Theorem A.10, and
hence the nonzero vector (z1, z2) must be a nonzero multiple of (−b, a). Therefore Exercise 1
of the preceding section implies that z must be the ideal point of (F2)∧∧∧, and this completes the
proof of the theorem.�

There is a similar characterization of the line at infinity.

Theorem III.5. A point of (F2)∧∧∧ is an ideal point if and only if it has homogeneous coordinates
which satisfy the equation u3 = 0.

Proof. Suppose that we are given an ideal point. By construction it has homogeneous
coordinates which satisfy u3 = 0. Conversely, if we are given an ordinary point x, then as noted
before we know that x has homogeneous coordinates of the form (x1, x2, 1), and hence every
set of homogeneous coordinates (u1, u2, u3) must satisfy u3 6= 0. Thus the ideal points are
characterized by the vanishing of the third homogeneous coordinate.�
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The previous two theorems yield the desired characterization of lines in (F2)∧∧∧.

Theorem III.6. A set of points X in (F2)∧∧∧ is line if and only if there exist a, b, c ∈ F not
all zero such that y ∈ L if and only if y has homogeneous coordinates (y1, y2, y3) satisfying
a y1 + b y2 + c y3 = 0 .

Proof. By the preceding two results, every line in (F2)∧∧∧ is defined by a nontrivial linear
homogeneous equation of the type described. Conversely, suppose that (a, b, c) 6= (0, 0, 0). If
we have a = b = 0, then the linear homogeneous equation is equivalent to the equation y3 = 0,
which defines the line at infinity. On the other hand, if at least one of {a, b} is nonzero, then by
Theorem 4 we know that the equation defines the extension L∧∧∧ of the line L in F

2 with equation
ax + by + c = 0.�

EXERCISES

1. Find the equations of the lines joining points in (R2)∧∧∧ with the following homogeneous
coordinates:

(i) (1, 3, 0) and (0, 5,−1)

(ii) (2, 5,−3) and (3,−2, 0)

(iii) (2, 1, 0) and (−1, 1, 0)

(iv) (4,−6, 3) and (4,−6, 1)

2. Find the homogeneous coordinates of the intersection points of the following lines in (R2)∧∧∧:

(i) x1 + x3 = 0 and 2x1 + 3x2 + x3 = 0.

(ii) 2x1 + 3x2 − 4x3 = 0 and x1 − x2 + 3x3 = 0.

(iii) 2x1 + x2 = 0 and −x1 + x2 = 0.

(iv) 4x1 − 6x2 + 3x3 = 0 and 4x1 − 6x2 + x3 = 0.

3. For i = 1, 2, 3 let Li be the line in (R2)∧∧∧ defined by the equation aix1 + bix2 + cix3 = 0,
and assume these lines are distinct. Prove that the lines Li have a point in common if and only
if the matrix 


a1 b1 c1

a2 b2 c2

a3 b3 c3




is not invertible (equivalently, if and only if the determinant of the matrix is zero).
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4. Higher-dimensional generalizations

In Chapter II we generalized the geometrical properties of coordinate affine planes and 3-spaces
to arbitrary dimensions. The purpose of this section is to show that preceding construction
for adding ideal points to F

2 can be extended to the affine spaces associated to arbitrary n-
dimensional vector spaces over a given field F, where n is an arbitrary positive integer.

NOTATION. The projective extension (F2)∧∧∧ that was defined and studied in the preceding three
sections will be called the coordinate projective plane over F and will be denoted by the symbol
FP

2; this conforms to standard mathematical terminology.

The results of the preceding two sections imply the following two basic properties of FP
2:

(1) The points of FP
2 correspond to one-dimensional vector subspaces of F

3.

(2) The points of FP
2 correspond to two-dimensional vector subspaces of F

3, and a point
x lies on a line L if and only if the one-dimensional subspace V associated to x is
contained in the two-dimensional subspace W associated to L.

The first of these is just a restatement of Theorem 3. The second statement follows because
a subset of F

3 is a 2-dimensional vector subspace if and only if it is the set of solutions to a
nontrivial linear homogeneous equation in three variables; this is essentially a special case of the
characterization of (n−1)-dimensional vector subspaces of an n-dimensional vector space in the
exercises for Section A.4 (in Appendix A).

Motivated by this identification, if V is a finite-dimensional left or right11 vector space over a
skew-field F, we shall define the projective space with coefficients in a nonzero vector space
V as follows: Its points are the elements of the set S1(V ) of 1-dimensional vector subspaces of
V . Note that if W is a nonzero vector subspace of V , then S1(W ) is contained in S1(V ). The
geometric subspaces of S1(V ) are given by all subsets of the form S1(W ), where W is a vector
subspace of dimension ≥ 2 and the geometric dimension of S1(W ) is equal to dimW −1. — The
shift of dimensions is consistent with our previous construction of homogeneous coordinates for
FP

2; in particular, if dimV = n, then the dimension of S1(V ) is equal to n − 1.

If we adopt the conventions of Section II.5 for geometrical subspaces of dimension 0 and −1 (one
point subsets are zero-dimensional and the empty set is (−1)-dimensional, then the equation

d (S1(W ) ) = dimW − 1

also holds in these extended cases because dimX = 1 implies cS1(X) = {X } and also

cS1 ( {0} ) = ∅

(since the zero subspace has no 1-dimensional subspaces).

NOTATION. If x ∈ S1(V ), then symbols like x̃ will denote nonzero vectors in V which belong to
the 1-dimensional subspace x, and such a vector x̃ will be called a set of homogeneous coordinates
for x.

If V = F
n+1, then S1(V ) will be callled the standard (coordinate) projective n-space over F and

it is usually denoted by FP
n. As with affine spaces, the projective spaces whose geometrical

11The geometric significance of doing everything for both left and right vector spaces will be apparent in
Chapter V, but if one is only interested in cases where F is a field then the distinction is unnecessary.
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usefulness is most evident are the projective spaces over the real numbers R; these are the so-
called real projective spaces, and in some cases they are also simply called projective spaces of
n dimensions. The corresponding objects over the complex numbers C (the complex projective
spaces) are nearly as important; the Fundamental Theorem of Algebra suggests one reason for
this (however, there are also others). Other types of projective spaces are useful in various
contexts which are beyond the scope of these notes.

Theorem III.7. If V is an n-dimensional vector space (where n ≥ 3), then S1(V ) is a regu-
lar (n − 1)-dimensional geometrical incidence space with respect to the notions of geometrical
subspace and dimension that are defined above.

Proof. We shall first verify the conditions (G-1)–(G-3) in order, and in the next theorem we
shall prove a strengthened version of (G-4) in the next theorem.

PROOF OF (G-1). Let X0, · · · , Xk be 1-dimensional subspaces of V that are not contained in
any subspace S1(W ) of dimension less than k; i.e., there is no vector subspace W ⊂ V such that
dimW ≤ k and Xi ⊂ W for all i. By the sum formula for dimensions of vector subspaces, we
know that dim(X0+ · · · +Xk) ≤ k+1; furthermore, if strict inequality holds, then X0+ · · · +Xk

is a vector space of dimension ≤ k containing each Xi, and hence we know that all the subspaces
Xi belong to some geometric subspace S1(W ) of dimension less than k. Since we are assuming
this does not happen, it follows that dim(X0 + · · · + Xk) = k + 1, and accordingly the k-plane

S1(X0 + · · · + Xk)

contains all the 1-dimensional subspaces Xi. To prove the uniqueness part of (G-1), suppose that
S1(W ) is a k-plane such that Xi ⊂ W for all i. It follows immediately that X0 + · · · +Xk ⊂ W
and

k + 1 = dim(X0 + · · · + Xk) ≤ dimW = k + 1

and hence (X0 + · · · + Xk) = W by Theorem A.8 so that S1(X0 + · · · + Xk) is the unique
k-plane containing all the Xi.�

PROOF OF (G-2). Suppose that Xi ∈ S1(W ) for 0 ≤ i ≤ m, and assume that the set
{X0, · · · , Xm } is independent. By the previous proof, the unique m-plane containing the Xi is
S1(X0 + · · · + Xm); since Xi ⊂ W by our hypotheses, it follows that (X0 + · · · + Xm) ⊂ W ,
and therefore we also have S1(X0 + · · · + Xm) ⊂ S1(W ).�

PROOF OF (G-3). Suppose that S1(W ) is a k-plane, so that dimW = k+1. Let w0, · · · ,wk

be a basis for W , and let for each i such that 0 ≤ i ≤ k let Xi be the 1-dimensional vector
subspace spanned by wi. Then {X0, · · · , Xk } is a set of k + 1 distinct points in S1(W ).�

The next result will show that a strengthened form of (G-4) holds for S1(V ).

Theorem III.8. If P and Q are geometrical subspaces of S1(V ) then

d(P ) + d(Q) = d(P ? Q) + d(P ∩ Q) .

The difference between this statement and (G-4) is that the latter assumes P ∩Q 6= ∅, but the
theorem contains no such assumption.

Proof. We shall first derive the following equations:
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(i) S1(W1 ∩ W2) = S1(W1) ∩ S1(W2)

(ii) S1(W1 + W2) = S1(W1) ? S1(W2)

Derivation of (i). X is a 1-dimensional subspace of W1 ∩W2 if and only if X is a 1-dimensional
subspace of both W1 and W2.

Derivation of (ii). If W is a vector subspace of U , then S1(W ) ⊂ S1(U). therefore
S1(Wi) ⊂ S1(W1 + W2) for i = 1, 2. Therefore we also have S1(W1 +W2) ⊂ S1(W1)?S1(W2).
To prove the reverse inclusion, choose U such that S1(U) = S1(W1) ? S1(W2). Then Wi ⊂ U
for I = 1, 2 follows immediately, so that W1 + W − 2 ⊂ U . Consequently we have

S1(W1 + W2) ⊂ S1(U) ⊂ S1(W1 + W2)

which immediately yields S1(W1 + W2) = S1(U) = S1(W1 + W2).

To prove the theorem, note that

d (S1(W1) ? S1(W2) ) = d (S1(W1 + W2) ) =

dim(W1 + W2) − 1 = dimW1 + dimW2 − dimW1 ∩ W2 − 1 =

(dimW1 − 1) + (dimW2 − 1) − (dim(W1 ∩ W2) − 1) =

d (S1(W1) ) + d (S1(W2) ) − d (S1(W1 ∩ W2) ) .�

EXAMPLE 1. If S1(V ) is 2-dimensional, then Theorem 9 states that every two lines in S1(V )
have a common point because d(L1 ? L2) ≤ 2 = d (S1(V ) ) implies

d(L1 ∩ L2) = d(L1) + d(L2) − d(L1 ? L2) ≥ 1 + 1 − 2 = 0 .

EXAMPLE 2. Similarly, if S1(V ) is 3-dimensional, then every pair of planes has a line in
common because d(P1 ? P2) ≤ 3 = d (S1(V ) ) implies

d(P1 ∩ P2) = d(P1) + d(P2) − d(P1 ? P2) ≥ 2 + 2 − 3 = 1 .

The next result will play a significant role in Chapter IV.

Theorem III.9. If V as above is at least 2-dimensional, then every line in S1(V ) contains at
least three points.

Proof. Let W be a 2-dimensional subspace of V , and let w1 and w2 form a basis for W . Then
S1(W ) contains the three distinct points Span(w1), Span(w2), and Span(w1 + w2).�

Projective extension of the affine space V

Given an n-dimensional vector space V over a field F, we shall now construct a projective
extension of the affine space structure on V which generalizes the previous construction of FP

2

from F
2. The central object in this construction is a 1–1 mapping JV from V to P(V ) = S1(V ×

F) which sends v ∈ V to the 1-dimensional vector subspace of V × F spanned by (v, 1). Notice
that V × F is a vector space with addition and scalar multiplication defined coordinatewise. As
in the previous construction, a point is said to be ordinary if it lies in the image of JV , and the
remaining points, which are represented by homogeneous coordinates of the form (v, 0), where
v 6= 0, are called ideal points. Once again, the ideal point with homogeneous coordinates (v, 0)
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is the point at infinity on the line joining 0 to v. We may summarize the preceding discussion
as follows:

Theorem III.10. A point in P(V ) = S1(V × F) is either ordinary or ideal but not both.�

Finally, we include an analog of Theorem II.17:

Theorem III.11. A set H ⊂ FP
n is an (n−1)-plane if and only if there exist a1, · · · , an+1 ∈ F

not all zero such that x ∈ H if and only if there exist homogeneous coordinates (x0, · · · , xn)
for x such that

∑
i aixi = 0.

Proof. The theorem follows because a subset of F
n+1 is an n-dimensional vector subspace if

and only if it is the set of all points which solve a nontrivial linear homogeneous equation of the
type described in the theorem (compare Theorem A.10).�

Several additional and important properties of the 1–1 mapping

JV : V −→ P(V ) = S1(V × F)

are developed in the exercises, and the latter are particularly worthy of attention.

EXERCISES

1. Translate the following statements about F
3 into the language of ideal points.

(a) Through a given point there is a unique plane parallel to a given plane.

(b) Two lines which are parallel to a third line are parallel to each other.

(c) If a line is parallel to each of two intersecting planes it is parallel to their line of intersection,
and conversely.

(d) If a line L is parallel to a plane P any plane containing L cuts P in a line parallel to L.

(e) Through a given line one plane, and only one, can be passed parallel to a given skew line.

(f) Through a given point one plane, and only one, can be passed that is parallel to each of two
skew lines.

(g) All the lines through a point and parallel to a given plane lie on a plane parallel to the first
plane.

(h) If a plane contains one of two parallel lines but not the other, it is parallel to the other line.

(i) The intersection of a plane with two parallel planes is a pair of parallel lines.

2. Let V be a vector space over F of dimension ≥ 3, let x0, · · · ,xm be distinct points in
S1(V ), and for each i let x̃i be a set of homogeneous coordinates for xi. Prove that the set
{x0, · · · ,xm } ⊂ S1(V ) is geometrically independent if and only if the set { x̃0, · · · , x̃m } ⊂ V
is linearly independent.

3. Determine which of the following vectors in R
3 correspond to homogeneous coordinates of

collinear points in RP
2:

(i) (5, 2, 4) (5, -2, 1) (15, 2, 9)
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(ii) (3, 1, -2) (8, -3, 4) (5, -2, 6)

(iii) (1, 5, 1) (1, 1, -1) (3, 4, 1)

(iv) (1, 2, 3) (3, 0, 3) (-2. 3, -1)

4. Determine which of the following vectors in R
4 correspond to homogeneous coordinates of

collinear or coplanar points in RP
3:

(i) (1, 2, 1, 3) (2, 1, 3, 3) (1, 0, 3, 0) (2, 1, 1, 5)

(ii) (1, 1, 2, 1) (0, 1, 1, 2) (-1, 1, 2, 0) (2, 0, 0, -3)

(iii) (1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)

(iv) (1, 2, 1, 0) (1, 0, -1, -1) (0, 2, 2, 1) (1, 2, 0, -1)

5. Let F be a field with q elements (for example, if p is a prime then the field Zp has p
elements). Prove that FP

n has 1 + q + · · · + qn points. [Hint: Let π : F
n+1 − {0} → FP

n be
the map taking a nonzero vector to the point for which it is a set of homogeneous coordinates.
Explain why there are (q−1) possible choices of homogeneous coordinates for every point. Using
simple counting considerations, show that the number k of points in FP

n times the number of
choices for homogeneous coordinates is equal to the number of nonzero elements in F

n+1, which
is qn+1 − 1. This yields an equation for k; solve this equation.]

6. For each of the pairs of planes in R
3 given below, the intersection is a line L in R

3. Find
homogeneous coordinates for the ideal point of L.

(i) 3x + 3y + z = 2 and 3x − 2y = −13

(i) 1x + 2y + 3z = 4 and 2x + 7y + z = 8

7. Prove Theorem 11.

HYPOTHESIS AND NOTATION. For the rest of these exercises, assume that V
is a finite-dimensional (left or right) vector space over F. If x ∈ V is nonzero, we
shall denote the 1-dimensional subspace spanned by x by F · x or more simply
by Fx.

8. Using Theorem 9, answer the following questions and prove that your answer is correct:

(i) In S1(V ), what is the intersection of a line with a hyperplane that does not contain it?

(ii) In S1(V ), what is the smallest number of hyperplanes that do not contain a common point?

9. Prove that the projective extension map

JV : V −→ P(V ) = S1(V × F)

is 1–1 but not onto.

10. Let Q be a k-plane in V (where k ≤ dimV ). Prove that J [Q] is contained in a unique
k-plane Q′ ⊂ P(V ). [Hint: If {x0, · · · ,xk } is an affine basis for Q, let W be the affine span
of the vectors (xi, 1) and consider P(W ).]

11. In the preceding exercise, prove that the ideal points of P(W ) form a (k − 1)-plane in
P(V × F). In particular, every line contains a unique ideal point and every plane contains a
unique line of ideal points.
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12. (Partial converse to Exercise 10). Let W be a (k + 1)-dimensional subspace of V × F such
that

dimW − dim
(
W ∩ (V × {0}

)
= 1 .

Prove that J−1
[
P(W )

]
is a k-plane of V .

13. Let V and W be vector spaces over F, and let T : V → W be a linear transformation that
is one-to-one.

(i) Let v 6= 0 in V . Show that the mapping S1(T ) : S1(V ) → S1(W ) taking F · v to F · T (v) is
well-defined (i.e., if v and x are nonzero vectors that are nonzero multiples of each other than
so are their images under T ).

(ii) If S : W → X is also a linear transformation, show that S1(S oT ) = S1(S) oS1(T ). Also
show that if T is an identity mapping then so is S1(T ).

(iii) If T is invertible, prove that S1(T ) is also invertible and that S1(T )−1 = S1

(
T−1

)
.

14. Suppose that V is an n-dimensional vector space and let {x1, · · · ,xn } and {y1, · · · ,yn }
be geometrically independent subsets of S1(V ). Find an invertible linear transformation T such
that S1(T ) maps xi to yi for 1 ≤ i ≤ n.

15. Let T0 be an element of the affine group Aff(V ). Prove that there is an invertible linear
transformation T : V × F → V × F such that

S1(T ) oJV = JV
oT0 .

[Hint: Let {v1, · · · ,vn } be a linear basis for V and choose T so that T (vi, 0) = (T0(vi), 0 )
for all i and T (0, 1) = (0, 1). Show that T (x, 1) = (ϕ(x), 1) for all x ∈ V using the expansion
of x as an affine combination of the basis vectors {v1, · · · ,vn } and the zero vector.]

16. Suppose that T : V ×F → V ×F is an invertible linear transformation which maps V ×{0}
to itself. Prove that S1(T ) maps JV [V ] to itself and the induced self-map of V is in Aff(V ).

17. Let S and T be geometrical subspaces of S1(V ). Prove that the join S ? T is the set of all
points z such that z ∈ S ∪ T or z ∈ xy, where x ∈ S and y ∈ T . In other words, the join S ? T
is the set of all points on lines joining points of S and T . [Hint: If S = S1(W ) and T = S1(U),
then S ? T = S1(W + U).]

Note. A corresponding description of the join in affine geometry is given in
Appendix B.



62 III. CONSTRUCTION OF PROJECTIVE SPACE

Addendum. Synthetic construction of projective space

The preceding three sections of this chapter described the analytic approach to generalizing
the synthetic construction of Section III.1. In this addendum to Section III.4 we shall discuss
the synthetic approach to construction of a projective space from an affine space. Since some
of the arguments are lengthy and we shall not use this material subsequently except in a few
peripheral exercises and remarks, many of the details have been omitted; the latter are generally
straightforward (but often tedious), and thus they are left to the reader.

We shall need the following results on affine incidence spaces of arbitrary dimension. The proofs
are quite similar to their 3-dimensional special cases in Section II.1.

Theorem III.12. Suppose that L, M and N are lines in an affine incidence n-space (n ≥ 2)
and L 6= N . If L||M and M ||N , then L||N .�

Theorem III.13. Let S be an an affine n-space let H be a hyperplane in S, and let x be a point
of S which does not lie in H. Then there is a unique hyperplane H ′ in S such that x ∈ H ′ and
H ∩ H ′ = ∅ (in other words, a parallel hyperplane to H which passes through x).�

Motivated by the 2-dimensional case, define a direction in an affine n-space S to be an equivalence
class of parallel lines, and set S∧∧∧ equal to S together with all the directions in S. Denote the
set of all directions by S∞. We define two types of geometrical subspaces of S∧∧∧ as follows:

(A) Extensions of subspaces of S. If P is a geometrical subspace of S, set P ∧∧∧ equal to
P together with all directions L∧∧∧ containing a representative L0 which lies in P . The
dimension of P∧∧∧ is defined to be equal to the dimension of P .

(B) Ideal geometrical subspaces or subspaces at infinity. If P is a geometrical subspace
of S, then its set of ideal points P∞ = P∧∧∧ ∩ S∞ is a geometrical subspace whose
dimension is equal to d(P )− 1. [In particular, S∞ is a hyperplane in S, and it is called
the ideal hyperplane or the hyperplane (of points) at infinity.

We shall take the above as the definition of the synthetic projective extension S∧∧∧ of an affine
n-space S, and XS : S → S∧∧∧ will denote the inclusion of S in its projective extension.

The following result expresses the equivalences between the synthetic and analytic approaches
to projective extensions of coordinate affine spaces.

Theorem III.14. Let V be a finite-dimensional vector space over F such that dimV ≥ 2. Then
there is a 1 − 1 correspondence

hV : V ∧∧∧ −→ S1(V × F)

with the following properties:

(i) JV = hV
oXV

(ii) A subset Q ⊂ V ∧∧∧ is a k-plane in V ∧∧∧ if and only if hV [Q] is a k-plane in S1(V × F).
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Proof. We shall break the argument down into a sequence of steps.

STEP 1. Construction of a 1 − 1 correspondence between V ∧∧∧ and S1(V × F).

If v ∈ V and X(v) = v′, define hV (v′) = F · (v, 1); this construction is well-defined since the
mapping XV is 1–1. Given an ideal point L∧∧∧ associated to some line L, let u 6= 0 span the
unique 1-dimensional vector subspace of V which is parallel or equal to L, and let

hV

(
L∧∧∧

)
= F · (u, 0) .

This is well-defined because L||M implies that 0u is parallel or equal to M (by Theorem 13),
and the right hand side of the formula remains the same if we replace u by any other nonzero
point u′ of 0u (since u′ and u are nonzero multiples of each other). By definition we have
JV = hV

oXV .

We shall now show that hV is 1–1. (a) If a, b ∈ V , are distinct vectors, then XV (a) 6= XV (b).
If the images of these points under hV are equal, then we have

JX(a) = hV
oXV (a) = hV

oXV (b) = JV (b)

which is a contradiction because JV is known to be 1–1. Therefore the map hV is 1–1 on the
image of XV . (b) Suppose now that L∧∧∧ and M∧∧∧ are ideal points such that

hV

(
L∧∧∧

)
= hV

(
M∧∧∧

)
.

This means that there is a single line 0u in V which is parallel or equal to each of L and M .
which in turn means that L∧∧∧ = M∧∧∧. (c) Suppose now that we have an ordinary point XV (a)
and an ideal point L∧∧∧ which have the same image under hV . If this is true then F ·(a, 1) is equal
to F · (u, 0), where u is given as before. Since every nonzero vector in the first subspace has a
nonzero last coordinate and every vector in the second subspace has a zero last coordinate, it
is clear that the two subspaces cannot be equal, and therefore an ordinary point and an ideal
point cannot have the same images under hV . — This completes the proof that hV is 1–1.

We shall now show that hV is onto. Let 0 6= (v, c) ∈ V × F. If c 6= 0, then we have

F · (v, c) = F · (c−1 v, 1) = JV (c−1v) = hV
oXXV (c−1v) .

On the other hand, if c = 0 then v 6= 0 and

F · (v, 0) = hV

(
(0v)∧∧∧

)
.

STEP 2. Under the above correspondence, a subset Q ⊂ V ∧∧∧ is a hyperplane if hV [Q] is a
hyperplane in S1(V × F). — We shall only sketch the argument, leaving verification of the
details to the reader.

This uses a result from the Exercises for Section 4 of Appendix A: If X is m-dimensional vector
space over F, then Y ⊂ X is an (m − 1)-dimensional vector subspaces if and only if there is a
nonzero linear transformation (or functional) g : X → F such that x ∈ Y if and only if g(x) = 0.
— The linear functional g is not unique, for if Y is the zero set for g and c is a nonzero constant,
then Y is also the zero set for c · g.

By the previously mentioned exercises and the discussion following Theorem A.12, every linear
functional on V × F has the form g(v, t) = g0(v) + a · t, where g0 is a linear functional on V
and a ∈ F. — Extensions of ordinary hyperplanes in V are defined by expressions of this form
for which g0 6= 0, and the ideal hyperplane in V is defined by linear functionals of this form in
which g0 = 0 and b 6= 0.
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Suppose we are given a hyperplane H∧∧∧ in V ∧∧∧ which is the extension of a hyperplane H in V .
Then H is defined by an equation of the form f(v) = b for some nonzero linear functional f
and scalar b, and hV [ H∧∧∧ ] is equal to S1(W ), where W is the zero set of the linear functional
g(v, t) = f(v)− b · t. Since we also know that hV maps the ideal hyperplane in V ∧∧∧ to the zero
set of the functional g(v, t) = t, it follows that the image of a hyperplane in V ∧∧∧ is a hyperplane
in S1(V × F).�

Conversely, suppose that S1(W ) is a hyperplane in S1(V ×F), and suppose that the n-dimensional
vector subspace W is defined by the nonzero linear functional. Write g(v, t) = g0(v) + a · t
as above, where either g0 6= 0 or a 6= 0. In the first of these cases S1(W ) is the image of
the extended ordinary hyperplane defined by the equation g0(v) = −a, and in the second case
S1(W ) is the image of the ideal hyperplane.

STEP 3. Let k be an integer satisfying 1 ≤ k ≤ n−2. In both V ∧∧∧ and FP
n, a k-dimensional ge-

ometrical subspace Q is the intersection of an (k+1)-dimensional subspace Q ′ with a hyperplane
H not containing it.

The proofs of these statements are variants of Exercise II.5.3 which shows that every geometrical
subspace is an intersection of hyperplanes. There is an analogous result for vector subspaces
of an m-dimensional vector spaces: Every k-dimensional subspace is an intersection of (m − k)
distinct hyperplanes. Once again, the argument breaks down into various cases.

STEP 4. By downward induction on k such that 1 ≤ k ≤ (n−1), one shows that Q is a k-plane
in both V ∧∧∧ if and only if hV [Q] is a k-plane in FP

n.

Once again, we shall only sketch the argument: The case k = (n − 1) is covered by Step 2, and
the recursive step — showing that the validity of the result for (k + 1) implies its validity for k
— follows from the description of k-planes in Step 3.�

Abstract projective extensions

Definition. Let S be a geometrical incidence space of dimension n ≥ 3. An abstract projective
extension of S is a 1–1 map ϕ : S → FP

n, where F is some skew-field, such that if Q is a k-plane
in S then there is a unique k-plane Q′ ⊂ FP

n such that Q = ϕ−1[Q′].

The results of this chapter prove the existence of projective extensions for the coordinate affine
n-spaces (in fact, for all affine n-spaces by Theorem II.38). On the other hand, it is not difficult
to see that projective extensions exist for many other geometrical incidence spaces (e.g., this
holds for the examples in Exercises II.5.7 and II.5.8). In fact, if one has a 3-dimensional (regular)
geometrical incidence space which also has a notion of betweenness satisfying Hilbert’s Axioms
of Order, then the existence of an abstract projective extension (with a suitable analog of
betweenness as defined in Section VI.4 below) is given by results due to A. N. Whitehead.12

Extremely general, and purely incidence-theoretic, conditions for the existence of projective

12See Chapter III of the book, The Axioms of Descriptive Geometry, in the bibliography. — Alfred

North Whitehead (1861–1947) was an extremely well-known philosopher who worked extensively on the logical
foundations of mathematics during the period from the late 1880s until about 1913, at which time he shifted
his attention to other areas of philosophy. Whitehead is particularly known for his study of the foundations
of mathematics with the well known philosopher Bertrand Russell (1872–1970), which is largely contained in a
massive and ambitious three volume work called Principia Mathematica.
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extensions have been established by S. Gorn.13 A discussion of the classical Non-Euclidean
geometries using their projective extensions appears in Chapters 12 and 13 of the book by
Fishback listed in the bibliography.

THE 2-DIMENSIONAL CASE. Clearly there is no problem in formulating a definition of abstract
projective extension for incidence planes, and the constructions of this chapter shows that every
affine coordinate incidence plane admits a projective extension. In fact, if one defines an abstract
notion of projective plane as in Section IV.1 below, then the constructions of Section III.1 show
that for every abstract affine plane P there admits a map ϕ : P → P ∗ such that P ∗ is an
abstract projective plane and (as before) if L is a line in P then there is a unique line L ′ ⊂ FP

n

such that L = ϕ−1[L′]. However, two major differences are that (i) in contrast to the situation
in higher dimensions, we cannot always take P ∗ to be a coordinate projective plane FP

2, (ii) the
proofs of the results of Whitehead and Gorn on projective extensions for non-affine incidence
structures do not extend to the 2-dimensional case. We shall discuss these points further in the
next chapter.

EXERCISES

1. Assuming that S is an affine n-space, prove that S∧∧∧ is a regular geometrical incidence space,
and in fact the dimensions of subspaces satisfy the strong form of the regularity condition

d(T1 ? T2) = d(T1) + d(T2) − d(T1 ∩ T2)

for all geometrical subspaces T1 and T2.

2. Suppose that f : S → S ′ is a geometric symmetry of an affine n-space. Prove that f extends
to a unique geometric symmetry f∧∧∧ of S∧∧∧. [Hint: If L||L′, then f [L] || f [L′]; verify this and
use it to define f∧∧∧.]

3. In the notation of the preceding exercise, prove that (idS)∧∧∧ is the identity on S∧∧∧ and if
g : S → S is another symmetry then (g of)∧∧∧ = g∧∧∧ of∧∧∧. Finally, show that

(f−1)∧∧∧ =
(
f∧∧∧

)
−1

.

[Hint: In each desired identity, explain why both sides of the equation extend the same geometric
symmetry of S.]

4. Prove Theorems 13 and 14, and fill in the details for the proof of Theorem 15.

13A reference to the original 1940 research article appears in the bibliography. — Saul Gorn (1913–1992)
began his professional career as a mathematician, but his interests moved to computer science with the emergence
of that subject during the 1940s, and he played a significant role in the establishment of computer science
as an independent branch of the mathematical sciences. As a researcher, he is best known for his theory of
mechanical languages based upon work of twentieth century philosophers like L. Wittgenstein (1889–1951) on
human linguistics.




